首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
OBJECTIVE: To develop a routine method for quantitative measurement of the folate catabolites p-aminobenzoylglutamate (pABG) and acetamidobenzoylglutamate (apABG) in serum and urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). DESIGN AND METHODS: Urine, serum and aqueous standards were thawed. Two microliters of d3-glutamic acid (d3-Glu; 1 mmol/L) was added to 200 uL of specimen as internal standard. The samples were acidified with 4 uL 6N HCL, and aliquots were precipitated with 2 volumes (412 uL) of acetonitrile. For urine specimens 30 volumes (6.18 mL) of acetonitrile was used. Samples were centrifuged at 1900 x g for 10 min and the supernatant (10 microL) injected into a Biorad CAT/MET analytical column fitted to the LC-MS/MS. Detection of the catabolites was by selective multiple ion monitoring (multiple SRM) of the respective transitions. Urine and serum samples were analysed in a group of healthy volunteers and in anonymous samples from patients being tested for PTH and urinary catecholamines. RESULTS: pABG and apABG eluted at 5.2 and 4.74 min, respectively while the d3-glutamic acid eluted at around 7 min. Limit of quantitation (LOQ) for both catabolites was 10 nmol/L (which is equivalent to 33.3 fmol for a 10 microL injection). Limit of detection (LOD) was 1 nmol/L based on a signal to noise ratio of 5:1. A linear calibration curve was obtained from 10 to 100 nmol/L for serum specimens and from 10 to 200 micromol/L for urines. Imprecision for spiked serum samples (n=10) was between 2.5 and 20% for apABG and 4.5 and 21% for pABG (at 10 and 100 nmol/L, respectively). Imprecision for spiked urine samples (n=10) was between 2.9 and 4.0% for apABG and 6.0-12.7% for pABG. Recoveries were between 80 and 122% for serum samples and between 92 and 102% for urine specimens. Total folate catabolites in random urine samples from volunteers (n=5) are 2.9+/-2.3 umol/L (mean+/-S.D.). This group also had total serum catabolites of 11.9+/-7.6 nmol/L and serum folate of 35.3+/-5.8 nmol/L. Serum from patients being tested for PTH (n=11) had serum folate levels of 27.0+/-10.4 nmol/L with total serum catabolites of 20.4+/-23.8 nmol/L. Levels of serum folate and total catabolites in pregnant women (n=18) were 33.9+/-22.7 and 11.4+/-8.7 nmol/L, respectively. Mean urinary folate catabolites in patients being tested for urinary catecholamines (n=19) was 581.8+/-368.4 nmol/L. CONCLUSION: A simple, reliable and highly specific method by LC-MS/MS for detecting and quantifying the folate catabolites pABG and apABG was developed. This enables, for the first time, the routine clinical analysis of folate utilization in patients.  相似文献   

2.
Substrate properties of xanthine (Xan) and xanthosine (Xao) for purine nucleoside phosphorylases (PNP) of mammalian origin have been reported previously, but only at a single arbitrarily selected pH and with no kinetic constants. Additionally, studies have not taken into account the fact that, at physiological pH, Xao (pKa = 5.7) is a monoanion, while Xan (pKa = 7.7) is an equilibrium mixture of the neutral and monoanionic forms. Furthermore the monoanionic forms, unlike those of guanosine (Guo) and inosine (Ino), and guanine (Gua) and hypoxanthine (Hx), are still 6-oxopurines. The optimum pH for PNP from human erythrocytes and calf spleen with both Xao and Xan is in the range 5-6, whereas those with Guo and Gua, and Ino and Hx, are in the range 7-8. The pH-dependence of substrate properties of Xao and Xan points to both neutral and anionic forms as substrates, with a marked preference for the neutral species. Both neutral and anionic forms of 6-thioxanthine (pKa = 6.5 +/- 0.1), but not of 2-thioxanthine (pKa = 5.9 +/- 0.1), are weaker substrates. Phosphorolysis of Xao to Xan by calf spleen PNP at pH 5.7 levels off at 83% conversion, due to equilibrium with the reverse synthetic pathway (equilibrium constant 0.05), and not by product inhibition. Replacement of Pi by arsenate led to complete arsenolysis of Xao. Kinetic parameters are reported for the phosphorolytic and reverse synthetic pathways at several selected pH values. Phosphorolysis of 200 micro m Xao by the human enzyme at pH 5.7 is inhibited by Guo (IC50 = 10 +/- 2 micro m), Hx (IC50 = 7 +/- 1 micro m) and Gua (IC50 = 4.0 +/- 0.2 micro m). With Gua, inhibition was shown to be competitive, with Ki = 2.0 +/- 0.3 micro m. By contrast, Xao and its products of phosphorolysis (Xan and R1P), were poor inhibitors of phosphorolysis of Guo, and Xan did not inhibit the reverse reaction with Gua. Possible modes of binding of the neutral and anionic forms of Xan and Xao by mammalian PNPs are proposed. Attention is directed to the fact that the structural properties of the neutral and ionic forms of XMP, Xao and Xan are also of key importance in many other enzyme systems, such as IMP dehydrogenase, some nucleic acid polymerases, biosynthesis of caffeine and phosphoribosyltransferases.  相似文献   

