首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hepatic fibrosis is the response of the liver to chronic injury and is associated with portal hypertension, progression to hepatic cirrhosis, liver failure, and high incidence of hepatocellular carcinoma. On a molecular level, a large number of signaling pathways have been shown to contribute to the activation of fibrogenic cell types and the subsequent accumulation of extracellular matrix in the liver. Recent evidence suggests that the endocannabinoid system is an important part of this complex signaling network. In the injured liver, the endocannabinoid system is upregulated both at the level of endocannabinoids and at the endocannabinoid receptors CB1 and CB2. The hepatic endocannabinoid system mediates both pro- and antifibrogenic effects by activating distinct signaling pathways that differentially affect proliferation and death of fibrogenic cell types. Here we will summarize current findings on the role of the hepatic endocannabinoid system in liver fibrosis and discuss emerging options for its therapeutic exploitation.  相似文献   

2.
Hepatic fibrosis, the common response associated with chronic liver diseases, ultimately leads to cirrhosis, a major public health problem worldwide. We recently showed that activation of hepatic cannabinoid CB2 receptors limits progression of experimental liver fibrosis. We also found that during the course of chronic hepatitis C, daily cannabis use is an independent predictor of fibrosis progression. Overall, these results suggest that endocannabinoids may drive both CB2-mediated antifibrogenic effects and CB2-independent profibrogenic effects. Here we investigated whether activation of cannabinoid CB1 receptors (encoded by Cnr1) promotes progression of fibrosis. CB1 receptors were highly induced in human cirrhotic samples and in liver fibrogenic cells. Treatment with the CB1 receptor antagonist SR141716A decreased the wound-healing response to acute liver injury and inhibited progression of fibrosis in three models of chronic liver injury. We saw similar changes in Cnr1-/- mice as compared to wild-type mice. Genetic or pharmacological inactivation of CB1 receptors decreased fibrogenesis by lowering hepatic transforming growth factor (TGF)-beta1 and reducing accumulation of fibrogenic cells in the liver after apoptosis and growth inhibition of hepatic myofibroblasts. In conclusion, our study shows that CB1 receptor antagonists hold promise for the treatment of liver fibrosis.  相似文献   

3.
Recent studies have implicated dysregulation of the endocannabinoid system in various liver diseases and their complications (e.g., hepatitis, fibrosis, cirrhosis, cirrhotic cardiomyopathy, and ischemia-reperfusion), and demonstrated that its modulation by either cannabinoid 2 (CB(2)) receptor agonists or CB(1) antagonists may be of significant therapeutic benefits. This review is aimed to focus on the triggers and sources of endocannabinoids during liver inflammation and on the novel role of CB(2) receptors in the interplay between the activated endothelium and various inflammatory cells (leukocytes, lymphocytes, etc.), which play pivotal role in the early development and progression of inflammatory and other liver diseases.  相似文献   

4.
In the digestive tract, there is evidence for the presence of high amounts of endocannabinoids (anandamide and 2-arachidonylglycerol) and of mechanisms for endocannabinoid metabolism and possibly endocannabinoid uptake. Pharmacological studies have shown that anandamide inhibits excitatory transmission and peristalsis in the isolated guinea-pig ileum and reduces intestinal motility in the mouse in vivo; all these effects are mediated by CB(1) receptors, which are located on enteric nerves. Conversely, the selective CB(1) receptor antagonist SR141716A increased intestinal motility and this effect is likely due to the displacement of endocannabinoids rather than to its inverse agonist properties. Interestingly, inhibitory effects of anandamide via non-CB(1) receptors and stimulatory effects via vanilloid receptors have also been proposed.  相似文献   

5.
Endocannabinoids as cardiovascular modulators   总被引:8,自引:0,他引:8  
Cannabinoids, the bioactive constituents of the marijuana plant and their synthetic and endogenous analogs cause not only neurobehavioral, but also cardiovascular effects. The most important component of these effects is a profound decrease in blood pressure and heart rate. Although multiple lines of evidence indicate that the hypotensive and bradycardic effects of anandamide and other cannabinoids are mediated by peripherally located CB1 cannabinoid receptors, anandamide can also elicit vasodilation in certain vascular beds, which is independent of CB1 or CB2 receptors. Possible cellular mechanisms underlying these effects and the cellular sources of vasoactive anandamide are discussed.  相似文献   

