首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Two new species of the genus Nosema (Microsporida: Nosematidae) are described from the Mexican bean beetle, Epilachna varivestis (Coleoptera: Coccinellidae) and their life cycle stages studied by light and electron microscopy. Both species are monomorphic and disporous: they develop in direct contact with the cytoplasm of host cells and the nuclei of all stages are diplokaryotic. The more virulent species produces systemic infections most extensively in the adipose tissue, muscles, and Malpighian tubules of larvae and also invades the reproductive tissues of adult beetles. During merogonic development, it forms chains of diplokaryotic meronts. The fine structure of the sporoblast nuclei shows clumped material in the pole of each nucleus opposite their common plane of apposition. Spores are straight to slightly curved and ovocylindrical in shape and they measure 5.3 ± 0.13 × 2.1 ± 0.03 μm. The less virulent species also invades most host tissues but does not develop in the midgut epithelium; the Malpighian tubules are the principal site of its development and it also invades the ovaries and testes of adult beetles. Merogony occurs exclusively as the result of binary fission of diplokaryotic meronts. The plasmalemma of the meronts is covered with a thin deposit of exospore material upon which are located closely packed tubules that encircle the body transversely. A thickened deposit of exospore material on the surface of the diplokaryotic sporonts later obscures these tubules. Other tubules occur free in the host cell cytoplasm or attached to the plasmalemma of meronts and sporonts. Secretory granules also occur free or in chains in the host cytoplasm and are probably produced from the surface of the sporoblasts. Sporoblasts also contain an unusual cup-shaped organelle associated with a dense body, which is apparently involved in the formation of the polar tube and its associated organelles in the anterior part of the spore. Spores are ellipsoidal to slightly pyriform and measure 4.7 ± 0.06 × 2.6 ± 0.03 μm.  相似文献   

2.
ABSTRACT. The microsporidium Janacekia adipophila n. sp., a parasite of Ptychoptera paludosa larvae in Sweden, is described based on light microscopic and ultrastructural characteristics. Merogonial stages and sporonts are diplokaryotic. Merozoites are formed by rosette-like division. Sporonts develop into sporogonial plasmodia with isolated nuclei. These plasmodia give rise to 8–16 sporoblasts by rosette-like budding. A sporophorous vesicle is initiated by the sporogonial plasmodium. Sporoblasts and spores are enclosed in individual sporophorous vesicles. Granular inclusions of the vesicles, visible using light microscopy, discriminate sporogonial stages from stages of the merogony. The monokaryotic, fresh spores are oval with blunt ends, measuring 4.2-6.3 × 9.1-11.2 μm. Macrospores are formed in small numbers. The spore wall has three subdivisions and the exospore is electron-dense. The polaroplast has two parts: closely arranged lamellae anteriorly, wider sac-like compartments posteriorly. The isofilar polar filament, 191–264 nm wide, has 12-13 coils, which are arranged in one layer in the posterior half of the spore. The electron-dense inclusions of the sporophorous vesicle are modified during sporogony, and vesicles with mature spores are traversed by 21–27 nm wide tubules, which connect the exospore with the envelope of the vesicle. The walls of the tubules, the envelope of the vesicles, and the surface layer of the exospore are all identical double-layered structures. The microsporidium is compared to microsporidia of Ptychopteridae and Tipulidae and to related microsporidia of the family Tuzetiidae.  相似文献   

3.
ABSTRACT. The light microscopic and ultrastructural characteristics of a microsporidium provisionally identified as Toxoglugea chironomi (Debaiseux, 1931) Jírovec, 1936, is described. It was isolated from oenocytes and adipose tissue of a midge larva of the genus Dicrotendipes . Merozoites are diplokaryotic. The sporogony produces, by fragmentation, eight monokaryotic spores in a sporophorous vesicle. Mature spores are horse-shoe shaped. The total length is about 5.8 μm, the width 0.8-0.9 μm, the external height of the curve 2.3-3.5 μm, and the external width of the curve 3.5-5.2 μm. The polaroplast has lamellar compartments of two types: narrow and closely packed anteriorly, and wider and more loosely arranged posteriorly. The isofilar polar filament is arranged in 8–10 coils in the posterior fourth of the spore. The external nuclear membrane is sometimes continuous with the endoplasmic reticulum. Lamellar and tubular material of exospore construction are present in the episporontal space from the beginning of sporogony. Teratological and normal spores sometimes occur together in the sporophorous vesicle. The identification of the species is discussed and the ultrastructure is compared to Toxoglugea variabilis , the only further species of the genus with known ultrastructural cytology.  相似文献   

