首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Suyama E  Kawasaki H  Taira K 《FEBS letters》2002,528(1-3):63-69
By using our recently developed gene discovery system, we have identified Bak, a member of the Bcl-2 family, as a pro-apoptotic factor in the tumor necrosis factor (TNF)-alpha-induced apoptotic pathway in caspase 3-deficient cells. Unlike Bcl-2, Bak stimulates several apoptotic pathways, however the molecular mechanism(s) of its action remains unclear. For example, it is unclear whether Bak induces apoptosis in caspase 3-deficient cells. In this study, we examined the effects of overexpression of Bak in MCF-7 cells that lack caspase 3. We found that despite the absence of caspase 3 in MCF-7 cells, they were more sensitive to the cell death effects of Bak as compared to caspase 3-expressing HeLa S3 cells. The targeting of Bak function by ribozymes suggests that Bak is required for the TNF-alpha-induced apoptotic pathway in caspase 3-deficient cells. This study demonstrates the caspase 3-independent function of Bak in the TNF-alpha-induced apoptotic pathway.  相似文献   

3.
Caspase 8 is a key apoptotic factor in the receptor/ligand apoptosis-signaling cascade. Absent caspase 8 expression is shown to correlate with poor prognosis in neuroblastoma. Paradoxically, the caspase 8 gene can produce as plice variant and novel inhibitor of itself-caspase 8l. The presence of caspase 8 alone in tumors may not necessarily portend a good prognosis. We sought to determine whether caspase 8l is present in neuroblastoma and whether over-expression of this protein could inhibit caspase 8-dependent apoptosis. Six of 6 histologically undifferentiated and 2 of 5 differentiated neuroblastoma tumors expressed the caspase 8l isoform, whereas caspase 8l was absent in 3 of 3 ganglioneuromas. Seven human neuroblastoma cell lines were surveyed. Two of the 5 cell lines that expressed caspase 8 also expressed the caspase 8l isoform and both were of a less differentiated neuronal phenotype. Over-expression of caspase 8l in cell lines afforded protection against TRAIL, but not against etoposide induced apoptosis. Conversely, blockade of Caspase 8l in cells that express this splice variant made them more sensitive to apoptosis induced cell death. We demonstrate the caspase 8l isoform is present in neuroblastoma and appears to be associated with undifferentiated cell lines and tumors. Furthermore, it suppresses caspase 8-dependent apoptosis.  相似文献   

4.
Genetic studies have established that the cysteine protease CED-3 plays a central role in coordinating programmed cell death in Caenorhabditis elegans. However, it remains unclear how CED-3 activation results in cell death because few substrates for this protease have been described. We have used a global proteomics approach to seek substrates for CED-3 and have identified 22 worm proteins that undergo CED-3-dependent proteolysis. Proteins that were found to be substrates for CED-3 included the cytoskeleton proteins actin, myosin light chain, and tubulin, as well as proteins involved in ATP synthesis, cellular metabolism, and chaperone function. We estimate that approximately 3% of the C. elegans proteome is susceptible to CED-3-dependent proteolysis. Notably, the endoplasmic reticulum chaperone calreticulin, which has been implicated in the recognition of apoptotic cells by phagocytes, was cleaved by CED-3 and was also cleaved by human caspases during apoptosis. Inhibitors of caspase activity blocked the appearance of calreticulin on the surface of apoptotic cells, suggesting a mechanism for the surface display of calreticulin during apoptosis. Further analysis of these substrates is likely to yield important insights into the mechanism of killing by CED-3 and its human caspase counterparts.  相似文献   

5.
We examined the influence of cellular prion protein (PrPc) in the control of cell death in stably transfected HEK293 cell line and in the PrPc-inducible Rov9 cells. PrPc expression in stably transfected HEK293 human cells did not modify basal apoptotic tonus but drastically potentiated staurosporine-stimulated cellular toxicity and DNA fragmentation as well as caspase 3-like activity and immunoreactivity. An identical staurosporine-induced caspase 3 activation was observed after doxycycline in the PrPc-inducible Rov9 cell line. Interestingly, proteasome inhibitors increase PrPc-like immunoreactivity and unmasked a basal caspase 3 activation. Conversely, we show that anti-PrPc antibodies sequestrate PrPc at the cell surface and drastically lower PrPc-dependent caspase activation. We suggest that intracellular PrPc could sensitize human cells to pro-apoptotic phenotype and that blockade of PrPc internalization could be a track to prevent intracellular toxicity associated with PrPc overexpression.  相似文献   

