首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adhesion of conidia of the endoparasitic fungus Drechmeria coniospora to the cuticles of the wild type and four different head defective mutants of Caenorhabditis elegans, and subsequent infection, was studied. The conidia adhered around the sensory structures in the head region, vulva, and occasionally to other parts of the cuticle in both mutant and wild type hosts. Infection took place after adhesion to the head region by penetration through the cuticle, and, following adhesion around the vulva, through the natural orifice. Infection was not observed after adhesion to other parts of the cuticle. Adhesion was reduced after treatment of the nematodes with Pronase E. Adhesion returned towards normal again within 2 hours, indicating that the proteinaceous material emanating from the sensory structures was rapidly replaced.  相似文献   

2.
The obligate endoparasitic fungus Meria coniospora lives its entire vegetative life within infected nematodes. Conidia of M. coniospora infect the nematode Panagrellus redivivus mainly in the mouth region. The infection, starting with adhesion of conidia to the nematode surface, growth of trophic hyphae, production of conidiophores and conidia, was followed using light, scanning and transmission electron microscopy.This work was supported by grants from the Swedish Natural Science Research Council.  相似文献   

3.
The endoparasitic nematophagous fungus Meria coniospora reduced root-knot nematode galling on tomatoes in greenhouse pot trials. The fungus was introduced to pots by addition of conidia at several inoculum levels directly to the soil or addition of nematodes infected with M. coniospora to the soil; both methods reduced root galling by root-knot nematodes. These studies represent a part of a recently initiated effort to evaluate the potential of endoparasitic nematophagous fungi for biocontrol of nematodes.  相似文献   

4.
Drechmeria coniospora is an obligate fungal pathogen that infects nematodes via the adhesion of specialized spores to the host cuticle. D. coniospora is frequently found associated with Caenorhabditis elegans in environmental samples. It is used in the study of the nematode’s response to fungal infection. Full understanding of this bi-partite interaction requires knowledge of the pathogen’s genome, analysis of its gene expression program and a capacity for genetic engineering. The acquisition of all three is reported here. A phylogenetic analysis placed D. coniospora close to the truffle parasite Tolypocladium ophioglossoides, and Hirsutella minnesotensis, another nematophagous fungus. Ascomycete nematopathogenicity is polyphyletic; D. coniospora represents a branch that has not been molecularly characterized. A detailed in silico functional analysis, comparing D. coniospora to 11 fungal species, revealed genes and gene families potentially involved in virulence and showed it to be a highly specialized pathogen. A targeted comparison with nematophagous fungi highlighted D. coniospora-specific genes and a core set of genes associated with nematode parasitism. A comparative gene expression analysis of samples from fungal spores and mycelia, and infected C. elegans, gave a molecular view of the different stages of the D. coniospora lifecycle. Transformation of D. coniospora allowed targeted gene knock-out and the production of fungus that expresses fluorescent reporter genes. It also permitted the initial characterisation of a potential fungal counter-defensive strategy, involving interference with a host antimicrobial mechanism. This high-quality annotated genome for D. coniospora gives insights into the evolution and virulence of nematode-destroying fungi. Coupled with genetic transformation, it opens the way for molecular dissection of D. coniospora physiology, and will allow both sides of the interaction between D. coniospora and C. elegans, as well as the evolutionary arms race that exists between pathogen and host, to be studied.  相似文献   

5.
In order to facilitate the understanding of the actual process of enzyme-based degradation of nematodes, we visualized the localization of BLG4, a cuticle-degrading protease from the nematophagous bacterium Brevibacillus laterosporus G4, on nematode cuticle by using an improved immuno-labeled fluorescent method. Live nematodes, heat-killed nematodes and extracted nematode cuticles were exposed to the protease, and the localization of the protease and the resulting tissue degradation and destruction were observed microscopically. The bioassay findings showed that live nematodes were significantly more resistant to the protease than the dead nematodes and the extracted cuticles were. The observation of the immuno-labeling fluorescence for BLG4 revealed that the protease localized first in the tail region of the live target; and then spread over the entire target and ultimately destroyed it, including the cuticle. The results indicated the resistance of nematode cuticles to enzymatic attacks and the differences in protease susceptibilities at different regions on the nematode cuticles.  相似文献   

