首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present the modelling, design, and experimental testing of a nerve cuff multielectrode system for selective activation of fibres in superficial peripheral nerve trunk regions which is capable of activating fibres in physiological order. The multielectrode system consists of 45 platinum electrodes embedded within a self-curling spiral silicone sheet organized in fifteen longitudinal groups consisting of three electrodes spaced equidistally around the circumference of the cuff. Electrodes in the centre band acted as stimulating cathodes while the two electrodes of the same group in the two outer bands were connected together and corresponded to the position of a particular cathode, serving as anodes to block the nascent action potentials by membrane hyperpolarization. The interpolar distance was 6 mm on both sides, resulting in a total cuff length of about 20 mm. The cuff was constructed with a diameter to fit the size of the dog sciatic nerve. Preliminary animal testing of the nerve cuff was performed on the sciatic nerve of a Bigley female dog. In the 45-electrode stimulation system, biphasic cathodic first pulses with quasitrapezoidal-shaped cathodic and square anodic parts were delivered through the particular group of tripolar electrodes to effect both selective stimulation of motor axons within the gastrocnemius muscle fascicle, and differential block by membrane hyperpolarization. The test was repeated using rectangular cathodic first biphasic current pulses delivered monopolarly on the central electrode of the same group while connected anodes were replaced by a common anode situated elsewhere in the surrounding tissue. In both experiments an isometric torque in the ankle joint elicited by the gastrocnemius muscle was measured and compared. It was shown that tripolar activation with quasitrapezoidal stimulation pulses elicited an isometric torque with a peak value of 0.83 Nm in 65 ms after onset of delivering stimulating pulses in comparison to the monopolar activation with rectangular biphasic pulses where the peak of the same value was observed in 45 ms after onset. Thus, the multipolar cuff stimulating monopolarly provided an effective means of activating motor axons selectively within the gastrocnemius muscle fascicle, while more physiological recruitment of the muscle fibres was evident when stimulating tripolarly.  相似文献   

2.
Recruitment of force via independent asynchronous firing of large numbers of motor units produces the grace and endurance of physiological motion. We have investigated the possibility of reproducing this physiological recruitment strategy by determining the selectivity of access to large numbers of independent motor units through intrafascicular multielectrode stimulation (IFMS) of the peripheral nerve. A Utah Slanted Electrode Array containing 100, 0.5-1.5 mm-long penetrating electrodes was inserted into the sciatic nerve of a cat, and forces generated by the 3 heads of triceps surea in response to electrical stimulation of the nerve were monitored via force transducers attached to their tendons. We found a mean of 17.4 +/- 4.9 (mean +/- SEM) electrodes selectively excited maximal forces in medial gastrocnemius before exciting another muscle. Among electrodes demonstrating selectivity at threshold, a mean of 7.3 +/- 2.7 electrodes were shown to recruit independent populations of motor units innervating medial gastrocnemius (overlap < 20%). Corresponding numbers of electrodes were reported for lateral gastrocnemius and soleus, as well. We used these stimulation data to emulate physiological recruitment strategies, and found that independent motor unit pool recruitment approximates physiological activation more closely than does intensity-based recruitment or frequency-based recruitment.  相似文献   

3.
The flat interface nerve electrode (FINE) has demonstrated significant capability for fascicular and subfascicular stimulation selectivity. However, due to the inherent complexity of the neuromuscular skeletal systems and nerve–electrode interface, a trajectory tracking motion control algorithm of musculoskeletal systems for functional electrical stimulation using a multiple contact nerve cuff electrode such as FINE has not yet been developed. In our previous study, a control system was developed for multiple-input multiple-output (MIMO) musculoskeletal systems with little prior knowledge of the system. In this study, more realistic computational ankle/subtalar joint model including a finite element model of the sciatic nerve was developed. The control system was tested to control the motion of ankle/subtalar joint angles by modulating the pulse amplitude of each contact of a FINE placed on the sciatic nerve. The simulation results showed that the control strategy based on the separation of steady state and dynamic properties of the system resulted in small output tracking errors for different reference trajectories such as sinusoidal and filtered random signals. The proposed control method also demonstrated robustness against external disturbances and system parameter variations such as muscle fatigue. These simulation results under various circumstances indicate that it is possible to take advantage of multiple contact nerve electrodes with spatial selectivity for the control of limb motion by peripheral nerve stimulation even with limited individual muscle selectivity. This technology could be useful to restore neural function in patients with paralysis.  相似文献   