6.
Activation of caspases is required in Fas receptor mediated apoptosis. Maintenance of a reducing environment inside the cell has been suggested to be necessary for caspase activity during apoptosis. We explored the possibility to potentiate Fas mediated killing of tumor cells by alpha-lipoic acid (LA), a redox-active drug and nutrient that is intracellularly reduced to a potent reductant dihydrolipoic acid. Treatment of cells with 100 microM LA for 72 h markedly potentiated Fas-mediated apoptosis of leukemic Jurkat cells but not that of peripheral blood lymphocytes from healthy humans. In Jurkat, Fas activation was followed by rapid loss of cell thiols, decreased mitochondrial membrane potential, increased [Ca2+]i and increased PKC activity; all these responses were potentiated in LA pretreated cells. PKCdelta played an important role in mediating the effect of LA on Fas-mediated cell death. In response to Fas activation LA treatment potentiated caspase 3 activation by over 100%. The ability of LA to potentiate Fas mediated killing of leukemic cells was abrogated by a caspase 3 inhibitor suggesting that increased caspase 3 activity in LA-treated Fas-activated cells played an important role in potentiating cell death. This work provides first evidence showing that inducible caspase 3 activity may be pharmacologically up-regulated by reducing agents such as dihydrolipoic acid.  相似文献   

7.
Caspases have been implicated in the induction of apoptosis in most systems studied. The importance of caspases for apoptosis was further investigated using the system of didemnin B-induced apoptosis. We found that benzyloxycarbonyl-VAD-fluoromethylketone, a general caspase inhibitor, inhibits didemnin B-induced apoptosis in HL-60 and Daudi cells. Acetyl-YVAD-chloromethylketone, a caspase-1-like activity inhibitor, inhibits didemnin B-induced apoptosis in Daudi cells, whereas the caspase-3-like activity inhibitor, acetyl-DEVD-aldehyde, has no effect. Using immunoblots to investigate cleavage of caspases-1 and -3, we found that both caspases are activated in both cell lines. We showed that the caspase substrate poly(ADP-ribose)polymerase is cleaved in these cells after didemnin B treatment. In both cell lines, poly(ADP-ribose)polymerase cleavage is inhibited by benzyloxycarbonyl-VAD-fluoromethylketone and also by acetyl-YVAD-chloromethylketone in Daudi cells. These results indicate that a caspase(s) other than caspase-3 is required for didemnin B-induced apoptosis. We show that caspases may be activated during apoptosis that are not required for the progression of apoptosis.  相似文献   

8.
Exposure of neurons to H(2)O(2) results in both necrosis and apoptosis. Caspases play a pivotal role in apoptosis, but exactly how they are involved in H(2)O(2)-mediated cell death is unknown. We examined H(2)O(2)-induced toxicity in neuronal PC12 cells and the effects of inducible overexpression of the H(2)O(2)-scavenging enzyme catalase on this process. H(2)O(2) caused cell death in a time- and concentration-dependent manner. Cell death induced by H(2)O(2) was found to be mediated in part through an apoptotic pathway as H(2)O(2)-treated cells exhibited cell shrinkage, nuclear condensation and marked DNA fragmentation. H(2)O(2) also triggered activation of caspase 3. Genetic up-regulation of catalase not only significantly reduced cell death but also suppressed caspase 3 activity and DNA fragmentation. While the caspase 3 inhibitor DEVD inhibited both caspase 3 activity and DNA fragmentation induced by H(2)O(2) it did not prevent cell death. Treatment with the general caspase inhibitor ZVAD, however, resulted in complete attenuation of H(2)O(2)-mediated cellular toxicity. These results suggest that DNA fragmentation induced by H(2)O(2) is attributable to caspase 3 activation and that H(2)O(2) may be critical for signaling leading to apoptosis. However, unlike inducibly increased catalase expression and general caspase inhibition both of which protect cells from cytotoxicity, caspase 3 inhibition alone did not improve cell survival suggesting that prevention of DNA fragmentation is insufficient to prevent H(2)O(2)-mediated cell death.  相似文献   