6.
The major psychoactive component of cannabis derivatives, delta9-THC, activates two G-protein coupled receptors: CB1 and CB2. Soon after the discovery of these receptors, their endogenous ligands were identified: lipid metabolites of arachidonic acid, named endocannabinoids. The two major main and most studied endocannabinoids are anandamide and 2-arachidonyl-glycerol. The CB1 receptor is massively expressed through-out the central nervous system whereas CB2 expression seems restricted to immune cells. Following endocannabinoid binding, CB1 receptors modulate second messenger cascades (inhibition of adenylate cyclase, activation of mitogen-activated protein kinases and of focal-adhesion kinases) as well as ionic conductances (inhibition of voltage-dependent calcium channels, activation of several potassium channels). Endocannabinoids transiently silence synapses by decreasing neurotransmitter release, play major parts in various forms of synaptic plasticity because of their ability to behave as retrograde messengers and activate non-cannabinoid receptors (such as vanilloid receptor type-1), illustrating the complexity of the endocannabinoid system. The diverse cellular targets of endocannabinoids are at the origin of the promising therapeutic potentials of the endocannabinoid system.  相似文献   

7.
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of disease ranging from simple steatosis to inflammatory steatohepatitis (NASH) with different degrees of fibrosis that can ultimately progress to cirrhosis. Accumulating evidence suggests the involvement of the endocannabinoid-system in liver disease and related complications. In particular, hepatoprotective properties for Cannabinoid Receptor type 2 (CB2) have been shown both through experimental murine models of liver injury and association study between a CB2 functional variant, Q63R, and liver enzymes in Italian obese children with steatosis.Here, in order to clarify the role of CB2 in severity of childhood NAFLD, we have investigated the association of the CB2 Q63R variant, with histological parameters of liver disease severity in 118 Italian children with histologically-proven NAFLD.CB2 Q63R genotype was assigned performing a TaqMan assay and a general linear model analysis was used to evaluate the association between the polymorphism and the histological parameters of liver damage.We have found that whereas CB2 Q63R variant is not associated with steatosis or fibrosis, it is associated with the severity of the inflammation (p = 0.002) and the presence of NASH (p = 0.02).Our findings suggest a critical role for CB2 Q63R variant in modulating hepatic inflammation state in obese children and in the consequent increased predisposition of these patients to liver damage.  相似文献   

8.
Endocannabinoids (ECBs) are ubiquitous lipid mediators that act through the same G protein-coupled receptors (CB1 and CB2) that recognize plant-derived cannabinoids. As regulators of metabolism, ECBs are anabolic: they increase the intake, promote the storage, and decrease the expenditure of energy. Recent work indicates that activation of peripheral CB1 receptors by ECBs plays a key role in the hormonal/metabolic changes associated with obesity/metabolic syndrome and may be targeted for its pharmacotherapy.  相似文献   

9.
Advanced liver cirrhosis is associated with hyperdynamic circulation consisting of systemic hypotension, decreased peripheral resistance, and cardiac dysfunction, termed cirrhotic cardiomyopathy. Previous studies have revealed the role of endocannabinoids and vascular CB(1) receptors in the development of generalized hypotension and mesenteric vasodilation in animal models of liver cirrhosis, and CB(1) receptors have also been implicated in the decreased beta-adrenergic responsiveness of isolated heart tissue from cirrhotic rats. Here we document the cardiac contractile dysfunction in vivo in liver cirrhosis and explore the role of the endocannabinoid system in its development. Rats with CCl(4)-induced cirrhosis developed decreased cardiac contractility, as documented through the use of the Millar pressure-volume microcatheter system, low blood pressure, and tachycardia. Bolus intravenous injection of the CB(1) antagonist AM251 (3 mg/kg) acutely increased mean blood pressure, as well as both load-dependent and -independent indexes of systolic function, whereas no such changes were elicited by AM251 in control rats. Furthermore, tissue levels of the endocannabinoid anandamide increased 2.7-fold in the heart of cirrhotic compared with control rats, without any change in 2-arachidonoylglycerol levels, whereas, in the cirrhotic liver, both 2-arachidonoylglycerol (6-fold) and anandamide (3.5-fold) were markedly increased. CB(1)-receptor expression in the heart was unaffected by cirrhosis, as verified by Western blotting. Activation of cardiac CB(1) receptors by endogenous anandamide contributes to the reduced cardiac contractility in liver cirrhosis, and CB(1)-receptor antagonists may be used to improve contractile function in cirrhotic cardiomyopathy and, possibly, in other forms of heart failure.  相似文献   