4.
通过模具制作预成的硅胶套管,然后以缝合的方式将三极电极丝间隔5 mm附着于套管的内壁上,构成能够植入体内的三极cuff电极。经测试显示用这种方法构建的Cuff电极具有良好的导电和绝缘性能。将制作的电极植入狗面神经颧支周围,通过这个电极提取神经电信号,经放大器放大后输入数字存储示波器,通过这种方法提取到了能反映眨眼动作发生的神经电信号。研究结果说明,构建的三极Cuff电极能够用于神经电信号的提取;面神经电信号能够用来监测面神经支配肌肉的功能状态。  相似文献   

5.
Effects of a constant magnetic field (CMF) of 0.65 T on muscle tension over 9 h were studied in the neuromuscular preparation of the bullfrog sartorius muscle. Tension was developed every 30 min by stimulation of the sciatic nerve (nerve stimulation) or of the sartorius muscle itself (muscle stimulation). In sciatic nerve stimulation, tension decreased rapidly for the first 3-4 h at a similar rate in both test (exposed to CMF) and control muscles. However, the rate of decrease became smaller and almost leveled off after 3-4 h in the test muscles, whereas tension continued to decrease monotonically in control muscles. The slope of the decrease for these later periods was significantly different between the test and the control conditions. Accordingly, tension was larger in test than in control muscles. In muscle stimulation, tension decreased monotonically from the start of experiments in control muscles, while tension in test muscles maintained their initial values for almost 3 h. Thereafter they started to decrease with a similar rate to the control. Hence, tension was always larger in test than in control muscles. A similar pattern of temporal change was observed for the rate of rise of the maximum tension for nerve or muscle stimulation. However, a significant difference was detected only in the case of muscle stimulation. The present results showed that a strong CMF of 0.65 T had biological effects on tension development of the bullfrog sartorius muscle by stimulation of the sciatic nerve as well as by stimulation of muscle itself. The presence of a small AC magnetic field component leaves open the possibility of an AC, rather than a CMF effect.  相似文献   

6.
Studies were conducted on 25 cats to document the discharge rates of alpha motoneurons during stimulation of the sciatic nerve at frequencies from 100 to 10,000 pulses per second (pps). In addition, the feasibility of using high-frequency pulse trains to block the conduction of action potentials was investigated. Two cuff electrodes were placed around the proximal portion of the left sciatic nerve, and recordings of antidromic potentials were taken from single fibers of the L7 ventral root. When stimulating through the more proximal electrode, discharge rates were generally equal to or were subharmonics of the stimulation rate up to 1,000 pps. Firing often decreased in rate during 3-min runs. At 2,000-10,000 pps, fibers responded briefly at rates of several hundred per second but stopped firing within seconds after stimulus initiation. After cessation of response to the high-frequency pulse train, action potentials generated at 50 pps at the more distal electrode did not propagate to the recording electrodes. The 'electrical block' so induced was maintained for up to 20 min, and recovery following termination of the pulse train was complete within 1 s.  相似文献   

7.
Biomechanical properties and microcirculation of peripheral nerves under circular compression are vital factors for nerve repair and for developing neural prostheses. Quasi-static circular compression experiments on six rabbit sciatic nerves were performed. The mean estimated Young's modulus of the sciatic nerves in the transverse direction was 66.9+/-8.0 kPa. The blood perfusion of the nerve started to decrease at a mean pressure of 30.5 mmHg and reached a stable lower level of 30% of pre-compression value at 102.8 mmHg. The findings may make a contribution to safer design of cuff electrodes to be used in neural prostheses.  相似文献   