3.
The model ultimate carcinogen, trans-4-N-acetoxy-N-acetylaminostilbene (N-acetoxy-AAS), was reacted with guanosine (Guo) and deoxyguanosine (d-Guo) and the resulting adducts were purified by Sephadex LH-20 chromatography and HPLC for structure identification. A number of new adducts was identified by mass and 1H-NMR spectroscopy. The generation of all known adducts can now be explained by a common mechanism. The electrophile formed from the hydroxamic acid ester at C-beta reacts in a first step predominantly with N2 of guanine (Gua). The resulting quinone-imide intermediate reacts in a second step with either one of three nucleophiles: (1) predominantly with N3 of Gua to yield the previously described angular cyclic adducts ((5R,6R)/(5S,6S)-9-oxo-5,6,7,9-tetrahydro-imidazo(2,1-b)purines); (2) with N1 of Gua to yield linear cyclic adducts ((6R,7R)/(6S,7S)-9-oxo-5,6,7,9-tetrahydro-imidazo(1,2-a)purines); (3) with water to yield the open ring (1R,2R)/(1S,2S)-2-(N2'-guanyl)-1-hydroxyethanes. To some minor extent (1:8-1:9) the electrophile reacts first with N1 or N3 of guanine which leads to the formation of two pairs of the corresponding regioisomeric cyclic adducts. This reaction mechanism may also explain the formation of cross-links between different bases.  相似文献   

4.
Steady-state and time-resolved fluorescence spectroscopy, and enzyme kinetics, were applied to study the reaction of purine nucleoside phosphorylase (PNP) from Escherichia coli with its substrate N(7)-methylguanosine (m7Guo), which consists of an equilibrium mixture of cationic and zwitterionic forms (pK(a)=7.0), each with characteristic absorption and fluorescence spectra, over the pH range 6-9, where absorption and intrinsic fluorescence of the enzyme are virtually unchanged. The pH-dependence of kinetic constants for phosphorolysis of m7Guo were studied under condition where the population of the zwitterion varied from 10% to 100%. This demonstrated that, whereas the zwitterion is a 3- to 6-fold poorer substrate, if at all, than the cation for the mammalian enzymes, both ionic species are almost equally good substrates for E. coli PNP. The imidazole-ring-opened form of m7Guo is neither a substrate nor an inhibitor of phosphorolysis. Enzyme fluorescence quenching, and concomitant changes in absorption and fluorescence spectra of the two ionic species of m7Guo on binding, showed that both forms are bound by the enzyme, the affinity of the zwitterion being 3-fold lower than that of the cation. Binding of m7Guo is bimodal, i.e., an increase in ligand concentration leads to a decrease in the association constant of the enzyme-ligand complex, typical for negative cooperativity of enzyme-ligand binding, with a Hill constant <1. This is in striking contrast to interaction of the enzyme with the parent Guo, for which the association constant is independent of concentration. The weakly fluorescent N(7)-methylguanine (m7Gua), the product of phosphorolysis of m7Guo, is a competitive non-substrate inhibitor of phosphorolysis (K(i)=8+/-2 microM) and exhibits negative cooperativity on binding to the enzyme at pH 6.9. Quenching of enzyme emission by the ligands is a static process, inasmuch as the mean excited-state lifetime, =2.7 ns, is unchanged in the presence of the ligands, and the constants K(SV) may therefore be considered as the association constants for the enzyme-ligand complexes. In the pH range 9.5-11 there is an instantaneous reversible decrease in PNP emission of approximately 15%, corresponding to one of the six tyrosine residues per subunit readily accessible to solvent, and OH- ions. Relevance of the overall results to the mechanism of phosphorolysis, and binding of substrates/inhibitors is discussed.  相似文献   