9.
We have previously shown that 25-hydroxycholesterol (25-OHC) treated CHO-K1 cells could be used as a model to investigate the signaling pathway of apoptosis induced by oxidized LDL in vascular cells. In the present study, we examine the execution phase of the apoptotic pathway in CHO-K1 cell death induced by 25-OHC. Oxysterol-induced apoptosis in CHO-K1 was accompanied by caspase activation and was preceded by mitochondrial cytochrome c release. The addition of a competitive caspase-3 inhibitor, Ac-DEVD-CHO, prevented 25-OHC-induced apoptotic cell death. Furthermore, immunoblot analysis showed that 25-OHC treatment induced the degradation of poly(ADP-ribose) polymerase (PARP)-a substrate for caspase 3 and a key enzyme involved in genome surveillance and DNA repair. Thus, we could demonstrate in CHO-K1 cells that 25-OHC activates the apoptotic machinery through induction of the release of cytochrome c from mitochodria into the cytosol and activation of a typical caspase cascade.  相似文献   

10.
Taurine is an abundant free amino acid that interacts with the potent oxidant hypochlorous acid to form the less toxic and more stable oxidant taurine monochloramine (TauNHCl). TauNHCl has diverse cellular effects ranging from inhibiting the production of proinflammatory mediators to inhibiting cell proliferation and inducing cell death. We hypothesized that TauNHCl could activate a cell death pathway involving Bcl-2 members and the activation of caspase proteases. FL5.12 cells are lymphocytic cells that undergo apoptosis following interleukin-3 (IL-3) withdrawal. Therefore, cell death following TauNHCl treatment of FL5.12 cells was compared and contrasted with IL-3 withdrawal. We found that TauNHCl treatment activates a cell death pathway with kinetics very similar to IL-3 withdrawal. TauNHCl-treated cells undergo an annexin V-positive/propidium iodide-negative phase of death consistent with apoptosis. TauNHCl treatment results in a conformational change in BAX that is associated with its activation. Both Bcl-2 and, to a lesser degree, the dominant negative form of caspase-9 inhibit cell death following TauNHCl treatment. In contrast with IL-3 withdrawal, TauNHCl treatment of FL5.12 cells results in a rapid cell cycle arrest that is cell cycle phase-independent. These results demonstrate that TauNHCl treatment induces a rapid, cell cycle-independent proliferative arrest followed by the activation of a cell death pathway involving Bcl-2 family members and caspase activation.  相似文献   

11.
In Drosophila oogenesis, the programmed cell death of germline cells occurs predominantly at three distinct stages. These cell deaths are subject to distinct regulatory controls, as cell death during early and midoogenesis is stress-induced, whereas the cell death of nurse cells in late oogenesis is developmentally regulated. In this report, we show that the effector caspase Drice is activated during cell death in both mid- and late oogenesis, but that the level and localization of activity differ depending on the stage. Active Drice formed localized aggregates during nurse cell death in late oogenesis; however, active Drice was found more ubiquitously and at a higher level during germline cell death in midoogenesis. Because Drice activity was limited in late oogenesis, we examined whether another effector caspase, Dcp-1, could drive the unique morphological events that occur normally in late oogenesis. We found that premature activation of the effector caspase, Dcp-1, resulted in a disappearance of filamentous actin, rather than the formation of actin bundles, suggesting that Dcp-1 activity must also be restrained in late oogenesis. Overexpression of the caspase inhibitor DIAP1 suppressed cell death induced by Dcp-1 but had no effect on cell death during late oogenesis. This limited caspase activation in dying nurse cells may prevent destruction of the nurse cell cytoskeleton and the connected oocyte.  相似文献   

12.
We have previously reported that 8-epipuupehedione, a synthetic derivative of sesquiterpenes found in several kinds of sponges, is a potent inhibitor of angiogenesis. Here, we show that 8-epipuupehedione is also a potent anti- leukaemic compound, targeting three hallmarks of malignancy: proliferation, survival and extra-cellular matrix re-modelling. To fulfil this goal, we use the HL-60 promyeolocytic cells as our model system and the following experimental procedures: cell growth assay, Hoetsch staining, cell cycle analysis and DNA fragmentation, caspase 3 activity and zymographic assays. Our results show that this compound inhibits proliferation and has potent and specific pro-apoptotic effects on HL-60 promyelocytic cells, inducing their nuclei and DNA fragmentation, as well as caspase 3 activity activation. Furthermore, 8-epipuupehedione strongly inhibits matrix metalloproteinase-2 and urokinase production by HL-60 cells. These results suggest that 8-epipuupehedione could be an attractive drug for further evaluation in the treatment of leukemia.  相似文献   