6.
7.
Molting is required for progression between larval stages in the life cycle of nematodes. We have identified four mutant alleles of a Caenorhabditis elegans metalloprotease gene, nas-37, that cause incomplete ecdysis. At each molt the cuticle fails to open sufficiently at the anterior end and the partially shed cuticle is dragged behind the animal. The gene is expressed in hypodermal cells 4 hours before ecdysis during all larval stages. The NAS-37 protein accumulates in the anterior cuticle and is shed in the cuticle after ecdysis. This pattern of protein accumulation places NAS-37 in the right place and at the right time to degrade the cuticle to facilitate ecdysis. The nas-37 gene has orthologs in other nematode species, including parasitic nematodes, and they undergo a similar shedding process. For example, Haemonchus contortus molts by digesting a ring of cuticle at the tip of the nose. Incubating Haemonchus larvae in extracted exsheathing fluids causes a refractile ring of digested cuticle to form at the tip of the nose. When Haemonchus cuticles are incubated with purified NAS-37, a similar refractile ring forms. NAS-37 degradation of the Haemonchus cuticle suggests that the metalloproteases and the cuticle substrates involved in exsheathment of parasitic nematodes are conserved in free-living nematodes.  相似文献   

8.
Plant parasitic nematodes interact with fungi in a variety of ways to cause plant disease complexes. Even some nonplant parasitic nematodes are able to carry fungal spores internally which not only increases their mobility, but also protects them from fungicides. Plant parasitic nematodes frequently wound plants in the process of penetration and feeding. These wounds become subject to infection by fungal pathogens that require aid in penetrating their host. Other nematodes modify plant tissue in such a way that it becomes a better substrate for the fungus and thus increases their growth and reproduction to the detriment of the host. Quantitative and qualitative changes in root exudate which are induced by certain nematodes stimulate the germination, growth, and reproduction of fungal propagules in the rhizosphere. These exudates may also indirectly inhibit components of the rhizosphere microflora (e.g., actinomycetes) which are antagonistic to some plant pathogens. Depending on the species of nematode and fungus, concomitant infections may stimulate nematode reproduction (Pratylenchus-Verticillium) or inhibit reproduction (Heterodera-Fusarium).  相似文献   

9.
Lectin-binding glycoproteins in seven populations of two burrowing nematode sibling species were probed with five different biotinylated lectins on Western blots, and differences were correlated with nematode ability to parasitize citrus and to overcome citrus rootstock resistance. Banding patterns of molecular weight standards were fit best by an exponential decay function, and a predictive equation was used to estimate molecular weights (r² = 0.999). A band (131 kDa) that labeled with the lectin Concanavalin A (Con A) occurred in extracts from cuticles and egg shells of populations of Radopholus citrophilus that parasitize citrus. Wheat germ agglutin labeled a band (58 kDa) in aqueous homogenates of populations that reproduce in roots of citrus rootstock normally resistant to burrowing nematodes. The two sibling species R. citrophilus and R. similis were distinguished by a high molecular weight Con A-labeled band (608 kDa) from cuticle and egg shells. Probing blots with the lectin Limulus polyphemus agglutinin indicated that each population contained a band (12-16 kDa) specifically inhibited by the addition of 25 mM neuraminic acid, suggesting that glycoproteins with sialic acid moieties are present in burrowing nematodes.  相似文献   

10.
The plant parasitic nematodes Helicotylenchus multicinctus, Meloidogyne javanica, Tylenchulus semipenetrans, and Xiphinema index, differing in their host specificity and parasitic habits, were analyzed as to their cuticle surface sialyl, galaclosyl, and/or N-acetylgalactosaminyl residues. The procedure involved the selective oxidation of sialic acid and galactose/N-acetylgal-actosamine residues using periodate and galactose oxidase, respectively, to form reactive aldehyde groups. These functional groups were coupled directly with a new hydrazide-containing compound, the fluorescent reagent lissamine rhodamine-β-alanine hydrazide, or they were utilized to introduce DPN-groups to the nematode cuticle. The distribution of the DNP-tagged glycoconjugates was visualized by treating the nematodes with rabbit anti-DNP antibody and staining with fluorescein isothiocyanate (FITC)-labeled goat antirabbit IgG. Sialo residues were observed along the entire outer body wall of the first three aforementioned nematodes, but there were some differences in reaction among the various life stages within the species. In X. index, sialo residues were sited in the tail and head areas, mainly on the lips, oral opening, amphid apertures and stylet. Galactose oxidase treatments revealed galactose on N-acytylgalactosamine residues on T. sentipenetrans and X. index, but there were no indications that their presence was dependent on the developmental stage. Trypsin, pronase, and neuraminidase pretreatment completely abolished the fluorescence in T. semipenetrans but did not alter the sialo residue binding reaction in H. multicinctus or M. javanica, indicating possible differences in the outer body wall saccharide structure and composition between these nematodes. The existence and nature of sugar residues on the cuticle surface of nematodes could contribute to an understanding of the specific recognition by phytophagous nematodes of their host, and perhaps also of the virus transmission mechanism in those nematodes which serve as vectors.  相似文献   