5.
To elucidate the pathophysiological roles of vagosympathetic interactions in ischemia-induced myocardial norepinephrine (NE) and acetylcholine (ACh) release, we measured myocardial interstitial NE and ACh levels in response to a left anterior descending coronary occlusion in the following groups of anesthetized cats: intact autonomic innervation (INT, n = 7); vagotomy (VX, n = 6); local administration of atropine (Atro, n = 6); transection of the stellate ganglia (TSG, n = 5); local administration of phentolamine (Phen, n = 6); and combined vagotomy and transection of the stellate ganglia (VX+TSG, n = 5). The maximum NE release was enhanced in the VX group (141 +/- 30 nmol/l, means +/- SE, P < 0.05) compared with the INT group (61 +/- 12 nmol/l). Neither the Atro (50 +/- 24 nmol/l) nor VX+TSG groups (84 +/- 25 nmol/l) showed enhanced NE release. The maximum ACh release was unaltered in the TSG and Phen groups compared with the INT group (19 +/- 4, 18 +/- 4, and 13 +/- 3 nmol/l, respectively). These findings indicate that the cardiac vagal afferent but not efferent activity reduced the ischemia-induced myocardial NE release. In contrast, the cardiac sympathetic afferent and efferent activities played little role in the ischemia-induced myocardial ACh release.  相似文献   

6.
Human adipocytes are of limited viability (7 +/- 2% release of lactate dehydrogenase/h) and contain active ectophosphatases which are capable of sequentially degrading ATP to adenosine. At densities of 30,000-40,000 cells/ml, human fat cell suspensions accumulated adenosine, inosine, and hypoxanthine, and their concentrations were 38 +/- 8, 120 +/- 10, and 31 +/- 7 nmol/liter after 3 h of incubation. Dipyridamole (10 mumol/liter), an inhibitor of nucleoside transport, caused a 5-7-fold increase in adenosine accumulation which was reduced by 85% on inhibition of ectophosphatases by beta-glycerophosphate and antibodies against ecto-5'-nucleotidase or alpha, beta-methylene 5'-adenosine diphosphate (10 mumol/liter), respectively, indicating that most of the adenosine is produced in the extracellular compartment. Accordingly, the spontaneous accumulation of adenosine was reduced beyond 5 nmol/liter on inhibition of ectophosphatase activities or removal of extracellular AMP by AMP deaminase (4 units/ml). Added adenosine (30 nmol/liter) disappeared until its concentration approached 5 nmol/liter. Isoproterenol (1 mumol/liter) had no effect on adenosine accumulation regardless whether purine production from extracellular sources was minimized or not. In contrast to adenosine, the concentrations of inosine and hypoxanthine displayed only a modest decrease (30-50%) on inhibition of ectophosphatase activities. In addition, isoproterenol caused a 2-3-fold increase in inosine and hypoxanthine production which was concentration-dependent and could be inhibited by propranolol. It is concluded that the adenosine that accumulates in human adipocyte suspensions is almost exclusively derived from adenine nucleotides which are released by leaking cells. By contrast, inosine and hypoxanthine are produced inside the cells, and the release of these latter purines appears to be linked to ATP turnover via adenylate cyclase.  相似文献   

7.
The participation of a nucleoside triphosphate diphosphohydrolase in the nucleotide hydrolysis by rat blood serum was evaluated. Nucleoside triphosphate diphosphohydrolase and phosphodiesterase are enzymes possibly involved in ATP and ADP hydrolysis. The specific activity of the phosphodiesterase activity (using thymidine 5'-monophosphate p-nitrophenyl ester as substrate) was 4.92 +/- 0.73 (mean +/- SD, n = 10) nmol p-nitrophenol.min(-1).mg(-1) protein and the specific activities for ATP and ADP were 1.31 +/- 0.37 (mean +/- SD, n = 7) and 1.36 +/- 0.25 (mean +/- SD, n = 5) nmol Pi.min(-1).mg(-1) protein, respectively. A competition plot demonstrated that ATP and ADP hydrolysis occurs at the same active site. The effect of suramin and phenylalanine on ATP, ADP and thymidine 5'-monophosphate p-nitrophenyl ester hydrolysis was investigated. The results were opposite considering the hydrolysis of ATP and ADP and that of the substrate marker for the enzyme phosphodiesterase. These results are indicative of the presence of, at least, two enzymes participating in the serum nucleotide hydrolysis. The presence of cAMP did not affect the hydrolysis velocity of ATP and ADP, while thymidine 5'-monophosphate p-nitrophenyl ester hydrolysis was inhibited by cAMP by approximately 47%, suggesting that the hydrolysis of the ATP and ADP, under our assay conditions, occurs at a different site from the phosphodiesterase site. Both enzyme activities, in the rat blood serum, may be involved in the modulation of the nucleotide/nucleoside ratio in the circulation, serving an in vivo homeostatic and antithrombotic function. In addition, the phosphodiesterase may act on DNA or RNA liberated upon tissue injury and/or cell death.  相似文献   

