首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oligosaccharides of recombinant HIV gp120 expressed in lepidopteran Sf9 cells were analysed after hydrazine release by gel permeation and high pH anion exchange chromatography. N-Linked glycans were exclusively of the oligomannose series and no evidence for charged complex or hybrid type glycans was found. However a glycosylation reaction similar to those found in vertebrates was evident. The major glycoform of gp120, that comprised 30% of all the species analysed, was structurally identified by exoglycosidase digestion and found to be a core fucosylated structure, Man1,6(Man1,3)Man1,4GlcNAc(Fuc1,6)GlcNAc. Further confirmation of the ability of lepidopteran cells to fucosylate N-linked glycans was provided by an in vitro analysis of this reaction using authentic oligosaccharide substrates.  相似文献   

2.
The receptor for advanced glycation end products (RAGE) is a signaling receptor protein of the immunoglobulin superfamily implicated in multiple pathologies. It binds a diverse repertoire of ligands, but the structural basis for the interaction of different ligands is not well understood. We earlier showed that carboxylated glycans on the V‐domain of RAGE promote the binding of HMGB1 and S100A8/A9. Here we study the role of these glycans on the binding and intracellular signaling mediated by another RAGE ligand, S100A12. S100A12 binds carboxylated glycans, and a subpopulation of RAGE enriched for carboxylated glycans shows more than 10‐fold higher binding potential for S100A12 than total RAGE. When expressed in mammalian cells, RAGE is modified by complex glycans predominantly at the first glycosylation site (N25IT) that retains S100A12 binding. Glycosylation of RAGE and maximum binding sites for S100A12 on RAGE are also cell type dependent. Carboxylated glycan‐enriched population of RAGE forms higher order multimeric complexes with S100A12, and this ability to multimerize is reduced upon deglycosylation or by using non‐glycosylated sRAGE expressed in E. coli. mAbGB3.1, an antibody against carboxylated glycans, blocks S100A12‐mediated NF‐κB signaling in HeLa cells expressing full‐length RAGE. These results demonstrate that carboxylated N‐glycans on RAGE enhance binding potential and promote receptor clustering and subsequent signaling events following oligomeric S100A12 binding. J. Cell. Biochem. 110: 645–659, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
a-Galactosidase from Trichoderma reesei is a glycoprotein that contains O- and N-linked carbohydrate chains. There are 6 O-linked glycans per protein molecule that are linked to serine and threonine and can be released by b-elimination. Among these are monomers: D-glucose, D-mannose, and D-galactose; dimers: a1-6 D-mannopyranosyl- a-D-glycopyranoside and a1-6 D-glucopyranosyl- a-D-galactopyranoside and one trimer: a-D-glucopyranosyl- a1-2 D-mannopyranosyl- a1-6 D-galac-topyranoside. N-linked glycans are of the mannose-rich type and may be released by treating the protein with Endo- b-N-acetyl glycosaminidase F or by hydrozinolysis. The enzyme was deglycosylated with Endo- b- N-acetyl glycosaminidase F as well as with a number of exoglycosidases that partially remove the terminal residues of O-linked glycans. The effect of enzymatic deglycosylation on the properties of a-galactosidase has been considered. The effects of tunicamycin and 2-deoxyglucose on the secretion and glycosylation of the enzyme during culture growth have been analysed. The presence of two glycoforms of a-glactosidase differing in the number of N-linked carbohydrate chains and the microheterogeneity of the carbohydrate moiety of the enzyme are described. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Glycans play important biological roles in cell‐to‐cell interactions, protection against pathogens, as well as in proper protein folding and stability, and are thus interesting targets for scientists. Although their mechanisms of action have been widely investigated and hypothesized, their biological functions are not well understood due to the lack of deglycosylation methods for large‐scale isolation of these compounds. Isolation of glycans in their native state is crucial for the investigation of their biological functions. However, current enzymatic and chemical deglycosylation techniques require harsh pretreatment and reaction conditions (high temperature and use of detergents) that hinder the isolation of native glycan structures. Indeed, the recent isolation of new endoglycosidases that are able to cleave a wider variety of linkages and efficiently hydrolyze native proteins has opened up the opportunity to elucidate the biological roles of a higher variety of glycans in their native state. As an example, our research group recently isolated a novel Endo‐β‐N‐acetylglucosaminidase from Bifidobacterium longum subsp. infantis ATCC 15697 (EndoBI‐1) that cleaves N‐N′‐diacetyl chitobiose moieties found in the N‐linked glycan (N‐glycan) core of high mannose, hybrid, and complex N‐glycans. This enzyme is also active on native proteins, which enables native glycan isolation, a key advantage when evaluating their biological activities. Efficient, stable, and economically viable enzymatic release of N‐glycans requires the selection of appropriate immobilization strategies. In this review, we discuss the state‐of‐the‐art of various immobilization techniques (physical adsorption, covalent binding, aggregation, and entrapment) for glycosidases, as well as their potential substrates and matrices. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:104–112, 2017  相似文献   