4.
ABSTRACT The new microsporidium, Napamichum cellatum, a parasite of the adipose tissue of midge larva of the genus Endochironomus in Sweden, is described based on light microscopic and ultrastructural characteristics. Plurinucleate Plasmodia with nuclei arranged as diplokarya divide, probably by plasmotomy, producing a small number of diplokaryotic merozoites. The number of merogonial cycles is unknown. Each diplokaryotic sporont yields eight monokaryotic sporoblasts in a thin-walled, more or less fusiform sporophorous vesicle. A small number of multisporoblastic sporophorous vesicles were observed, in which a part of the sporoblasts were anomalous. The sporogony probably begins with a meiotic division. The mature spores are slightly pyriform. Fixed and stained spores measure 2.1-2.4 × 3.7-4.5 μm. The five-layered spore wall is of the Napamichum type. The polar filament is anisofilar with seven to eight coils (142-156 and 120 nm wide). The angle of tilt is 55-65°. The polaroplast has an anterior lamellar and a posterior tubular part. The granular, tubular and crystal-like inclusions of the episporontal space disappear more or less completely when the spores mature. The crystal-like inclusions are prominent in haematoxylin staining, but not visible with the Giemsa technique. The microsporidium is compared to other octosporoblastic microsporidia of midge larva and to the species of the genera Chapmanium and Napamichum.  相似文献   

5.
The microsporidium Nudispora biformis n. g., n. sp., a parasite of a larva of the damsel fly Coenagrion hastulatum in Sweden, is described based on light microscopic and ultrastructural characteristics. Merogonial stages and sporonts are diplokaryotic. Sporogony comprises meiotic and mitotic divisions, and finally eight monokaryotic sporoblasts are released from a lobed plasmodium. Sporophorous vesicles are not formed. The monokaryotic spores are oval, measuring 1.4–1.8 × 2.8–3.4 μm in living condition. The thick spore wall has a layered exospore, with a median double-layer. The polaroplast has two lamellar parts, with the closest packed lamellae anteriorly. The isofilar polar filament is arranged in 6 (to 7) coils in the posterior half of the spore. Laminar and tubular extracellular material of exospore construction is present in the proximity of sporogonial stages. In addition to normal spores teratological spores are produced. The microsporidium is compared to the microsporidia of the Odonata; its possible relations to the genus Pseudothelohania and to the Thelohania-like microsporidia are discussed. The new genus is provisionally included in the family Thelohaniidae.  相似文献   

6.
A novel microsporidian parasite is described, which infects the crustacean host Gammarus duebeni. The parasite was transovarially transmitted and feminised host offspring. The life cycle was monomorphic with three stages. Meronts were found in host embryos, juveniles, and in the gonadal tissue of adults. Sporoblasts and spores were restricted to the gonad. Sporogony was disporoblastic giving rise to paired sporoblasts, which then differentiated to form spores. Spores were not found in regular groupings and there was no interfacial envelope. Spores were approximately 3.78 x 1.22 microns and had a thin exospore wall, a short polar filament, and an unusual granular polaroplast. All life cycle stages were diplokaryotic. A region from the parasite small subunit ribosomal RNA gene was amplified and sequenced. Phylogenetic analysis based on these data places the parasite within the genus Nosema. We have named the species Nosema granulosis based on the structure of the polaroplast.  相似文献   

7.
8.
The ultrastructure of a new microsporidian, Pankovaia semitubulata gen. et sp. n. (Microsporidia: Tuzetiidae), from the fat body of Cloeon dipterum (L.) (Ephemeroptera: Baetidae) is described. The species is monokaryotic throughout the life cycle, developing in direct contact with the host cell cytoplasm. Sporogonial plasmodium divides into 2-8 sporoblasts. Each sporoblast, then spore, is enclosed in an individual sporophorous vesicle. Fixed and stained spores of the type species P. semitubulata are 3.4 x 1.9microm in size. The polaroplast is bipartite (lamellar and vesicular). The polar filament is isofilar, possessing 6 coils in one row. The following features distinguish the genus Pankovaia from other monokaryotic genera of Tuzetiidae: (a) exospore is composed of multiple irregularly laid tubules with a lengthwise opening, referred to as "semitubules"; (b) episporontal space of sporophorous vesicle (SPV) is devoid of secretory formations; (c) SPV envelope is represented by a thin fragile membrane.  相似文献   