11.
Adhesive conidia of the nematophagous fungus, Drechmeria coniospora (Drechsler) W. Gams and Jansson (Moniliales: Deuteromycetes), would occasionally attach but never penetrate the infective stages of insect parasitic Neoaplectana carpocapsae, N. glaseri, N. bibionis, N. intermedia, and Heterorhabditis helfothidis (Rhabditida). However, adult and pre-infective stages of Neoaplectana spp. became infected by the fungus.  相似文献   

12.
Calorie values for a wide biological selection of nematodes, determined with a microbomb calorimeter, ranged from 3.86 to 6.85 Kcal/g. The mean of 5.095 Kcal from 16 species was lower than means recorded in three previous studies of other invertebrate groups. The nematode values were skewed to the lowest limit. Larvae of Ditylenchus dipsaci showed lower calorie values after storage, and the calorie values of separate tissues of Ascaris lumbricoides were highest for eggs and the intestine and lowest for cuticle and body-wall musculature. No clear calorie distinction exists between nematodes with a parasitic or free-living habit or between large and small nematodes.  相似文献   

13.
Movement behavior of foraging animals is critical to the determination of their spatial ecology and success in exploiting resources. Individuals sometimes gain advantages by foraging in groups to increase their efficiency in garnering these resources. Group movement behavior has been studied in various vertebrates. In this study we explored the propensity for innate group movement behavior among insect parasitic nematodes. Given that entomopathogenic nematodes benefit from group attack and infection, we hypothesised that the populations would tend to move in aggregate in the absence of extrinsic cues. Movement patterns of entomopathogenic nematodes in sand were investigated when nematodes were applied to a specific locus or when the nematodes emerged naturally from infected insect hosts; six nematode species in two genera were tested (Heterorhabditis bacteriophora, Heterorhabditis indica, Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri and Steinernema riobrave). Nematodes were applied in aqueous suspension via filter paper discs or in infected insect host cadavers (to mimic emergence in nature). We discovered that nematode dispersal resulted in an aggregated pattern rather than a random or uniform distribution; the only exception was S. glaseri when emerging directly from infected hosts. The group movement may have been continuous from the point of origin, or it may have been triggered by a propensity to aggregate after a short period of random movement. To our knowledge, this is the first report of group movement behavior in parasitic nematodes in the absence of external stimuli (e.g., without an insect or other apparent biotic or abiotic cue). These findings have implications for nematode spatial distribution and suggest that group behavior is involved in nematode foraging.  相似文献   

14.
Penetration of cabbage roots by Heterodera schachtii was suppressed 50-77% in loamy sand naturally infested with the nematophagous fungus Hirsutella rhossiliensis. When Heterodera schachtii was incubated in the suppressive soil without plants for 2 days, 40-63% of the juveniles had Hirsutella rhossiliensis spores adhering to their cuticles. Of those with spores, 82-92% were infected. Infected nematodes were killed and filled with hyphae within 2-3 days. Addition of KCl to soil did not increase infection of Heterodera schachtii by Hirsutella rhossiliensis. The percentage of infection was lower when nematodes were touched to two spores and incubated in KCl solution than when nematodes naturally acquired two spores in soil.  相似文献   

15.
The nematode cuticle is a complex extracellular structure which is secreted by an underlying syncytium of hypodermal cells. Recent studies have demonstrated that the cuticle of parasitic nematodes is a dynamic structure with important absorptive, secretory, and enzymatic activities. In addition, the cuticle serves as a protective barrier against the host. A 48-h third stage larval Dirofilaria immitis cDNA library was immunoscreened with sera raised against larval cuticles. One clone, L3MC4 that reacted strongly with the anti-cuticle antisera was sequenced. The composite cDNA sequence comprises 2073 bp coding for a full-length protein of 590 amino acids. GenBank analysis showed that DiAsp had significant similarity to a Caenorhabditis elegans gene-product (54% identity) and to other asparaginases at the amino acid level. Escherichia coli-expressed recombinant DiAsp (rDiAsp) catalysed the hydrolysis of asparagine to aspartate and ammonia. Antibodies raised against D. immitis larval cuticles reacted with rDiAsp in immunoblots. This is the first report of identification of a cDNA clone encoding an asparaginase enzyme from a parasitic nematode.  相似文献   