5.
Matrix Assisted Laser Desorption/Ionization Time-of-flight (MALDI-ToF) MS is a popular method to analyze glycans released from proteins, cell lines, and tissue samples. Chemical modification of glycans (derivatization) can enhance ionization, enable semi-quantitation, and assist in linkage identification. However, the mass changes incurred by novel and more recently developed derivatizations are not accommodated by most spectral assignment programs, necessitating manual assignment which increases both the difficultly and the likelihood of error. AssignMALDI is a software tool designed to create glycan databases with customized derivatizations (labels) and automatically assign glycan masses in MALDI-TOF spectra using the new database. It can also average peak intensities across multiple spectra and prepare publication-ready assignment tables. To make it easy to use with different platforms, all input files and most output files are in text format. An interactive display enables users to inspect and edit peak assignments prior to producing charts and tables for publication. The program is freely available through GitHUB and Python-savvy users can add or adjust features as needed.  相似文献   

6.
The present paper shows that human chronic myeloid (K562) cells exposed 3 h to 20 μM 3′-azido-3′-deoxythymidine (AZT) exhibit marked variations of the oligosaccharide moiety of glycoconjugates. These changes were analyzed by confocal fluorescence microscopy, upon incubation of control and AZT-treated cells with biotin–lectin conjugates to visualize cell surface glycans or total glycans after cells permeabilization. In addition, cell fluorescence distribution of the biotinylated lectins, localized with streptavidin conjugates labeled with Alexa Fluor 488, was analyzed by flow cytometry. The results obtained show significant variations on the expression/distribution of membrane surface glycans as detected by both WGA and SNA, two lectins that recognize primarily cellular internal membrane glycolipids. A further interesting result was the significant increase of N-acetylglucosamine linked glycans localized either at the cell surface or intracellularly but only in K562 cells exposed to AZT. On the whole, our data demonstrate that AZT alters both lipid and N-linked glycosylations thus confirming previous observations, from our laboratory and from other Authors, that the drug impair the nucleotide-sugar import in the Golgi’s lumen. AZT does also alter the O-linked glycosylations that occur in the Golgi complex since these reactions require the incorporation of sialic acid, GlcNAc and GalNAc all of which are sensitive to the drug.  相似文献   

7.
Carbohydrate moieties of salivary mucins play various roles in life processes, especially as a microbial trapping agent. While structural details of the salivary O-glycans from several mammalian sources are well studied, very little information is currently available for the corresponding N-glycans. The existence of N-glycans alongside O-glycans on mucin isolated from rat sublingual gland has previously been implicated by total glycosyl compositional analysis but the respective structural data are both lacking. The advent of facile glycomic mapping and sequencing methods by mass spectrometry (MS) has enabled a structural reinvestigation into many previously unsolved issues. For the first time, high energy collision induced dissociation (CID) MALDI-MS/MS as implemented on a TOF/TOF instrument was applied to permethyl derivatives of mucin type O-glycans and N-glycans, from which the linkage specific fragmentation pattern could be established. The predominant O-glycans carried on the rat sublingual mucin were defined as sialylated core 3 and 4 types whereas the N-glycans were determined to be non-bisected hybrid types similarly carrying a sialylated type II chain. The masking effect of terminal sialylation on the tight binding of rat sublingual mucin to Galβ1→4GlcNAc specific lectins and three oligomannose specific lectins were clearly demonstrated in this study.  相似文献   