8.
THE AIM: of the present study was to evaluate serum concentrations of adrenal and ovarian androgens and sex hormone-binding globulin in obese women without additional diseases and in obese women with polycystic ovary syndrome with and without insulin resistance. MATERIAL AND METHODS: The study group involved 73 obese women (39 with PCOS--A and 34 obese without additional diseases--B). The serum concentration of glucose and insulin were measured and the study group was divided on the basis of HOMA index into two subgroups: A I-PCO without insulin resistance (n=18, mean age 27.2+/-5.9 yr; BMI 33.2+/-3.5 kg/m2); AII-PCO with insulin resistance (n=21, mean age 27.5+/-7.1 yr; BMI 37.6+/-6.5 kg/m2); B I-obese without insulin resistance (n=8, age 33.5+/-7.5 yr; BMI 35.2+/-4.8 kg/m2); B II-obese with insulin resistance (n=24, age 30.3+/-5.2 yr; BMI 36.4+/-5.8 kg/m2). Body mass and height were measured and body mass index was calculated with formula. Body composition was measured using bioimpedance method. The serum concentrations of FSH, LH, total and free testosterone, androstendione, DHEAS, SHBG and insulin were determined by RIA method and glucose was determined by enzymatic procedure. RESULTS: We observed significantly higher body mass, fat mass and BMI in AII subgroup when compared to AI, BI and BII subgroups. Only serum concentration of free testosterone was significantly higher in AII subgroup when compared to AI subgroup. We observed a positive correlation between serum concentrations of insulin and free testosterone in both groups A and B, moreover we observed positive correlations between serum concentrations of insulin and both DHEAS and LH in group B. CONCLUSIONS: It seems that insulin resistance plays a key role in the development of hyperandrogenism in obese women. However mechanisms leading to hyperandrogenism in PCOS are still unrevealed and seem to be more complex.  相似文献   

9.
Left ventricular (LV) end-diastolic pressure (LVEDP) increase due to volume expansion (VExp) enhances mechanosensitive vagal cardiac afferent C-fiber activity (CNFA), thus decreasing renal sympathetic nerve activity (RSNA). Hypotensive hemorrhage (hHem) attenuates RSNA despite decreased LVEDP. We hypothesized that CNFA increases with any change in LVEDP. Coronary perfusion pressure (CPP), supposedly affected in both conditions, might also be a stimulus of CNFA. VExp and hHem were performed in anesthetized male Sprague-Dawley rats while blood pressure, heart rate, and RSNA were measured. Cervical vagotomy abolished RSNA response in both reflex responses. Single-unit CNFA was recorded while LVEDP was changed. Rapid changes (+/- 4, +/-6, +/-8 mmHg) were obtained by graded occlusion of the caval vein and descending aorta. Prolonged changes were obtained by VExp and hHem. Furthermore, CNFA was recorded in a modified Langendorff heart while CPP was changed (70, 100, 40 mmHg). Rapid LVEDP changes increased CNFA [caval vein occlusion: +16 +/- 3 Hz (approximately +602%); aortic occlusion: +15 +/- 3 Hz (approximately +553%); 70 units; P < 0.05]. VExp and hHem (n = 6) increased CNFA [VExp: +10 +/- 4 Hz (approximately +1,033%); hHem: +10 +/- 2 Hz (approximately +1,225%); P < 0.05]. An increase in CPP increased CNFA [+2 +/- 1 Hz (approximately +225%); P < 0.05], whereas a decrease in CPP decreased CNFA [-0.8 +/- 0.4 Hz (approximately -50%); P < 0.05]. All C fibers recorded originated from the LV. CNFA increased with any LVEDP change but changed equidirectionally with CPP. Thus neither LVEDP nor CPP fully accounts directly for afferent C-fiber and reflex sympathetic responses. The intrinsic afferent stimuli and receptive fields accounting for reflex sympathoinhibition still remain cryptic.  相似文献   