8.
We examined whether electrical field stimulation with varying characteristics could excite isolated mammalian skeletal muscle through different sites. Supramaximal (20-V, 0.1-ms) pulse stimulation with transverse wire or parallel plate electrodes evoked similar forces in nonfatigued slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles from mice. d-tubocurarine shifted the twitch force-stimulation strength relationship toward higher pulse strengths with both electrode configurations in soleus muscle, suggesting that weaker pulses excite muscle via neuromuscular transmission. With wire stimulation, movement of the recording electrode along the muscle caused a delay between the stimulus artifact and the peak of the action potential, consistent with action potential propagation along the sarcolemma. TTX abolished all contractions evoked with 20-V, 0.1-ms pulses, suggesting that excitation occurred via voltage-dependent Na+ channels and, hence, muscle action potentials. TTX did not prevent force development with > or = 0.4-ms pulses in soleus or 1-ms pulses in EDL muscle. Furthermore, myoplasmic Ca2+ (i.e., the fura 2 ratio) and sarcomere shortening were greater during tetanic stimulation with 2.0-ms than with 0.5-ms pulses in flexor digitorum brevis fibers from rats. TTX prevented all shortening and Ca2+ release with 0.5-ms, but not 2.0-ms, pulses, indicating that longer pulses can directly trigger Ca2+ release. Hence, proper interpretation of mechanistic studies requires precise understanding of how muscles are excited; otherwise, incorrect conclusions can be made. Using this new understanding, we showed that disrupted propagation of action potentials along the surface membrane is a major cause of fatigue in soleus muscle that is focally and continuously stimulated at 125 Hz.  相似文献   

9.
Action potentials (APs) were recorded from the extrajunctional membrane of surface fibers of the fast-twitch extensor digitorum longus (extensor) and the slow-twitch soleus muscles of adult rats. APs of the extensor muscle had a significantly faster rate of rise and fall, as well as a shorter duration, than those of the soleus. In addition, the overshoot of APs and the resting membrane potential was greater for the extensor. Whereas the soleus produced only one AP regardless of the stimulus duration, the number of extensor responses was directly proportional to the stimulus duration. This repetitive activity was greatly reduced by a concentration of tetrodotoxin (TTX) as low as 5 X 10(11) g/ml. Within 8 d after crush of the nerves to these two muscles, all differences in AP properties disappeared and both muscles became partially resistant to TTX. Reinnervation brought about a redifferentiation so that differences in AP were again significant at 22 d after nerve crush. However, the rate of rise of extensor APs did not attain normal values even as late as 60 d after nerve crush. APs were found to be the same for extensor and soleus muscles from 12-d-old rats. At 18 d after birth, rate of rise was equivalent to that of adult muscle for the soleus although 50--60 d were required before this parameter was fully mature for the extensor. Nevertheless, APs of the extensor and soleus were clearly differentiated within 25 d after birth. Differences in fast and slow muscle APs are discussed with regard to differences in ion gradients and sarcolemmal conductance.  相似文献   

10.
Specific muscle training and chronic contractilemeasurements are difficult in rodents, especially in the mouse. Theprimary reason for this is the lack of a means for stimulating themotor nerve that does not damage the nerve and that permitsreproducible measurements of contractility. In this paper, we describeprocedures for the construction and implantation of a stimulating nervecuff for use on the mouse common peroneal nerve. We demonstrate that nerve cuff implantation success rates can be high (i.e., 75-93%), as determined from measurements of maximal isometric torque produced bythe anterior crural muscles. Isometric torque production is notadversely affected by the nerve cuff because the torque produced matches that observed in our established percutaneous stimulation model. We also demonstrate that use of the nerve cuff for stimulation is compatible with electromyographic measurements made on the tibialisanterior muscle, with no sign of stimulation artifact in theelectromyographic signal.

  相似文献   

11.
Anterior cruciate ligament (ACL)-deficient knees have impaired proprioception, and, although mechanoreceptors have been found in the ACL, the existence of a reflex elicited from these receptors has not been directly demonstrated in humans. In eight patients that underwent knee arthroscopy and had no sign of ACL disease, thin wire electrodes were inserted into the proximal and mid parts of the ACL. Postoperatively, the sensory nerve fibers inside the ACL were stimulated electrically while motor activity in the knee muscles was recorded using electromyography. In seven of the eight patients, a muscular contraction of the semitendinosus muscle could be elicited with stimulus trains consisting of at least two stimuli. The latency was 95 +/- 35 ms. Stimulation during isometric contraction of either extensor or flexor muscles elicited a short, complete inhibition of the muscle activity in the contracting muscles. The latency of the inhibitory responses was 65 +/- 20 ms in the semitendinosus muscle and 70 +/- 15 ms in the rectus femoris muscle.  相似文献   

