首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
GHK (Gly‐His‐Lys), a natural peptide found in human skin and plasma, has been widely used in the cosmeceutical and pharmaceutical fields. The hydrophilic GHK and GHK‐Cu are limited in their abilities to penetrate deeply into skin; because of this, various strategies for their skin delivery have been developed. In this investigation, Arg4 was conjugated with GHK to get heptapeptide, GHK‐R4, and then in vitro antiwrinkle activity and transdermal delivery were compared between GHK and GHK‐R4. Notably, Arg4 conjugation accelerated the cellular penetration of GHK both in vitro and in vivo. Furthermore, higher in vitro antiwrinkle activity and collagen biosynthesis was obtained with GHK‐R4 at much lower doses than with control R4‐free GHK. The enhanced activity and delivery of GHK‐R4 might be due to the cell penetrating ability and matrix metalloproteinase (MMP) inhibitory activity of R4 itself.  相似文献   

2.
3.
4.
1-Methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, selectively kills dopaminergic neurons in vivo and in vitro via a variety of toxic mechanisms, including mitochondrial dysfunction, generation of peroxynitrite, induction of apoptosis, and oxidative stress due to disruption of vesicular dopamine (DA) storage. To investigate the effects of acute MPP+ exposure on neuronal DA homeostasis, we measured stimulation-dependent DA release and non-exocytotic DA efflux from mouse striatal slices and extracellular, intracellular, and cytosolic DA (DAcyt) levels in cultured mouse ventral midbrain neurons. In acute striatal slices, MPP+ exposure gradually decreased stimulation-dependent DA release, followed by massive DA efflux that was dependent on MPP+ concentration, temperature, and DA uptake transporter activity. Similarly, in mouse midbrain neuronal cultures, MPP+ depleted vesicular DA storage accompanied by an elevation of cytosolic and extracellular DA levels. In neuronal cell bodies, increased DAcyt was not due to transmitter leakage from synaptic vesicles but rather to competitive MPP+-dependent inhibition of monoamine oxidase activity. Accordingly, monoamine oxidase blockers pargyline and l-deprenyl had no effect on DAcyt levels in MPP+-treated cells and produced only a moderate effect on the survival of dopaminergic neurons treated with the toxin. In contrast, depletion of intracellular DA by blocking neurotransmitter synthesis resulted in ∼30% reduction of MPP+-mediated toxicity, whereas overexpression of VMAT2 completely rescued dopaminergic neurons. These results demonstrate the utility of comprehensive analysis of DA metabolism using various electrochemical methods and reveal the complexity of the effects of MPP+ on neuronal DA homeostasis and neurotoxicity.  相似文献   

5.
Plasmonic nanostructures are capable of driving photocatalysis through absorbing photons in the visible region of the solar spectrum. Unfortunately, the short lifetime of plasmon‐induced hot carriers and sluggish surface chemical reactions significantly limit their photocatalytic efficiencies. Moreover, the thermodynamically favored excitation mechanism of plasmonic photocatalytic reactions is unclear. The mechanism of how the plasmonic catalyst could enhance the performance of chemical reaction and the limitation of localized surface plasmon resonance devices is proposed. In addition, a design is demonstrated through co‐catalyst decorated plasmonic nanoparticles Au/IrOX upon a semiconductor nanowire‐array TiO2 electrode that are able to considerably improve the lifetime of plasmon‐induced charge‐carriers and further facilitate the kinetics of chemical reaction. A thermodynamically favored excitation with improved kinetics of hot carriers is revealed through electrochemical studies and characterization of X‐ray absorption spectrum. This discovery provides an opportunity to efficiently manage hot carriers that are generated from metal nanostructures through surface plasmon effects for photocatalysis applications.  相似文献   