9.
Hyalinocysta expilatoria n. sp. is described from a larva of Odagmia ornata collected in Sweden. Infection was restricted to the adipose tissue which was transformed into a syncytium. The earliest stage observed was diplokaryotic merozoites, which mature directly into diplokaryotic sporonts. Each sporont produces a sporophorous vesicle (pansporoblast), which persists, also enclosing mature spores. Usually nuclear divisions result in a plasmodium with 8 nuclei, which fragments into 8 sporoblasts, each of which develops into a spore without further division. Occasionally an aberrant number of spores (2, 4, 6) is formed. The spores are pyriform with a flattened area at the posterior pole. Spores in sporophorous vesicles with 8 spores are 4.0–6.0 μm long, in vesicles with 4 spores 4.0–5.0 μm, and in vesicles with 2 spores 7.0–8.0 μm. In some vesicles the spores develop asynchronously, and 2, 4, or 6 mature spores are found together with 6, 4, or 2 immature. There was also a small number of vesicles with supernumerary spores, less than 8 normally developed. The 325–350 nm thick spore wall is composed of three layers. The polar filament is anisofilar with 7 coils in a single layer. The anterior 5–6 coils are wide, the posterior 2-1 thin. The angle of tilt of the anterior filament coil is approximately 50°. The spore has a single nucleus. The sporophorous vesicle is delimited by a thin membrane, also visible in haematoxylin stained preparations. Vesicles with mature spores are void of metabolic inclusions.  相似文献   

10.
A number of microscopic techniques and dyes are available to diagnose microsporidian infections in invertebrate and vertebrate hosts. Among these, DNA-specific fluorochrome DAPI is widely used to stain DNA in prokaryotic and eukaryotic cells, alone or in combination with other histochemical or fluorescent dyes. Moreover, this dye also binds to membraneous structures and protein complexes. In our studies, DAPI was used to stain spores of microsporidia infecting orthopteran, coleopteran, dipteran and lepidopteran insect hosts. DAPI staining of diplokarya helped to discriminate the Nosema-like microsporidian spores from spore-shaped bodies lacking this characteristic staining. It was found, moreover, that non-DNA staining occurred in many cases and other components of the spores were stained: the exospore, the cytoplasm, the extruded polar filament and the polaroplast. Staining of these structures was feeble as compared to DNA and in most cases did not interfere with nuclear apparatus staining. Feebly stained cytoplasm and exospore clearly indicated unstained zone of endospore, making it easier to diagnose both mono- and diplokaryotic spores. Staining of extruded polar filament allowed to demonstrate viability and to observe some stages of extrusion process of microsporidian spores.  相似文献   

11.
ABSTRACT. Norlevinea n. g. is established for microsporidia in which a uninucleate meront changes into a sporont by secreting a thin, membranous, sporontogcnetic and fragile sporophorous vesicle (pansporoblast membrane) in which four uninucleate sporoblasts are formed. In contrast to the genus Gurleya, the sporoblasts and later the spores are permanently joined into doublets, being laterally cemented by an electron-dense substance structurally identical to and continuous with the exospore layer. The polar filament is of the anisofilar type. The type species is Norlevinea daphniae (Weiser, 1947) n. comb., a parasite of the ovaries of Daphnia longispina occurring in several carp ponds in Czechoslovakia.  相似文献   

12.
ABSTRACT. A new microsporidian parasite of the Artemia intestinal epithelium has been studied. The microsporidium developed within a membranous parasitophorous vesicle from the host rough endoplasmic reticulum consisting of two membranes, with the proximal one usually lacking ribosomes.
All developmental stages had isolated nuclei. Unikaryotic meronts developed into merogonial plasmodia. Merogonial division occurred by binary fission and rosette-shaped fragmentation. In young sporonts, an electron-lucent space, corresponding to the developing endospore, was immediately observed between both the plasmalemma and the exospore primordium. Sporogonial division occurred also by rosette-shaped fragmentation, resulting in at least eight sporoblasts that developed directly into spores. Fresh spores were 1.7 × 0.9 μm in size and oval-shaped. The 8–11 coil isofilar polar filament was arranged in two rows. The polaroplast was bipartite. The nature of the parasitophorous envelope, host-parasite interaction, developmental cycle and taxonomy are discussed.  相似文献   