12.
Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons.  相似文献   

13.
Regulation of Taurine Transport in Rat Skeletal Muscle   总被引:2,自引:1,他引:1  
Taurine concentration of soleus muscle (SL, slow-twitch) was initially about twofold higher than that of extensor digitorum longus muscle (EDL, fast-twitch). Taurine concentration in gastrocnemius muscle (GC) was intermediate between that of EDL and SL. Four days after sciatic nerve section, taurine concentration in the EDL but not in the SL was increased by 2.5-fold. The increase was not due to the muscle atrophy and was observed 28 days after denervation. Tenotomy did not increase the total taurine content of the EDL. The increase in taurine concentration of the denervated EDL was prevented by simultaneous ingestion of guanidinoethane sulfonate, a competitive inhibitor of taurine transport. The initial and the maximal rates of [3H]taurine uptake were significantly higher in SL than in EDL. Denervation dramatically accelerated the initial and the maximal rates of the transport in EDL, whereas it significantly reduced those in SL. In contrast, the electrical stimulation of sciatic nerve accelerated the uptake of taurine by EDL and SL of the control but not of the curare-treated rats. These results suggest that transport of taurine into rat skeletal muscles is regulated differently by neural information and by muscular activity, and that the regulation is dependent on the muscle phenotype.  相似文献   

14.
A relative content of muscle fibers of various types and the spectrum of lactate dehydrogenase (LDH) isozymes were studied in fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles of newborn rats, of those aged 2, 3 weeks and one month and of adult rats after neonatal sciatic denervation and application of 0.5 mM colchicine solution to the sciatic nerve. No muscle fibers of various types were found (from the level of succinate dehydrogenase activity) in one-month-old rats, whereas the control and fast-twitch muscles showed A, B and C types and the slow-twitch one B and C types. The denervation brought about an increase in the content of LDH4 and LDH5 in both the muscles, while colchicine application gave rise to an increase in LDH2 activity, diminution of LDH1 in the fast-twitch muscle and elevation of LDH4 in the slow-twitch one. The data obtained attest to the retardation of muscle differentiation under application of the colchicine-induced blockade of axoplasmic transport.  相似文献   

15.
ObjectivesThis feasibility study evaluates the effect of varying the position of conventional surface EMG-electrodes on the forearm when using Transcranial Magnetic Stimulation (TMS). The aim was to find optimal bipolar electrode positions for forearm extensor muscles, which would be clinically relevant to predict motor recovery after stroke.MethodsIn a healthy female subject, three rings of surface EMG-electrodes were placed around the dominant forearm, leading to 200 different electrode pairs. Both peripheral electrical stimulation and TMS were applied at suprathreshold intensities.ResultsWith electrical stimulation of the median and radial nerve, similar waveform morphology was found for all electrode pairs, covering both flexors and extensors. Also with TMS, remarkable similarities between all electrode pairs were found, suggesting minimal selectivity. In both peripheral electrical stimulation and TMS, the curves became more irregular with decreasing inter-electrode distances.ConclusionNeither with peripheral electrical stimulation nor with TMS it was possible to selectively record extensor or flexor forearm muscle activity using conventional surface EMG-electrodes.SignificanceDespite this negative result, the important role of the forearm extensor muscles in the prognosis of motor recovery after stroke warrants further research into novel methods for selectively recording muscle activity in TMS other than by conventional surface EMG.  相似文献   

16.
Ankle control is critical to both standing balance and efficient walking. The hypothesis presented in this paper is that a Flat Interface Nerve Electrode (FINE) placed around the sciatic nerve with a fixed number of contacts at predetermined locations and without a priori knowledge of the nerve's underlying neuroanatomy can selectively control each ankle motion. Models of the human sciatic nerve surrounded by a FINE of varying size were created and used to calculate the probability of selective activation of axons within any arbitrarily designated, contiguous group of fascicles. Simulations support the hypothesis and suggest that currently available implantable technology cannot selectively recruit each target plantar flexor individually but can restore plantar flexion or dorsiflexion from a site on the sciatic nerve without spillover to antagonists. Successful activation of individual ankle muscles in 90% of the population can be achieved by utilizing bipolar stimulation and/or by using a cuff with at least 20 contacts.  相似文献   