10.
Ethanol stimulates glycogenolysis in livers from fed rats.   总被引:2,自引:0,他引:2  
To determine the reason for the lack of a hypoglycemic effect of ethanol in the fed state, the effect of ethanol on glucose turnover, liver glycogenolysis, and glucose metabolites was determined. Chronically catheterized awake and freely moving fed rats received either ethanol (blood ethanol, 37 +/- 10 mmol/liter, n = 11) or saline (n = 13) intravenously for 4 hr. Glucose turnover was determined using a primed continuous infusion of [3-3H]glucose. The liver was freeze clamped at 4 hr for glycogen and metabolite measurements. Plasma glucose (5.8 +/- 0.3 mmol/liter vs 6.3 +/- 0.2 mmol/liter at 4 hr, ethanol versus saline) and the rate of glucose turnover (61 +/- 9 vs 58 +/- 8 moles/kg.min) were similar during the ethanol and saline infusions. Plasma lactate was significantly higher in the ethanol (1.32 +/- 0.05 mmol/liter) than in the saline (0.86 +/- 0.06 mmol/liter, P less than 0.001) study. Concentrations of gluconeogenic intermediates in the liver (glucose 6-phosphate, fructose 6-phosphate, glucose 1-phosphate, and pyruvate) were all significantly and -30% lower in ethanol-infused than in saline-infused rats. The liver citrate content was similar in ethanol-infused than in saline-infused rats. The liver citrate content was similar in ethanol (0.38 +/- 0.03 mmol/liter) and saline (0.37 +/- 0.04 mmol/liter) studies. Liver glycogen was 75% lower in the ethanol-infused (61 +/- 9 mmol/kg dry wt) than the saline (242 +/- 27 mmol/kg dry wt, P less than 0.001)-infused rats. These data demonstrate that in fed rats given ethanol, glucose turnover is maintained constant by accelerated glycogenolysis. Thus, inhibition of gluconeogenesis by ethanol does not lower hepatic glucose production unless compensatory glycogenolysis can be prevented.  相似文献   

11.
Isometric force production and ATPase activity were determined simultaneously in single human skeletal muscle fibers (n = 97) from five healthy volunteers and nine patients with chronic heart failure (CHF) at 20 degrees C. The fibers were permeabilized by means of Triton X-100 (1% vol/vol). ATPase activity was determined by enzymatic coupling of ATP resynthesis to the oxidation of NADH. Calcium-activated actomyosin (AM) ATPase activity was obtained by subtracting the activity measured in relaxing (pCa = 9) solutions from that obtained in maximally activating (pCa = 4.4) solutions. Fiber type was determined on the basis of myosin heavy chain isoform composition by polyacrylamide SDS gel electrophoresis. AM ATPase activity per liter cell volume (+/-SE) in the control and patient group, respectively, amounted to 134 +/- 24 and 77 +/- 9 microM/s in type I fibers (n = 11 and 16), 248 +/- 17 and 188 +/- 13 microM/s in type IIA fibers (n = 14 and 32), 291 +/- 29 and 126 +/- 21 microM/s in type IIA/X fibers (n = 3 and 5), and 325 +/- 32 and 205 +/- 21 microM/s in type IIX fibers (n = 7 and 9). The maximal isometric force per cross-sectional area amounted to 64 +/- 7 and 43 +/- 5 kN/m(2) in type I fibers, 86 +/- 11 and 58 +/- 4 kN/m(2) in type IIA fibers, 85 +/- 6 and 42 +/- 9 kN/m(2) in type IIA/X fibers, and 90 +/- 5 and 59 +/- 5 kN/m(2) in type IIX fibers in the control and patient group, respectively. These results indicate that, in CHF patients, significant reductions occur in isometric force and AM ATPase activity but that tension cost for each fiber type remains the same. This suggests that, in skeletal muscle from CHF patients, a decline in density of contractile proteins takes place and/or a reduction in the rate of cross-bridge attachment of approximately 30%, which exacerbates skeletal muscle weakness due to muscle atrophy.  相似文献   

12.
The effects of passive immunization of ewes against progesterone on plasma progesterone concentrations and on the metabolic clearance rate (MCR) and production rate (PR) of progesterone were investigated. Three treatment groups were studied: 1) nonimmunized controls, 2) ewes passively immunized with antiprogesterone serum, and 3) immunized progestagen-treated ewes, treated concomitantly with anti-serum and with a synthetic progestagen that is not bound by the antiserum. Progesterone levels in the immunized ewes reached a maximum of 27.7+/-4.8 nmol/l and were significantly higher (P<0.05) than in the nonimmunized controls (9.2+/-1.1 mol/l) or the immunized progestagen-treated ewes (15.6+/-1.6 nmol/l). Mean progesterone MCR in the immunized ewes was 1.6+/-0.5 and 2.1+/-0.3 liter/min on Days 7 and 13 of the estrous cycle, respectively, compared with 0.8+/-0.2 and 1.4+/-0.3 liter/min, respectively, in nonimmunized controls. The progesterone production rate in the immunized ewes was significantly higher than in nonimmunized controls, and reached 12.0+/-2.2 and 19.7+/-1.6 nmol/min on Days 7 and 13 of the estrous cycle, respectively, compared with 4.6+/-0.6 and 10.0+/-2.5 nmol/min in nonimmunized controls (P<0.03 for both comparisons). Treatment with progestagen had no significant effect on progesterone MCR or PR of immunized ewes. The LH pulse frequency on Days 10 to 11 of the cycle was 0.7+/-0.3, 1.8+/-0.3 and 0.0+/-0.0 pulses/6 h in the control, immunized and immunized progestagen-treated groups, respectively (P<0.05). It is concluded that the increased plasma progesterone levels in the immunized ewes are the result of an increased progesterone production rate, which may have been induced by an increase in gonadotrophin secretion or by a direct effect of the anti-progesterone serum on the ovary.  相似文献   