8.
There is always a need for new approaches for the control of virus burdens caused by seasonal outbreaks, the emergence of novel viruses with pandemic potential and the development of resistance to current antiviral drugs. The outbreak of the 2019 novel coronavirus-disease COVID-19 represented a pandemic threat and declared a public health emergency of international concern. Herein, the role of glycans for the development of new drugs or vaccines, as a host-targeted approach, is discussed where may provide a front-line prophylactic or threats to protect against the current and any future respiratory-infecting virus and possibly against other respiratory pathogens. As a prototype, the role of glycans in the coronavirus infection, as well as, galectins (Gal) as the glycan-recognition agents (GRAs) in drug design are here summarized. Galectins, in particular, Gal-1 and Gal-3 are ubiquitous and important to biological systems, whose interactions with viral glycans modulate host immunity and homeostatic balance.  相似文献   

9.
Milk glycoproteins are involved in different functions and contribute to different cellular processes, including adhesion and signaling, and shape the development of the infant microbiome. Methods have been developed to study the complexities of milk protein glycosylation and understand the role of N‐glycans in protein functionality. Endo‐β‐N‐acetylglucosaminidase (EndoBI‐1) isolated from Bifidobacterium longum subsp. infantis ATCC 15697 is a recently isolated heat‐stable enzyme that cleaves the N‐N′‐diacetyl chitobiose moiety found in the N‐glycan core. The effects of different processing conditions (pH, temperature, reaction time, and enzyme/protein ratio) were evaluated for their ability to change EndoBI‐1 activity on bovine colostrum whey glycoproteins using advanced mass spectrometry. This study shows that EndoBI‐1 is able to cleave a high diversity of N‐glycan structures. Nano‐LC‐Chip–Q‐TOF MS data also revealed that different reaction conditions resulted in different N‐glycan compositions released, thus modifying the relative abundance of N‐glycan types. In general, more sialylated N‐glycans were released at lower temperatures and pH values. These results demonstrated that EndoBI‐1 is able to release a wide variety of N‐glycans, whose compositions can be selectively manipulated using different processing conditions. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1323–1330, 2015  相似文献   

10.
ABSTRACT

Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.  相似文献   

11.
基于超滤膜辅助的糖蛋白全N-连接糖链的富集和质谱解析   总被引:1,自引:1,他引:0  
糖基化作为一种常见的蛋白质翻译后修饰,对蛋白质的空间结构、生物功能等具有重要的影响.解析糖蛋白糖链结构有助于更清楚地认识糖蛋白及其功能.本研究建立了一种基于超滤膜富集血清中糖蛋白全N-连接糖链,并利用质谱技术对糖链结构进行分析的方法.根据糖蛋白及其糖链结构之间的分子质量差异,利用Millipore公司的10 ku超滤膜富集血清糖蛋白上酶解(PNGase F)释放的全N-连接糖链,并使用MALDI-TOF/TOF-MS解析糖链结构.通过该技术可以从血清中富集并鉴定到23种独特的N-连接的糖链结构,并且利用二级质谱进行了结构确认.该方法可以被用于从大量生物样本中富集糖蛋白全N-连接糖链,可以达到快速、高通量地解析糖蛋白N-连接糖链的目的.  相似文献   

12.
Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. This review focuses on the various mannosides that can be found in nature and details their structure. It underlines their involvement in cellular interactions and finally describes the latest discoveries regarding the catalytic machinery and metabolic pathways that bacteria have developed to metabolize them.  相似文献   