13.
4-Hydroxynonenal (HNE), a reactive and cytotoxic end-product of lipid peroxidation, has been suggested to be a key mediator of oxidative stress-induced cell death and in various cell types has been shown to induce apoptosis. We have demonstrated that HNE, at micromolar concentrations, induces dose- and time-dependent apoptosis in a leukemic cell line (CEM-C7). Interestingly, much higher concentrations of HNE (> 15-fold) were required to induce apoptosis in leukocytes obtained from normal individuals. We also demonstrate that HNE causes a decrease in clonogenicity of CEM-C7 cells. Furthermore, our data characterize the caspase cascade involved in HNE-induced apoptosis in CEM-C7 cells. Using specific fluorogenic substrates and irreversible peptide inhibitors, we demonstrate that caspase 2, caspase 3, and caspase 8 are involved in HNE-induced apoptosis, and that caspase 2 is the first initiator caspase that activates the executioner caspase 3, either directly or via activation of caspase 8. Our studies also suggest the involvement of another executioner caspase, which appears to be similar to caspase 8 but not caspases 2 and 3, in its specificity. The demonstration of decreased clonogenicity by HNE in the leukemic cells, and their higher susceptibility to HNE-induced apoptosis as compared to the normal cells, suggests that such compounds may have potential for leukemia chemotherapy.  相似文献   

14.
Burk DH  Ye ZH 《The Plant cell》2002,14(9):2145-2160
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.  相似文献   

15.
Programmed cell death (apoptosis) is critical for normal brain morphogenesis and may be triggered by neurotrophic factor deprivation or irreparable DNA damage. Members of the Bcl2 and caspase families regulate neuronal responsiveness to trophic factor withdrawal; however, their involvement in DNA damage-induced neuronal apoptosis is less clear. To define the molecular pathway regulating DNA damage-induced neural precursor cell apoptosis, we have examined the effects of drug and gamma-irradiation-induced DNA damage on telencephalic neural precursor cells derived from wild-type embryos and mice with targeted disruptions of apoptosis-associated genes. We found that DNA damage-induced neural precursor cell apoptosis, both in vitro and in vivo, was critically dependent on p53 and caspase 9, but neither Bax nor caspase 3 expression. Neural precursor cell apoptosis was also unaffected by targeted disruptions of Bclx and Bcl2, and unlike neurotrophic factor-deprivation-induced neuronal apoptosis, was not associated with a detectable loss of cytochrome c from mitochondria. The apoptotic pathway regulating DNA damage-induced neural precursor cell death is different from that required for normal brain morphogenesis, which involves both caspase 9 and caspase 3 but not p53, indicating that additional apoptotic stimuli regulate neural precursor cell numbers during telencephalic development.  相似文献   

16.
Previously, we found that secretory cell degradation typically occurred through programmed cell death during secretory cavity development in Citrus sinensis L. (Osbeck). This finding indicated that secretory cavities could be utilized as a new cell biology model for investigating the regulatory mechanisms of plant programmed cell death. To study further the programmed cell death during secretory cavity development in Citrus fruit, we studied the morphogenetic characteristics of secretory cavities during their development in Citrus grandis cv. Tomentosa. Using light microscope- and electron microscope-TUNEL assays, immunohistochemistry and immunocytochemistry, we described the precise spatial and temporal alterations in caspase 3-like distribution, chromatin condensation and DNA fragmentation during the programmed cell death of secretory cavity cells. Caspase 3-like was found to be significantly located in both the cytoplasm and the nucleus of secretory cavity cells undergoing programmed cell death, and caspase 3-like is closely associated with chromatin condensation and DNA fragmentation. Interestingly, both caspase 3-like and DNA fragmentation were detected in the nucleoli. Our findings suggest that caspase 3-like may be involved in the programmed cell death of secretory cavity cells, especially in chromatin condensation, DNA fragmentation, nuclear degradation and the degradation of certain organelles.  相似文献   