6.
The peptide Gly‐His‐Lys (GHK) is a naturally occurring copper(II)‐chelating motifs in human serum and cerebrospinal fluid. In industry, GHK (with or without copper) is used to make hair and skin care products. Copper‐GHK plays a physiological role in the process of wound healing and tissue repair by stimulating collagen synthesis in fibroblasts. We also reported that copper‐GHK promotes the survival of basal stem cells in the skin. However, the effects of copper‐free GHK (GHK) have not been investigated well. In this study, the effects of GHK were studied using cultured normal human keratinocytes and skin equivalent (SE) models. In monolayer cultured keratinocytes, GHK increased the proliferation of keratinocytes. When GHK was added during the culture of SE models, the basal cells became more cuboidal than control model. In addition, there was linear and intense staining of α6 and β1 integrin along the basement membrane. The number of p63 and proliferating cell nuclear antigen positive cells was also significantly increased in GHK‐treated SEs than in control SEs. Western blot and slide culture experiment showed that GHK increased the expression of integrin by keratinocytes. All these results showed that GHK increased the stemness and proliferative potential of epidermal basal cells, which is associated with increased expression of integrin. In conclusion, copper‐free GHK showed similar effects with copper‐GHK. Thus, it can be said that copper‐free GHK can be used in industry to obtain the effects of copper‐GHK in vivo. Further study is necessary to explore the relationship between copper‐free GHK and copper‐GHK. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Peptide‐based hydrogels are of interest for their potential use in regenerative medicine. Combining these hydrogels with materials that may enhance their physical and biological properties, such as glycosaminoglycans, has the potential to extend their range of biomedical applications, for example in the repair of early cartilage degeneration. The aim of this study was to combine three self‐assembling peptides (P11‐4, P11‐8, and P11‐12) with chondroitin sulphate at two molar ratios of 1:16 and 1:64 in 130 and 230 mM Na+ salt concentrations. The study investigates the effects of mixing self‐assembling peptide and glycosaminoglycan on the physical and mechanical properties at 37°C. Peptide alone, chondroitin sulphate alone, and peptide in combination with chondroitin sulphate were analysed using Fourier transform infrared spectroscopy to determine the β‐sheet percentage, transmission electron microscopy to determine the fibril morphology, and rheology to determine the elastic and viscous modulus of the materials. All of the variables (peptide, salt concentration, and chondroitin sulphate molar ratio) had an effect on the mechanical properties, β‐sheet formation, and fibril morphology of the hydrogels. P11‐4 and P11‐8‐chondroitin sulphate mixtures, at both molar ratios, were shown to have a high β‐sheet percentage, dense entangled fibrillar networks, as well as high mechanical stiffness in both (130 and 230 mM) Na+ salt solutions when compared with the P11‐12/chondroitin sulphate mixtures. These peptide/chondroitin sulphate hydrogels show promise for biomedical applications in glycosaminoglycan depleted tissues.  相似文献   

8.
The function of the D3 dopamine (DA) receptor remains ambiguous largely because of the lack of selective D3 receptor ligands. To investigate the function and intracellular signaling of D3 receptors, we established a PC‐12/hD3 clone, which expresses the human D3 DA receptor in a DA producing cell line. In this model, we find that the D3 receptor functions as an autoreceptor controlling neurotransmitter secretion. Pre‐treatment with 3,6a,11, 14‐tetrahydro‐9‐methoxy‐2 methyl‐(12H)‐isoquino[1,2‐b] pyrrolo[3,2‐f][1,3] benzoxanzine‐1‐carboxylic acid, a D3 receptor preferring agonist, dose‐dependently suppressed K+‐evoked [3H]DA release in PC‐12/hD3 cells but not in the control cell line. This effect was prevented by D3 receptor preferring antagonists GR103691 and SB277011‐A. Furthermore, activation of D3 receptors significantly inhibits forskolin‐induced cAMP accumulation and leads to transient increases in phosphorylation of cyclin‐dependent kinase 5 (Cdk5), dopamine and cAMP‐regulated phosphoprotein of Mr 32 000 and Akt. Because we observed differences in Cdk5 phosphorylation as well as Akt phosphorylation after DA stimulation, we probed the ability of Cdk5 and phosphatidylinositol‐3 kinase (PI3K) to influence DA release. Cdk5 inhibitors, roscovitine, or olomoucine, but not the PI3K inhibitor wortmannin, blocked the D3 receptor inhibition of DA release. In a complimentary experiment, over‐expression of Cdk5 potentiated D3 receptor suppression of DA release. Pertussis toxin, 3‐[(2,4,6‐trimethoxyphenyl)methylidenyl]‐indolin‐2‐one and cyclosporine A also attenuated D3 receptor‐mediated inhibition of DA release indicating that this phenomenon acts through Gi/oα and casein kinase 1, and phosphatase protein phosphatase 2B (calcineurin), respectively. In support of previous data that D3 DA receptors reduce transmitter release from nerve terminals, the current results demonstrate that D3 DA receptors function as autoreceptors to inhibit DA release and that a signaling pathway involving Cdk5 is essential to this regulation.  相似文献   