13.
Cytochrome P450 (CYP) 2A6 is the principal human enzyme catalyzing coumarin 7-hydroxylation and is known to be involved in the metabolism of halothane, nicotine, and metabolic activation of butadiene and nitrosamines. In this paper expression of CYP2A6 in Escherichia coli is reported. In order to achieve expression, the N-terminus of protein was modified by PCR mutagenesis. The N-terminal variant with only a single amino acid change showed expression of 210 nmol of CYP2A6/liter of culture. Recombinant CYP2A6 protein was purified to electrophoretic homogeneity and further characterized. Absolute spectra were typical for CYP proteins and indicated low spin characteristics of isolated protein. Due to a hydrophobic segment the N-terminal amino acid sequence of recombinant CYP2A6 was blocked. The N-terminal formylmethionine block was removed by mild acid treatment. Purified CYP2A6 had good catalytic activity toward marker substrate coumarin in a reconstituted system (K(m) = 1.48 +/- 0.37 microM, V(max) = 3.36 +/- 0.18 nmol product/min/nmol CYP). Its activity in the reconstituted system was stimulated by the presence of cytochrome b(5) and glutathione. CYP2A6 was shown to metabolize chlorzoxazone in the reconstituted system with activity of 0.32 nmol of product/min/nmol of CYP, and thus caution should be taken when interpretation of CYP2E1 in vivo phenotyping data is performed. Rabbit polyclonal antibodies were produced against recombinant CYP2A6 and proved to be very useful for immunoblotting and immunoinhibition studies. Availability of this expression system and specific antibodies should facilitate characterization of the role of CYP2A6 in the metabolism of chemicals and in the study biological relevance of genetic polymorphisms of this enzyme.  相似文献   

14.
Ege T  Canbaz S  Yuksel V  Duran E 《Cytokine》2003,23(1-2):47-51
We investigated the effects of pro-inflammatory cytokines of pericardial fluid on hemodynamic parameters in patients undergoing coronary artery surgery. Seventy-eight patients were included in the study and they were allocated to three groups: group 1, stable angina pectoris (SAP, n = 15); group 2, unstable angina pectoris (USAP, n = 34); group 3, post-myocardial infarction (PMI, n = 29). Pericardial fluid and arterial blood samples were obtained from all patients and interleukin (IL)-1beta, IL-2 receptor, IL-6, IL-8 and tumor necrosis factor-alpha (TNF-alpha) levels were measured. Pericardial IL-1beta concentration (pg/mL) was significantly higher in the USAP group (26.6 +/- 10.9) compared to the SAP (5.0 +/- 0.1) and PMI (5.8 +/- 1.0) groups. IL-2R, IL-6, IL-8 and TNF-alpha concentrations of pericardial fluid were significantly higher than serum in all groups; difference was more prominent in the PMI group compared to the SAP and the USAP groups. Serum IL-1beta concentrations (pg/mL) were significantly higher in the USAP group (21.8 +/- 3.4) compared to the SAP group (5.0 +/- 0.1) and the PMI group (5.4 +/- 1.6). Cardiac index (CI) before opening the pericardial sac was found to be lower in the USAP group (1.6 +/- 0.3 L/min/m2) compared to the SAP (2.2 +/- 0.5 L/min/m2) and the PMI (2.1 +/- 0.5 L/min/m2) groups (p = 0.028 and p = 0.011, respectively). In the USAP group, there was a relationship between reduction of CI and increase of IL-1beta levels in serum and pericardial fluid.  相似文献   