16.
Summer-active (continental) and summer-dormant (Mediterranean) tall fescue morphotypes are each adapted to different environmental conditions. Endophyte presence provides plant parasitic nematode resistance, but not with all endophyte strains and cultivar combinations. This study sought to compare effects of four nematode genera on continental and Mediterranean cultivars infected with common toxic or novel endophyte strains. A 6-mon greenhouse study was conducted with continental cultivars, Kentucky 31 (common toxic) and Texoma MaxQ II (novel endophyte) and the Mediterranean cultivar Flecha MaxQ (novel endophyte). Endophyte-free plants of each cultivar were controls. Each cultivar × endophyte combination was randomly assigned to a control, low or high inoculation rate of a mixed nematode culture containing stunt nematodes (Tylenchorhynchus spp.), ring nematodes (Criconemella spp.), spiral nematodes (Helicotylenchus spp.), and lesion nematodes (Pratylenchus spp.). Endophyte infection had no effect on nematode population densities. The cultivar × endophyte interaction was significant. Population densities of stunt nematode, spiral nematode, and ring nematodes were higher for Flecha MaxQ than other cultivar × endophyte combinations. Novel endophyte infection enhances suitability of Flecha MaxQ as a nematode host.  相似文献   

17.
The fungus Gnomonia comari, causal agent of strawberry leaf blotch, was inoculated at the crown of young axenized strawberry plants growing in sterilized sand. Only the roots were colonized, and the infection was symptomless. When the fungus colonized the roots in the presence of the root lesion nematode Pratylenchus penetrans, the plants were extremely stunted and their root system was necrotic. Fungal conidiospores were found attached to the cuticle of nematodes extracted from soil inoculated with the two pathogens. These findings indicate that P. penetrans could transport conidiospores through soil.  相似文献   

18.
《Experimental mycology》1992,16(4):261-267
Fluorescein-labeled anti-rabbit antiserum showed that a serine protease designated P32, produced by the nematophagous fungusVerticillium suchlasporium, is secreted during infection of nematode eggs. Increased fluorescence in appressoria of the fungus on eggshells of the plant parasitic nematodeHeterodera schachtii indicated the presence of P32 in these fungal structures. Appressoria are involved in host penetration and these results support a role for P32 in the pathogenicity of the fungus to nematode eggs. These findings agree with similar results of entomogenous fungi penetrating the insect cuticle.  相似文献   

19.
The association of the model organism Caenorhabditis elegans and the fungus Pleurotus ostreatus gives the possibility to study the molecular and genetic mechanisms of the early stages of the spatial and temporal interactions of animals with fungal pathogens. We identified the stages of the infection process of P. ostreatus on the nematode C. elegans. We found that prior to penetration inside a worm a fungal toxin paralyzed and immobilized, but did not kill C. elegans. This finding opens the possibility for the further study of the effect of paralyzing toxins on host organisms. The membrane permeability of paralyzed worms increased dramatically and leakage products initiated the growth of directional hyphae towards the nematodes. The hyphae penetrated into live C. elegans animals either through natural openings or directly by piercing the cuticle. Upon contact with the nematode cuticle, P. ostreatus attached to it, formed appressoria-like structures and infection pegs, piercing the cuticle and penetrating inside the nematode body. The small zones around the penetration loci are of special interest for the evaluation of initial contacts between two organisms and for the study of the C. elegans local defense response against fungal infection.  相似文献   

20.
Pasteuria penetrans is a naturally occurring bacterial parasite of plant parasitic nematodes showing satisfactory results in a biocontrol strategy of root-knot nematodes (Meloidogyne spp.). The endospores attach to the outside nematode body wall (cuticle) of the infective stage second-stage juveniles (J2) of Meloidogyne populations. Optimal attachment level should be around 5–10 endospores per juvenile, as enough endospores will initiate infection without reducing the ability of the nematode to invade roots. Greater than 15 endospores may disable the nematode in its movements, and invasion may not take place. In this research, evidence is provided that P. penetrans spores disturbed the nematode forward movement by disorganising the nematode's head turns. The results based on Markov chain and Cochran probability model show that even a low number of 5–8 spores of P. penetrans attached to the nematode cuticle have a significant impact on that movement, which plays a role in nematode locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号