9.
A trial to designde novoa dopamine (DA) receptor ligand was made, taking as the base four structural and electrostatic requirements: (1) a group simulating the interaction of the DA amino group with the TM3 aspartic acid of the receptor, (2) a group that can simulate the interaction of the DAm-hydroxyl group with the TM5 serine of the receptor, (3) a distance between these groups similar to that of the DAanti-coplanar conformer, and (4) a rigid structure keeping the distance between the groups right. After the design “on paper” of the models of four structures, quantum chemistry calculations were performed to check the properties of the molecules, and then the most encouraging ones were synthesized. None of the compounds synthesized was able to bind D1- and D2-dopamine receptor subtypes; this shows that the structural and electrostatic requirements considered in this work are insufficient. In particular, the presence of an arylethylamine moiety seems to be essential for the interaction of a ligand with the DA receptor.  相似文献   

10.
11.
Dopamine (DA) replacement therapy with L‐DOPA continues to be the primary treatment of Parkinson's disease; however, long‐term therapy is accompanied by L‐DOPA‐induced dyskinesias (LID). Several experimental and clinical studies have established that Propranolol, a β‐adrenergic receptor antagonist, reduces LID without affecting L‐DOPA's efficacy. However, the exact mechanisms underlying these effects remain to be elucidated. The aim of this study was to evaluate the anti‐dyskinetic profile of Propranolol against a panel of DA replacement strategies, as well as elucidate the underlying neurochemical mechanisms. Results indicated that Propranolol, in a dose‐dependent manner, reduced LID, without affecting motor performance. Propranolol failed to alter dyskinesia produced by the D1 receptor agonist, SKF81297 (0.08 mg/kg, sc), or the D2 receptor agonist, Quinpirole (0.05 mg/kg, sc). These findings suggested a pre‐synaptic mechanism for Propranolol's anti‐dyskinetic effects, possibly through modulating L‐DOPA‐mediated DA efflux. To evaluate this possibility, microdialysis studies were carried out in the DA‐lesioned striatum of dyskinetic rats and results indicated that co‐administration of Propranolol (20 mg/kg, ip) was able to attenuate L‐DOPA‐ (6 mg/kg, sc) induced DA efflux. Therefore, Propranolol's anti‐dyskinetic properties appear to be mediated via attenuation of L‐DOPA‐induced extraphysiological efflux of DA.

  相似文献   


12.
Iron oxides, such as Fe2O3 and Fe3O4, have recently received increased attention as very promising anode materials for rechargeable lithium‐ion batteries (LIBs) because of their high theoretical capacity, non‐toxicity, low cost, and improved safety. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials. Here, recent research progress in the rational design and synthesis of diverse iron oxide‐based nanomaterials and their lithium storage performance for LIBs, including 1D nanowires/rods, 2D nanosheets/flakes, 3D porous/hierarchical architectures, various hollow structures, and hybrid nanostructures of iron oxides and carbon (including amorphous carbon, carbon nanotubes, and graphene). By focusing on synthesis strategies for various iron‐oxide‐based nanostructures and the impacts of nanostructuring on their electrochemical performance, novel approaches to the construction of iron‐oxide‐based nanostructures are highlighted and the importance of proper structural and compositional engineering that leads to improved physical/chemical properties of iron oxides for efficient electrochemical energy storage is stressed. Iron‐oxide‐based nanomaterials stand a good chance as negative electrodes for next generation LIBs.  相似文献   

13.
Though reactive flavin‐N5/C4α‐oxide intermediates can be spectroscopically profiled for some flavin‐assisted enzymatic reactions, their exact chemical configurations are hardly visualized. Structural systems biology and stable isotopic labelling techniques were exploited to correct this stereotypical view. Three transition‐like complexes, the α‐ketoacid…N5‐FMNox complex ( I ), the FMNox‐N5‐aloxyl‐C′α?‐C4α+ zwitterion ( II ), and the FMN‐N5‐ethenol‐N5‐C4α‐epoxide ( III ), were determined from mandelate oxidase (Hmo) or its mutant Y128F (monooxygenase) crystals soaked with monofluoropyruvate (a product mimic), establishing that N5 of FMNox an alternative reaction center can polarize to an ylide‐like mesomer in the active site. In contrast, four distinct flavin‐C4α‐oxide adducts ( IV – VII ) from Y128F crystals soaked with selected substrates materialize C4α of FMN an intrinsic reaction center, witnessing oxidation, Baeyer–Villiger/peroxide‐assisted decarboxylation, and epoxidation reactions. In conjunction with stopped‐flow kinetics, the multifaceted flavin‐dependent reaction continuum is physically dissected at molecular level for the first time.  相似文献   