17.
During motor nerve regeneration a transitory polyinnervation of muscle cells occurs, which represents a phase of rearrangement of the recovered innervation. Bilobalide, a terpene extrated from Ginkgo biloba leaves, was proposed to affect some aspects of nervous system development and regeneration. In this work, influence of bilobalide on polyinnervation in reinnervated extensor digitorum longus muscle was studied, through electrophysiological and histological techniques. The muscle was denervated crushing the sciatic nerve and it was examined at 1 or 2 months after denervation. The polyinnervated muscle cells in controls reached 24% at 1 month and thus the percentage decreased. In muscles of bilobalide treated rats the number of polyinnervated cells was decreased at both times.  相似文献   

18.
Laryngeal elevation achieved by neuromuscular stimulation at rest.   总被引:5,自引:0,他引:5  
During swallowing, airway protection is achieved in part by laryngeal elevation. Although multiple muscles are normally active during laryngeal elevation, neuromuscular stimulation of select muscles was evaluated to determine which single muscle or muscle pair best elevates the larynx and should be considered during future studies of neuromuscular stimulation in dysphagic patients. Hooked-wire monopolar electrodes were inserted into mylohyoid, thyrohyoid, and geniohyoid muscle regions in 15 healthy men selected for having a highly visible thyroid prominence for videotaping. During trials of single, bilateral, and combined muscle stimulations, thyroid prominence movements were video recorded, digitized, and normalized relative to elevation during a 2-ml water swallow. Individual muscle stimulation induced approximately 30% of the elevation observed during a swallow and approximately 50% of swallow velocity, whereas paired muscle stimulation resulted in approximately 50% of the elevation and approximately 80% of the velocity produced during a swallow. Paired muscle stimulation produced significantly greater elevation than single muscle stimulation and could assist with laryngeal elevation in dysphagic patients with reduced or delayed laryngeal elevation.  相似文献   

19.
Galvanic vestibular stimulation (GVS) is a research tool used to activate the vestibular system in human subjects. When a low-intensity stimulus (1-4 mA) is delivered percutaneously to the vestibular nerve, a transient electromyographic response is observed a short time later in lower limb muscles. Typically, galvanically evoked responses are present when the test muscle is actively engaged in controlling standing balance. However, there is evidence to suggest that GVS may be able to modulate the activity of lower limb muscles when subjects are not in a free-standing situation. The purpose of this review is to examine 2 studies from our laboratory that examined the effects of GVS on the lower limb motoneuron pool. For instance, a monopolar monaural galvanic stimulus modified the amplitude of the ipsilateral soleus H-reflex. Furthermore, bipolar binaural GVS significantly altered the onset of activation and the initial firing frequency of gastrocnemius motor units. The following paper examines the effects of GVS on muscles that are not being used to maintain balance. We propose that GVS is modulating motor output by influencing the activity of presynaptic inhibitory mechanisms that act on the motoneuron pool.  相似文献   

20.
At early stages of neuromuscular development, motor unit territory is expanded, with each muscle fibre being supplied by several axons. During postnatal development, some synapses are eliminated, motor unit size decreases, and the adult distribution of motor unit sizes emerges. This process depends on activity, since it proceeds more rapidly when the nerve is activated and is slower when activity is reduced. Here we studied whether, in addition to influencing the rate of retraction of motor unit territory, activity during the critical period of development affects the final outcome of the distribution of motor unit sizes. The sciatic nerve of 8- to 12-day-old rats was stimulated daily. One week later the tension of the extensor digitorum longus muscle and that of its individual motor units was recorded. The sizes of individual motor units were calculated and compared with those from animals that received no stimulation. The distribution of motor unit sizes from stimulated muscles was not significantly different from those from control muscles. Therefore, we conclude that although activity increases the rate at which motor units attain their adult size, it does not influence the final outcome of motor unit size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号