17.
TGF-beta is a potent inducer of apoptosis in many Burkitt's lymphoma (BL) cell lines. In this study, we characterize this apoptotic process in the EBV-negative BL41 cell line. Induction of apoptosis was detected as early as 8 h after TGF-beta treatment, as assayed by TUNEL and poly(ADP-ribose) polymerase cleavage. FACS analysis demonstrates that this proceeds predominately from the G1, but also from the G2/M phases of the cell cycle. We observed no early detectable changes in the steady-state levels of Bcl-2 and several of its family members after TGF-beta treatment. We detected cleavage of caspases 2, 3, 7, 8, and 9 into their active subunits. Consistent with the involvement of these enzymes in TGF-beta-mediated apoptosis, the broad spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(Ome)-flouromethylketone (ZVAD-fmk) blocked TGF-beta-induced apoptosis and revealed a G1 arrest in treated cells. Use of specific caspase inhibitors revealed that the induction of apoptosis is caspase 8 dependent, but caspase 3 independent. Activation of caspase 8 has been shown to be a critical event in death receptor-mediated apoptosis. However, TGF-beta treatment of BL41 cells was found not to affect the cell surface expression of Fas, TNF-R1, DR3, DR4, or DR5, or the steady-state expression levels of Fas ligand, TNF-R1, DR3, DR4, and DR5. Furthermore, blocking experiments indicated that TGF-beta-mediated apoptosis is not dependent on Fas ligand, TNF-alpha, tumor necrosis-like apoptosis-inducing ligand, or TNF-like weak inducer of apoptosis signaling. Therefore, it appears that TGF-beta induces apoptosis in BL cell lines via caspase 8 in a death receptor-independent fashion.  相似文献   

18.
Members of the Src family of tyrosine kinases function to phosphorylate focal adhesion (FA) proteins. To explore the overlapping functions of Src kinases, we have targeted Csk, a negative regulator of the Src family, to FA structures. Expression of FA-targeted Csk (FA-Csk) effectively reduced the active form (nonphosphorylated at the C-terminal regulatory tyrosine) of Src members in the cell. We found that fibroblasts expressing FA-Csk lost integrin-mediated adhesion. Activated Src (SrcY529F) as well as activation of putative Src signaling mediators (Fak, Cas, Crk/CrkL, C3G, and Rap1) blocked the effect of FA-Csk in a manner dependent on Rap1. SrcY529F also inhibited activated Ras-induced cell detachment but failed to rescue detachment caused by an activated mutant of Raf1 (Raf-BXB) that Rap1 cannot inhibit. Although normal spreading onto fibronectin was restored by the beta(1) integrin affinity-activating antibody TS2/16 in cells expressing FA-Csk or Raf-BXB, FAs were lost in these cells. On the other hand, Rap1 activation could restore FAs in cells expressing FA-Csk. Activation of the executioner caspase, caspase 3, is essential for many forms of apoptosis. While a caspase 3 inhibitor (Z-DEVD-FMK) inhibited cell detachment triggered by activation of caspase 8, this inhibitor had no effect on cell detachment caused by FA-Csk. Likewise, overexpression of an activated Akt made cells resistant to the effect of caspase 8 activation, but not to the effect of FA-Csk. It is therefore likely that the primary cause of cell rounding and detachment induced by FA-Csk involves dysfunction of FAs rather than caspase-mediated apoptosis that may result from possible loss of survival signals mediated by Src family kinases. We suggest that endogenous Src family kinases are essential for FAs through activation of Rap1 in fibroblasts.  相似文献   

19.
20.
BACKGROUND: Caspase activation is a critical early step in the onset of apoptosis. Cell-permeable fluorogenic caspase substrates have proven valuable in detecting caspase activation by flow cytometry. Nevertheless, detection of early low-level caspase activation has been difficult using conventional area or peak fluorescence analysis by flow cytometry, despite the apparent presence of these cells as observed by microscopy. We describe a method utilizing maximum fluorescence pixel analysis by laser scanning cytometry (LSC) to detect early apoptotic cells. METHODS: The PhiPhiLux-G(1)D(2) caspase 3/7 substrate was used in combination with DNA dye exclusion and annexin V binding to identify several stages of apoptosis in EL4 murine thymoma cells by both traditional flow and LSC. LSC analysis of maximum pixel brightness in individual cells demonstrated an intermediate caspase-low subpopulation not detectable by flow or LSC integral analysis. LSC analysis of caspase activity was then carried out using the larger UMR-106 rat osteosarcoma cell line to determine if this apparent early caspase activity could be correlated with localized, punctate caspase activity observed by microscopy. RESULTS: The caspase-low subpopulation found in apoptotic EL4 cells was also observable in UMR-106 cells. Relocation to cells with low fluorescence due to caspase activity and subsequent examination by microscopy demonstrated that these latter cells indeed show punctate, highly localized caspase activation foci that might represent an early stage in caspase activation. CONCLUSIONS: Cells with low-level, localized caspase expression can be detected using maximum pixel analysis by LSC. This methodology allows an early step of apoptotic activation to be resolved for further analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号