14.
Summary We have explored the role of excitatory amino acids in the increased dopamine (DA) release that occurs in the neostriatum during stress-induced behavioral activation. Studies were performed in awake, freely moving rats, usingin vivo microdialysis. Extracellular DA was used as a measure of DA release; extracellular 3,4-dihydroxyphenylalanine (DOPA) after inhibition of DOPA decarboxylase provided a measure of apparent DA synthesis. Mild stress increased the synthesis and release of DA in striatum. DA synthesis and release also were enhanced by the intra-striatal infusion of N-methyl-D-aspartate (NMDA), an agonist at NMDA receptors, and kainic acid, an agonist at the DL-a-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA)/kainate site. Stress-induced increase in DAsynthesis was attenuated by co-infusion of 2-amino-5-phosphonovalerate (APV) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), antagonists of NMDA and AMPA/kainate receptors, respectively. In contrast, intrastriatal APV, CNQX, or kynurenic acid (a non-selective ionotropic glutamate receptor antagonist) did not block the stress-induced increase in DArelease. Stress-induced increase in DA release was, however, blocked by administration of tetrodotoxin along the nigrostriatal DA projection. It also was attenuated when APV was infused into substantia nigra. Thus, glutamate may act via ionotropic receptors within striatum to regulate DA synthesis, whereas glutamate may influence DA release via an action on receptors in substantia nigra. However, our method for monitoring DA synthesis lowers extracellular DA and this may permit the appearance of an intra-striatal glutamatergic influence by reducing a local inhibitory influence of DA. If so, under conditions of low extracellular DA glutamate may influence DA release, as well as DA synthesis, by an intrastriatal action. Such conditions might occur during prolonged severe stress and/or DA neuron degeneration. These results may have implications for the impact of glutamate antagonists on the ability of patients with Parkinson's disease to tolerate stress.  相似文献   

15.
Abstract: The acute effect of physiological doses of estradiol (E2) on the dopaminergic activity in the striatum was studied. In a first series of experiments, ovariectomized rats were injected with 17α or 17β E2 (125, 250, or 500 ng/kg of body weight, s.c.), and in situ tyrosine hydroxylase (TH) activity (determined by DOPA accumulation in the striatum after intraperitoneal administration of NSD 1015) was quantified. A dose-dependent increase in striatal TH activity was observed within minutes after 17β (but not 17α) E2 treatment. To examine whether E2 acts directly on the striatum, in a second series of experiments, anesthetized rats were implanted in the striatum with a push-pull cannula supplied with an artificial CSF containing [3H]tyrosine. The extracellular concentrations of total and tritiated dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured at 20-min intervals. Addition of 10?9M 17β (but not 17α) E2 to the superfusing fluid immediately evoked an ~50% increase in [3H]DA and [3H]DOPAC extracellular concentrations, but total DA and DOPAC concentrations remained constant. This selective increase in the newly synthesized DA and DOPAC release suggested that E2 affects DA synthesis rather than DA release. Finally, to determine whether this rapid E2-induced stimulation of DA synthesis was a consequence of an increase in TH level of phosphorylation, the enzyme constant of inhibition by DA (Ki DA) was calculated. Incubation of striatal slices in the presence of 10?9M 17β (but not 17α) E2 indeed evoked an approximate twofold increase in the Ki DA of one form of the enzyme. It is concluded that physiological levels of E2 can act directly on striatal tissue to stimulate DA synthesis. This stimulation appears to be mediated, at least in part, by a decrease in TH susceptibility to end-product inhibition, presumably due to phosphorylation of the enzyme. The rapid onset of this effect, and the fact that the striatum does not contain detectable nuclear E2 receptors, suggest a nongenomic action of the steroid.  相似文献   

16.
Gibberellin 2-oxidases (GA2ox) are important enzymes that maintain the balance of bioactive GAs in plants. GA2ox genes have been identified and characterized in many plants, but these genes were not investigated in Brassica napus. Here, we identified 31 GA2ox genes in B. napus and 15 of these BnaGA2ox genes were distributed in the A and C subgenomes. Subcellular localization predictions suggested that all BnaGA2ox proteins were localized in the cytoplasm, and gene structure analysis showed that the BnaGA2ox genes contained 2–4 exons. Phylogenetic analysis indicated that BnGA2ox family proteins in monocotyledons and dicotyledons can be divided into four groups, including two C19-GA2ox and two C20-GA2ox clades. Group 4 is a C20-GA2ox Class discovered recently. Most BnaGA2ox genes had a syntenic relationship with AtGA2ox genes. BnaGA2ox genes in the C subgenome had experienced stronger selection pressure than genes in the A subgenome. BnaGA2ox genes were highly expressed in specific tissues such as those involved in growth and development, and most of them were mainly involved in abiotic responses, regulation of phytohormones and growth and development. Our study provided a valuable evolutionary analysis of GA2ox genes in monocotyledons and dicotyledons, as well as an insight into the biological functions of GA2ox family genes in B. napus.  相似文献   