13.
In the ascidian Halocynthia roretzi, sperm-egg binding is probably mediated through the interaction between alpha-L-fucosidase present on the sperm surface and anionic saccharide chains of the egg vitelline coat. To characterize biologically active glycans, total glycans were chemically released from the glycopeptide fraction of the vitelline coat. The fraction of uncharged glycans and two fractions of negatively charged glycans were separated by diethylaminoethyl-anion exchange chromatography. In a competitive inhibition assay of fertilization, both anionic fractions showed inhibitory activity, with more anionic glycans being most potent, while uncharged glycans were biologically inactive. Chemical desulfation combined with a competitive inhibition assay of fertilization and ion analysis determined that sulfate groups were responsible for anionic character and crucial for biological activity. Monosaccharide analysis of anionic fractions showed a high content of N-acetylgalactosamine, galactose, xylose and the presence of arabinose, mannose, N-acetylglucosamine, glucose and rhamnose. Glycans were O-linked and galactose and xylose residues were detected at reducing termini. Linkage analysis suggested that 1,4-linked xylose, 1,3-linked galactose and N-acetylgalactosamine residues, substituted to different degrees by sulfate groups on the C-3 and C-4 carbons, respectively, constituted the core structures of anionic glycans.  相似文献   

14.
Abstract Protein components of homogenates of unfed larvae and nymphs of Ixodes ricinus (L.), and of ovary, haemolymph, Malpighian tubules, rectal ampulla, fat body, integument, salivary glands and midgut of partially fed adult females were studied for their antigenicity and carbohydrate moieties using immunoblotting and lectin affinity blotting (LAB) techniques. Comparing the individual anti-larval, anti-nymphal and anti-adult immune sera for their capacity to recognize the specific and trans-stadially cross-reactive antigenic proteins, larval feeding induced the most effective humoral response. The majority of immunogens recognized by rabbit anti-tick immune sera are glycoproteins. Most of the glycosylated antigens were modified with N-type glycans; however, O-type glycans were also demonstrated in some antigens. The correlation of the type of glycosylation with antigenicity, and the sharing of common antigenic epitopes by various tissues, are discussed.  相似文献   

15.
The emerging role of glycans as versatile biochemical signals in diverse aspects of cellular sociology calls for establishment of sensitive methods to monitor carbohydrate recognition by receptors such as lectins. Most of these techniques involve the immobilization of one of the binding partners on a surface, e.g. atomic force microscopy, glycan array and Surface Plasmon Resonance (SPR), hereby simulating cell surface presentation. Here, we report the synthesis of fluorescent glycoconjugates, with a functionalization strategy which avoids the frequently occurring ring opening at the reducing end for further immobilization on a surface or derivatization with biotin. In order to improve the versatility of these derivatized glycans for biological studies, a new approach for the synthesis of biotinylated and fluorescent glycans has also been realized. Finally, to illustrate their usefulness the neoglycoconjugates were immobilized on different surfaces, and the interaction analysis with a model lectin, the toxin from mistletoe, proved them to act as potent ligands, underscoring the merit of the presented synthetic approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Endo‐βN‐acetylglucosaminidase isolated from B. infantis ATCC 15697 (EndoBI‐1) is a novel enzyme that cleaves N‐N′‐diacetyl chitobiose moieties found in the N‐glycan core of high mannose, hybrid, and complex N‐glycans. These conjugated N‐glycans are recently shown as a new prebiotic source that stimulates the growth of a key infant gut microbe, Bifidobacterium longum subsp. Infantis. The effects of pH (4.45–8.45), temperature (27.5–77.5°C), reaction time (15–475 min), and enzyme/protein ratio (1:3,000–1:333) were evaluated on the release of N‐glycans from bovine colostrum whey by EndoBI‐1. A central composite design was used, including a two‐level factorial design (24) with four center points and eight axial points. In general, low pH values, longer reaction times, higher enzyme/protein ratio, and temperatures around 52°C resulted in the highest yield. The results demonstrated that bovine colostrum whey, considered to be a by/waste product, can be used as a glycan source with a yield of 20 mg N‐glycan/g total protein under optimal conditions for the ranges investigated. Importantly, these processing conditions are suitable to be incorporated into routine dairy processing activities, opening the door for an entirely new class of products (released bioactive glycans and glycan‐free milk). The new enzyme's activity was also compared with a commercially available enzyme, showing that EndoBI‐1 is more active on native proteins than PNGase F and can be efficiently used during pasteurization, streamlining its integration into existing processing strategies. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1331–1339, 2015  相似文献   