15.
OBJECTIVE: In a previous cross-sectional pilot investigation, an increase in the ratio of active cortisol to inactive cortisone in serum has been found as a general phenomenon during the acute-phase response. The aim of the present study was to further characterize this alteration of cortisol metabolism in patients undergoing elective cardiac bypass surgery. METHODS: Cortisol and cortisone were quantified by use of liquid-chromatography tandem mass spectrometry in sera that were sampled preoperatively and on the first 4 postoperative days (POD) from 16 patients undergoing aortocoronary bypass grafting (7.00 a.m.). RESULTS: The median serum cortisol concentration peaked on the first POD and then decreased statistically significantly until the end of the observation period: preoperatively, 245 nmol/l (IQR 198-331); 1st POD, 532 nmol/l (IQR 409-678 ); 4th POD, 373 nmol/l (IQR 306-493); p for trend = 0.019. In contrast, the cortisol:cortisone ratio was constantly increased approximately twofold on all POD compared to preoperative sampling: preoperatively, 5.4 (IQR 5.0-7.2); 1st POD, 11.3 (IQR 9.2-13.6); 4th POD, 9.9 (IQR 7.7-11.0), with no significant trend of normalization. CONCLUSION: Following major surgery, the substantial increase in the serum cortisol:cortisone ratio - reflecting a shift in the overall set-point of 11beta-hydroxysteroid dehydrogenase activity - is more sustained than the increase in serum cortisol; the increase in the cortisol:cortisone ratio seems to be a long-term phenomenon of the activation of the hypothalamic-pituitary-adrenocortical system by surgical stress and systemic inflammation.  相似文献   

16.
Endothelin-1 (ET-1) (10 pmol) microinjected into the superficial layer of superior colliculus induces decreases in blood pressure (control, 108 +/- 5 mmHg, n=6; ET-1, 71 +/- 4 mmHg, n=5). The effects on blood pressure induced by endothelin-1 were significantly (p<0.05) reduced by pre-administration into the superior colliculus of the alpha1-adrenoceptor agonist phenylephrine (1 nmol) (46 +/- 5%, n=5), beta1-adrenoceptor antagonist acebutolol (5 nmol) (51 +/- 6%, n=5) or beta1/beta2-adrenoceptor antagonist propranolol (3.4 nmol) (51 +/- 11%, n=5). In contrast, endothelin-1-induced effects were increased (p<0.05) by microinjections into the superior colliculus of prazosin (2.4 nmol) (49 +/- 7%, n=5), an alpha1-adrenoceptor antagonist; dobutamine (4 nmol) (51 +/- 9%, n=5), a beta1-adrenoceptor agonist or isoprenaline (1 nmol) (49 +/- 6%, n=5), a beta1/beta2-adrenoceptor agonist. No involvement of alpha2- or beta2-adrenoceptors has been detected. Therefore, ET-1 induces decreases in blood pressure with selective involvement of alpha1- and beta1-adrenoceptors.  相似文献   

17.
We investigated mechanical and metabolic responses in isolated, isovolumically-beating, pig hearts (n = 7), 12 h to 2 days of age; subjected to hypoxia followed by reoxygenation. Hearts were perfused with an erythrocyte-enriched (hematocrit approximately 15%) solution during 3 consecutive 30-min periods: pre-hypoxia, arterial perfusate [O2] = 7.6 +/- 0.2 vol% (PO2 approximately 270 torr); hypoxia, [O2] = 0.6 +/- 0.1 vol% (approximately 10% hemoglobin saturation) and reoxygenation. Prehypoxia parameters averaged: left ventricular peak systolic pressure, 107.1 +/- 2.9 mmHg and end-diastolic pressure, 0.9 +/- 0.3 mmHg; coronary flow, 2.8 +/- 0.2 ml/min per g; myocardial O2 consumption, 59.4 +/- 1.6 microliters/min per g and fatty acid oxidation, 37.1 +/ 1.1 nmol/min per g. Fatty acid oxidation was determined using [14C]palmitate. Early in hypoxia, coronary flow increased 3-4 fold but then decreased. Throughout hypoxia, hearts released lactate yet continued to oxidize fatty acids (45-50% of myocardial O2 consumption). By the end of the hypoxia period, hearts exhibited mechanical failure (peak systolic pressure approximately 55 mmHg and end-diastolic pressure approximately 19 mmHg). After 30 min of reoxygenation, peak systolic pressure recovered to 80.6 +/- 2.6 mmHg and end-diastolic pressure remained elevated at 6.1 +/- 1.9 mmHg. However, fatty acid oxidation rates were 90-95% above pre-hypoxia values. Thus, during 30 min of severe hypoxia neonatal pig hearts exhibited mechanical dysfunction, yet continued to oxidize exogenously supplied fatty acids. Moreover, fatty acid oxidation was enhanced during reoxygenation.  相似文献   