13.
采用透射电镜和细胞化学技术对红盖鳞毛蕨(Dryopteris erythrosora(Eaton)O.Ktze.)的孢子发育过程进行了研究,根据超微结构和细胞化学特征可将其孢子发育过程分为3个阶段:(1)孢子母细胞及其减数分裂阶段:孢子母细胞壳在孢原细胞末期开始形成,位于孢子母细胞及其减数分裂形成的四分体外侧,PAS反应显示其为多糖性质,与胼胝质壁为同功结构;在减数分裂形成的四分孢子之间产生孢子外壳,从功能、形成位置和时间上看与胼胝质壁相似,但苏丹黑B反应显示其可能含有脂类物质,与孢子母细胞壳和胼胝质壁不同。(2)孢子外壁形成阶段:外壁为乌毛蕨型(Blechnoidal-type),由薄的多糖性质的外壁内层和表面平滑的孢粉素外壁外层构成;小球参与外壁外层的形成,组织化学分析显示小球的中央区域和外壁外层内侧部分由红色(多糖)变为黄色,小球的表面区域和外壁外层部分始终被染成黑色(脂类),可知小球与外壁同步发育。(3)孢子周壁形成阶段:周壁为凹陷型(Cavate-type),包括2层,内层薄,紧贴外壁,外层隆起形成孢子脊状褶皱纹饰的轮廓,以少见的向心方向发育;苏丹黑B和PAS反应观察周壁被染成橙色,推测其可能由多糖等成分构成;孢子囊壁细胞参与周壁的形成。本研究为揭示蕨类植物孢子发生的细胞学机制提供了新资料。  相似文献   

14.
Based on a fine structural study, a new genus, Kabataia gen. n., is proposed for Microsporidium arthuri Lom, Dyková and Shaharom, 1990. It develops in trunk muscles of a South-East Asian freshwater fish, Pangasius sutchi. The genus has nuclei isolated throughout the cycle, merogony stages are multinucleate, sporogony proceeds in 2 steps: multinucleate sporont segments into sporoblast mother cells which produce 2 sporoblasts. Sporoblasts and early spores are characterized by a dense globule at the site of the posterior vacuole. Mature spores are of a rather variable shape. Their exospore is raised into small, irregular fields. The polaroplast is relatively small and its posterior part consists of flat vesicles with dense contents. The polar tube makes a small number (4 to 6) of turns. A congeneric species is Kabataia seriolae (Egusa, 1982) comb. nov. from cultured marine yellowtails Seriola quinqueradiata. Kabataia inflicts heavy damage on muscle tissue. The sarcoplasm within which Kabataia develops is reduced to an amorphous mass with tubule-like fibrils, microfibrils and small vesicles.  相似文献   

15.
采用光镜、透射电镜和细胞化学技术,对紫萁孢子囊发育过程中孢壁的超微结构和孢子囊内多糖和脂滴的分布及其动态变化进行研究,以探讨紫萁孢子囊发育过程中多糖和脂滴的代谢特征,为蕨类孢子发生的研究提供基础资料。结果表明:(1)紫萁孢子囊由1层囊壁细胞、2层绒毡层和产孢组织构成。(2)紫萁孢子壁由发达而分2层的外壁(外壁内层和外壁外层)和薄的不连续的周壁构成,由外壁形成棒状纹饰的轮廓;孢子外壁内层由多糖类物质构成,外壁外层和周壁均含有脂类物质。(3)在紫萁孢原细胞中观察到少量脂滴;随着紫萁孢壁的形成,囊壁细胞中淀粉粒的大小逐渐变小、数目先增加后减少,它们转运到内层绒毡层原生质团并转化为孢粉素前体物质,再穿过原生质团内膜表面进入囊腔,成为孢粉素团块或以小球形式填加到孢子表面形成孢壁。(4)紫萁孢子囊将多糖类营养物质转化为脂类,以脂滴的形式储藏在孢子中。  相似文献   