17.
A surface plasmon resonance (SPR) based natural glycan microarray was developed for screening of interactions between glycans and carbohydrate-binding proteins (CBPs). The microarray contained 144 glycan samples and allowed the real-time and simultaneous screening for recognition by CBPs without the need of fluorescent labeling. Glycans were released from their natural source and coupled by reductive amination with the fluorescent labels 2-aminobenzamide (2AB) or anthranilic acid (AA) followed by high-performance liquid chromatography (HPLC) fractionation making use of the fluorescent tag. The released and labeled glycans, in addition to fluorescently labeled synthetic glycans and (neo)glycoproteins, were printed on an epoxide-activated chip at fmol amounts. This resulted in covalent immobilization, with the epoxide groups forming covalent bonds to the secondary amine groups present on the fluorescent glycoconjugates. The generated SPR glycan array presented a subset of the glycan repertoire of the human parasite Schistosoma mansoni. In order to demonstrate the usefulness of the array in the simultaneous detection of glycan-specific serum antibodies, the anti-glycan antibody profiles from sera of S. mansoni-infected individuals as well as from non-endemic uninfected controls were recorded. The SPR screening was sensitive for differences between infection sera and control sera, and revealed antibody titers and antibody classes (IgG or IgM). All SPR analyses were performed with a single SPR array chip, which required regeneration and blocking of the chip before the application of a serum sample. Our results indicate that SPR-based arrays constructed from glycans of natural or synthetic origin, pure or as mixture, can be used for determining serum antibody profiles as possible markers for the infection status of an individual.  相似文献   

18.
Recombinant human lecithin‐cholesterol acyltransferase Fc fusion (huLCAT‐Fc) is a chimeric protein produced by fusing human Fc to the C‐terminus of the human enzyme via a linker sequence. The huLCAT‐Fc homodimer contains five N‐linked glycosylation sites per monomer. The heterogeneity and site‐specific distribution of the various glycans were examined using enzymatic digestion and LC‐MS/MS, followed by automatic processing. Almost all of the N‐linked glycans in human LCAT are fucosylated and sialylated. The predominant LCAT N‐linked glycoforms are biantennary glycans, followed by triantennary sugars, whereas the level of tetraantennary glycans is much lower. Glycans at the Fc N‐linked site exclusively contain typical asialobiantennary structures. HuLCAT‐Fc was also confirmed to have mucin‐type glycans attached at T407 and S409. When LCAT‐Fc fusions were constructed using a G‐S‐G‐G‐G‐G linker, an unexpected +632 Da xylose‐based glycosaminoglycan (GAG) tetrasaccharide core of Xyl‐Gal‐Gal‐GlcA was attached to S418. Several minor intermediate species including Xyl, Xyl‐Gal, Xyl‐Gal‐Gal, and a phosphorylated GAG core were also present. The mucin‐type O‐linked glycans can be effectively released by sialidase and O‐glycanase; however, the GAG could only be removed and localized using chemical alkaline β‐elimination and targeted LC‐MS/MS. E416 (the C‐terminus of LCAT) combined with the linker sequence is likely serving as a substrate for peptide O‐xylosyltransferase. HuLCAT‐Fc shares some homology with the proposed consensus site near the linker sequence, in particular, the residues underlined PPP E416GS418G G G GDK. GAG incorporation can be eliminated through engineering by shifting the linker Ser residue downstream in the linker sequence.  相似文献   