18.
Fiber isometric tension redevelopment rate (kTR) was measured during submaximal and maximal activations in glycerinated fibers from rabbit psoas muscle. In fibers either containing endogenous skeletal troponin C (sTnC) or reconstituted with either purified cardiac troponin C (cTnC) or sTnC, graded activation was achieved by varying [Ca2+]. Some fibers were first partially, then fully, reconstituted with a modified form of cTnC (aTnC) that enables active force generation and shortening in the absence of Ca2+. kTR was derived from the half-time of tension redevelopment. In control fibers with endogenous sTnC, kTR increased nonlinearly with [Ca2+], and maximal kTR was 15.3 +/- 3.6 s-1 (mean +/- SD; n = 26 determinations on 25 fibers) at pCa 4.0. During submaximal activations by Ca2+, kTR in cTnC reconstituted fibers was approximately threefold faster than control, despite the lower (60%) maximum Ca(2+)-activated force after reconstitution. To obtain submaximal force with aTnC, eight fibers were treated to fully extract endogenous sTnC, then reconstituted with a mixture of a TnC and cTnC (aTnC:cTnC molar ratio 1:8.5). A second extraction selectively removed cTnC. In such fibers containing aTnC only, neither force nor kTR was affected by changes in [Ca2+]. Force was 22 +/- 7% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 24 +/- 8% (mean +/- SD; n = 8) at pCa 4.0, whereas kTR was 98 +/- 14% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 96 +/- 15% (mean +/- SD; n = 8) at pCa 4.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Mean values for serum angiotensin-I-converting enzyme (SACE), determined spectrophotometrically in 648 subjects, using the synthetic substrate hippuryl-L-histidyl-L-leucine, and expressed in units per milliliter, were: controls, 11.11 +/- 3.97 (n = 89); lung cancer, 6.50 +/- 3.26 (n = 87); tuberculosis of the lung, 8.93 +/- 4.60 (n = 68); pulmonary sarcoidosis, 21.18 +/- 14.93 (n = 48); pneumonia, 9.81 +/- 6.83 (n = 52); fibrosis, 11.18 +/- 8.26 (n = 34); diabetes mellitus, 10.90 +/- 7.51 (n = 29); ischemic heart disease, 8.98 +/- 6.19 (n = 42); pulmonary embolism, 13.20 +/- 3.91 (n = 5); and lymphomas, 11.66 +/- 5.44 (n = 36). The lowest values for SACE (5.92 +/- 1.95) were observed in 7 patients with pulmonary metastases. No relationship could be found between SACE and other laboratory parameters, nor between the enzyme activity in men and women. Evidence suggests that low SACE activity is often associated with extrapulmonary cancers of various organs. Levels were significantly decreased in cancer of the lung and pulmonary metastases and significantly (p less than 0.001) increased in sarcoidosis compared with other diseases, suggesting that SACE activity may be of value in the diagnosis and prognosis of cancer of the lung.  相似文献   

20.
There are well-documented differences in ion channel activity and action potential shape between epicardial (EPI), midmyocardial (MID), and endocardial (ENDO) ventricular myocytes. The purpose of this study was to determine if differences exist in Na/K pump activity. The whole cell patch-clamp was used to measure Na/K pump current (I(P)) and inward background Na(+)-current (I(inb)) in cells isolated from canine left ventricle. All currents were normalized to membrane capacitance. I(P) was measured as the current blocked by a saturating concentration of dihydro-ouabain. [Na(+)](i) was measured using SBFI-AM. I(P)(ENDO) (0.34 +/- 0.04 pA/pF, n = 17) was smaller than I(P)(EPI) (0.68 +/- 0.09 pA/pF, n = 38); the ratio was 0.50 with I(P)(MID) being intermediate (0.53 +/- 0.13 pA/pF, n = 19). The dependence of I(P) on [Na(+)](i) or voltage was essentially identical in EPI and ENDO (half-maximal activation at 9-10 mM [Na(+)](i) or approximately -90 mV). Increasing [K(+)](o) from 5.4 to 15 mM caused both I(P)(ENDO) and I(P)(EPI) to increase, but the ratio remained approximately 0.5. I(inb) in EPI and ENDO were nearly identical ( approximately 0.6 pA/pF). Physiological [Na(+)](i) was lower in EPI (7 +/- 2 mM, n = 31) than ENDO (12 +/- 3 mM, n = 29), with MID being intermediate (9 +/- 3 mM, n = 22). When cells were paced at 2 Hz, [Na(+)](i) increased but the differences persisted (ENDO 14 +/- 3 mM, n = 10; EPI 9 +/- 2 mM, n = 10; and MID intermediate, 11 +/- 2 mM, n = 9). Based on these results, the larger I(P) in EPI appears to reflect a higher maximum turnover rate, which implies either a larger number of active pumps or a higher turnover rate per pump protein. The transmural gradient in [Na(+)](i) means physiological I(P) is approximately uniform across the ventricular wall, whereas transporters that utilize the transmembrane electrochemical gradient for Na(+), such as Na/Ca exchange, have a larger driving force in EPI than ENDO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号