17.
Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress‐induced accumulation of reactive oxygen species (ROS), but the products of isoprene‐ROS reactions in plants have not been detected. Using pyruvate‐2‐13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biota–chemistry–climate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.  相似文献   

18.
The human adrenomedullin (ADM) is a 52 amino acid peptide hormone belonging to the calcitonin family of peptides, which plays a major role in the development and regulation of cardiovascular and lymphatic systems. For potential use in clinical applications, we aimed to investigate the fate of the peptide ligand after binding and activation of the adrenomedullin receptor (AM1), a heterodimer consisting of the calcitonin receptor‐like receptor (CLR), a G protein‐coupled receptor, associated with the receptor activity‐modifying protein 2 (RAMP2). Full length and N‐terminally shortened ADM peptides were synthesized using Fmoc/tBu solid phase peptide synthesis and site‐specifically labeled with the fluorophore carboxytetramethylrhodamine (Tam) either by amide bond formation or copper(I)‐catalyzed azide alkyne cycloaddition. For the first time, Tam‐labeled ligands allowed the observation of co‐internalization of the whole ligand‐receptor complex in living cells co‐transfected with fluorescent fusion proteins of CLR and RAMP2. Application of a fluorescent probe to track lysosomal compartments revealed that ADM together with the CLR/RAMP2‐complex is routed to the degradative pathway. Moreover, we found that the N‐terminus of ADM is not a crucial component of the peptide sequence in terms of AM1 internalization behavior. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
It is generally expected that 2-pore domain K+ (K2P) channels are open or outward rectifiers in asymmetric physiological K+ gradients, following the Goldman-Hodgkin-Katz (GHK) current equation. Although cloned K2P channels have been extensively studied, their current-voltage (I-V) relationships are not precisely characterized and previous definitions are contradictory. Here we study all the functional channels from 6 mammalian K2P subfamilies in transfected Chinese hamster ovary cells with patch-clamp technique, and examine whether their I-V relationships are described by the GHK current equation. K2P channels display 2 distinct types of I-V curves in asymmetric physiological K+ gradients. Two K2P isoforms in the TWIK subfamily conduct large inward K+ currents and have a nearly linear I-V curve. Ten isoforms from 5 other K2P subfamilies conduct small inward K+ currents and exhibit open rectification, but fits with the GHK current equation cannot precisely reveal the differences in rectification among K2P channels. The Rectification Index, a ratio of limiting I-V slopes for outward and inward currents, is used to quantitatively describe open rectification of each K2P isoform, which is previously qualitatively defined as strong or weak open rectification. These results systematically and precisely classify K2P channels and suggest that TWIK K+ channels have a unique feature in regulating cellular function.  相似文献   

20.
It is generally expected that 2-pore domain K+ (K2P) channels are open or outward rectifiers in asymmetric physiological K+ gradients, following the Goldman-Hodgkin-Katz (GHK) current equation. Although cloned K2P channels have been extensively studied, their current-voltage (I-V) relationships are not precisely characterized and previous definitions are contradictory. Here we study all the functional channels from 6 mammalian K2P subfamilies in transfected Chinese hamster ovary cells with patch-clamp technique, and examine whether their I-V relationships are described by the GHK current equation. K2P channels display 2 distinct types of I-V curves in asymmetric physiological K+ gradients. Two K2P isoforms in the TWIK subfamily conduct large inward K+ currents and have a nearly linear I-V curve. Ten isoforms from 5 other K2P subfamilies conduct small inward K+ currents and exhibit open rectification, but fits with the GHK current equation cannot precisely reveal the differences in rectification among K2P channels. The Rectification Index, a ratio of limiting I-V slopes for outward and inward currents, is used to quantitatively describe open rectification of each K2P isoform, which is previously qualitatively defined as strong or weak open rectification. These results systematically and precisely classify K2P channels and suggest that TWIK K+ channels have a unique feature in regulating cellular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号