16.
The ultrastructure of the microsporidian parasite Nosema grylli, which parasitizes primarily fat body cells and haemocytes of the cricket Gryllus bimaculatus (Orthoptera, Gryllidae) is described. All observed stages (meront, meront/sporont transitional stage ("second meront"), sporont, sporoblast, and spore) are found in direct contact with the host cell cytoplasm. Nuclei are diplokaryotic during almost all stages of the life cycle, but a brief stage with one nucleus containing an abundance of electron-dense material is observed during a "second merogony." Sporogony is disporous. Mature spores are ovocylindrical in shape and measure 4.5+/-0.16micromx2.2+/-0.07 microm (n=10) on fresh smears and 3.3+/-0.06 micromx1.4+/-0.07 microm (n=10) on ultrathin sections. Spores contain 15-18 coils of an isofilar polar filament arranged in one or two layers. Comparative phylogenetic analysis using rDNA shows N. grylli to be closely related to another orthopteran microsporidian, Nosema locustae, and to Nosema whitei from the confused flour beetle, Tribolium confusum. Antonospora scoticae, a parasite of the communal bee Andrena scotica, is a sister taxon to these three Nosema species. The sequence divergence and morphological traits clearly separate this group of "Nosema" parasites from the "true" Nosema clade containing Nosema bombycis. We therefore propose to change the generic name of N. grylli and its close relative N. locustae to Paranosema n. comb. We leave N. whitei in former status until more data on fine morphology of the species are obtained.  相似文献   

17.
A new species of Microspora, Amblyospora polykarya, is described from the mosquito Aedes taeniorhynchus. The parasite is transovarially transmitted for one generation only. Spores in adult females extrude binucleate sporoplasms which infect developing eggs. Merogony occurs in larval oenocytes with diplokaryotic stages in early instars giving rise to plasmodia with many diplokarya. Plasmodia undergo cytokinesis to form diplokaryotic sporonts. In fat body cells, these sporonts secrete pansporoblastic membranes and undergo two nuclear divisions to form octonucleate sporonts. Cytokinesis and differentiation result in uninucleate spores in packets of eight. These spores are not transmissible per os and are of different morphotype from those in adult females. Infected larvae die in the fourth stadium.  相似文献   

18.
朝鲜介蕨孢子周壁发育的研究   总被引:1,自引:0,他引:1  
利用光镜、扫描电镜和透射电镜对朝鲜介蕨[Dryoathyrium coreanum(Christ)Tagawa=Lunathyrium coreanum(Christ)Ching]孢子周壁的发育规律进行了研究。结果表明,朝鲜介蕨孢子两侧对称,单裂缝,表面具粗大的脊状褶皱,褶皱形成网状或拟网状纹饰。孢壁包括内壁、外壁和周壁。孢子外壁表面光滑,在四分孢子时期就已发育成熟。四分孢子分离后,周壁开始形成,周壁来源于孢子囊的绒毡层,是由原质型绒毡层的残余物在外壁上沉积而成。成熟的周壁很厚,可分为外层和内层。周壁内有大的空腔,主要是由周壁外层向外隆起形成的,隆起进而形成了孢子的脊状褶皱和表面纹饰。  相似文献   

19.
利用光镜、扫描电镜和透射电镜对鳞始蕨科(Lindsaeaceae) 乌蕨( Stenoloma chusanum Ching) 孢壁的形成和发育进行了研究。结果表明乌蕨孢子两侧对称、单裂缝, 表面具疣状纹饰。孢壁由内壁、外壁和周壁三部分构成。外壁在四分体阶段已基本形成, 其表面光滑, 质地均匀, 由孢粉素形成。周壁是由绒毡层残余物在外壁表面沉积形成, 可分为周壁内层、周壁中层和周壁外层三部分。在周壁中层与外层之间有一层均匀的空间。最后, 本文探讨了孢壁的形成和发育规律, 研究结果对揭示孢子纹饰和孢壁各层的形成过程、来源和稳定性有重要的意义, 并为孢粉学和系统学研究提供基础资料。  相似文献   

20.
A new genus and species of microsporidia, Ovavesicula popilliae n. g., n. sp., is described from the Japanese beetle, Popillia japonica, on the basis of studies by light and electron microscopy. Parasite development primarily occurs within the Malpighian tubules of larvae, and spores are formed in a sporophorous vesicle. Meronts have diplokaryotic nuclei, develop in direct contact with the host cell cytoplasm, and divide by binary fission. Sporonts have unpaired nuclei, develop within a thick sporophorous vesicle, and undergo synchronous nuclear divisions producing plasmodia with 2, 4, 8, 16, and 32 nuclei. Cytokinesis of sporogonial plasmodia does not occur until karyokinesis is complete with 32 nuclei. Intact sporophorous vesicles are ovoid, containing numerous secretory products, and are surrounded by a persistent two-layered wall. The uninucleate spores are regularly formed in groups of 32, and the polar tube in each has six coils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号