19.
《MABS-AUSTIN》2013,5(3):385-391
There are currently ~25 recombinant full-length IgGs (rIgGs) in the market that have been approved by regulatory agencies as biotherapeutics to treat various human diseases. Most of these are based on IgG1k framework and are either chimeric, humanized or human antibodies manufactured using either Chinese hamster ovary (CHO) cells or mouse myeloma cells as the expression system. Because CHO and mouse myeloma cells are mammalian cells, rIgGs produced in these cell lines are typically N-glycosylated at the conserved asparagine (Asn) residues in the CH2 domain of the Fc, which is also the case with serum IgGs. The Fc glycans present in these rIgGs are for the most part complex biantennary oligosaccharides with heterogeneity associated with the presence or the absence of several different terminal sugars. The major Fc glycans of rIgGs contain 0 or 1 or 2 (G0, G1 and G2, respectively) terminal galactose residues as non-reducing termini and their relative proportions may vary depending on the cell culture conditions in which they were expressed. Since glycosylation is strongly associated with antibody effector functions and terminal galactosylation may affect some of those functions, a panel of commercially available therapeutic rIgGs expressed in CHO cells and mouse myeloma cells were examined for their galactosylation patterns. The results suggest that the rIgGs expressed in CHO cells are generally less galactosylated compared to the rIgGs expressed in mouse myeloma cells. Accordingly, rIgGs produced in CHO cells tend to contain higher levels of G0 glycans compared with rIgGs produced in mouse myeloma cell lines. Despite the apparent wide variability in galactose content, adverse events or safety issues have not been associated with specific galactosylation patterns of therapeutic antibodies. Nevertheless, galactosylation may have an effect on the mechanisms of action of some therapeutic antibodies (e.g., effector pathways) and hence further studies to assess effects on product efficacy may be warranted for such antibodies. For antibodies that do not require effector functions for biological activity, however, setting a narrow specification range for galactose content may be unnecessary.  相似文献   

20.
There are currently ~25 recombinant full-length IgGs (rIgGs) in the market that have been approved by regulatory agencies as biotherapeutics to treat various human diseases. Most of these are based on IgG1k framework and are either chimeric, humanized or human antibodies manufactured using either Chinese hamster ovary (CHO) cells or mouse myeloma cells as the expression system. Because CHO and mouse myeloma cells are mammalian cells, rIgGs produced in these cell lines are typically N-glycosylated at the conserved asparagine (Asn) residues in the CH2 domain of the Fc, which is also the case with serum IgGs. The Fc glycans present in these rIgGs are for the most part complex biantennary oligosaccharides with heterogeneity associated with the presence or the absence of several different terminal sugars. The major Fc glycans of rIgGs contain 0 or 1 or 2 (G0, G1 and G2, respectively) terminal galactose residues as non-reducing termini and their relative proportions may vary depending on the cell culture conditions in which they were expressed. Since glycosylation is strongly associated with antibody effector functions and terminal galactosylation may affect some of those functions, a panel of commercially available therapeutic rIgGs expressed in CHO cells and mouse myeloma cells were examined for their galactosylation patterns. The results suggest that the rIgGs expressed in CHO cells are generally less galactosylated compared to the rIgGs expressed in mouse myeloma cells. Accordingly, rIgGs produced in CHO cells tend to contain higher levels of G0 glycans compared with rIgGs produced in mouse myeloma cell lines. Despite the apparent wide variability in galactose content, adverse events or safety issues have not been associated with specific galactosylation patterns of therapeutic antibodies. Nevertheless, galactosylation may have an effect on the mechanisms of action of some therapeutic antibodies (e.g., effector pathways) and hence further studies to assess effects on product efficacy may be warranted for such antibodies. For antibodies that do not require effector functions for biological activity, however, setting a narrow specification range for galactose content may be unnecessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号