10.
The cannabinoid system (CS) is implicated in the regulation of hepatic fibrosis, steatosis and inflammation, with cannabinoid receptors 1 and 2 (CB1 and CB2) being involved in regulation of pro- and antifibrogenic effects. Daily cannabis smoking is an independent risk factor for the progression of fibrosis in chronic hepatitis C and a mediator of experimental alcoholic steatosis. However, the role and function of CS in alcoholic liver fibrosis (ALF) is unknown so far. Thus, human liver samples from patients with alcoholic liver disease (ALD) were collected for analysis of CB1 expression. In vitro, hepatic stellate cells (HSC) underwent treatment with acetaldehyde, Δ9-tetrahydrocannabinol H?O?, endo- and exocannabinoids (2-arachidonoylglycerol (2-AG) and [THC]), and CB1 antagonist SR141716 (rimonabant). In vivo, CB1 knockout (KO) mice received thioacetamide (TAA)/ethanol (EtOH) to induce fibrosis. As a result, in human ALD, CB1 expression was restricted to areas with advanced fibrosis only. In vitro, acetaldehyde, H?O?, as well as 2-AG and THC, alone or in combination with acetaldehyde, induced CB1 mRNA expression, whereas CB1 blockage with SR141716 dose-dependently inhibited HSC proliferation and downregulated mRNA expression of fibrosis-mediated genes PCα1(I), TIMP-1 and MMP-13. This was paralleled by marked cytotoxicity of SR141716 at high doses (5-10 μmol/L). In vivo, CB1 knockout mice showed marked resistance to alcoholic liver fibrosis. In conclusion, CB1 expression is upregulated in human ALF, which is at least in part triggered by acetaldehyde (AA) and oxidative stress. Inhibition of CB1 by SR141716, or via genetic knock-out protects against alcoholic-induced fibrosis in vitro and in vivo.  相似文献   

11.
Navarrete M  Araque A 《Neuron》2008,57(6):883-893
Cannabinoid receptors play key roles in brain function, and cannabinoid effects in brain physiology and drug-related behavior are thought to be mediated by receptors present in neurons. Neuron-astrocyte communication relies on the expression by astrocytes of neurotransmitter receptors. Yet, the expression of cannabinoid receptors by astrocytes in situ and their involvement in the neuron-astrocyte communication remain largely unknown. We show that hippocampal astrocytes express CB1 receptors that upon activation lead to phospholipase C-dependent Ca2+ mobilization from internal stores. These receptors are activated by endocannabinoids released by neurons, increasing astrocyte Ca2+ levels, which stimulate glutamate release that activates NMDA receptors in pyramidal neurons. These results demonstrate the existence of endocannabinoid-mediated neuron-astrocyte communication, revealing that astrocytes are targets of cannabinoids and might therefore participate in the physiology of cannabinoid-related addiction. They also reveal the existence of an endocannabinoid-glutamate signaling pathway where astrocytes serve as a bridge for nonsynaptic interneuronal communication.  相似文献   

12.
Advanced cirrhosis is associated with generalized vasodilation of unknown origin, which contributes to mortality. Cirrhotic patients are endotoxemic, and activation of vascular cannabinoid CB1 receptors has been implicated in endotoxin-induced hypotension. Here we show that rats with biliary cirrhosis have low blood pressure, which is elevated by the CB1 receptor antagonist SR141716A. The low blood pressure of rats with CCl4-induced cirrhosis was similarly reversed by SR141716A, which also reduced the elevated mesenteric blood flow and portal pressure. Monocytes from cirrhotic but not control patients or rats elicited SR141716A-sensitive hypotension in normal recipient rats and showed significantly elevated levels of anandamide. Compared with non-cirrhotic controls, in cirrhotic human livers there was a three-fold increase in CB1 receptors on isolated vascular endothelial cells. These results implicate anandamide and vascular CB1 receptors in the vasodilated state in advanced cirrhosis and indicate a novel approach for its management.  相似文献   

13.
Non-alcoholic fatty liver disease (NAFLD) is a multi-factorial disease and the most common of chronic liver diseases worldwide. The four clinical-pathological entities which are usually followed by NAFLD course include non-alcoholic steatosis, non-alcoholic steatohepatitis, advanced fibrosis/cirrhosis, and hepatocellular carcinoma. The cornerstones of NAFLD management and treatment, however, are healthy lifestyles such as dietary modifications, regular physical activity, and gradual weight loss. At present, no drugs or pharmacological agents have been approved for long-term treatment of NAFLD. Therefore, lifestyle modification is considered the main clinical recommendation and an initial step for the management of NAFLD.  相似文献   

14.
15.
16.
The intestinal microbiota is now recognised to play key roles in health due to its involvement in many aspects of human physiology. Disturbance in gut microbiota (dysbiosis) is thus associated with many diseases including nonalcoholic fatty liver disease (NAFLD) which includes nonalcoholic fatty liver and nonalcoholic steatohepatitis. The mechanisms for the effect of dysbiosis in NAFLD pathogenesis are not completely elucidated. Many explanations have been proposed to trigger dysbiosis, leading to NAFLD including inflammation, ethanol produced by the gut bacteria and lipotoxicity. Recently the roles of bile acids and nuclear receptors are highly regarded. It is well known that gut microbes produce enzymes that convert primary bile acids into secondary bile acids in the intestines. Several studies have demonstrated that disturbance of the intestinal microbiota leads to decreased synthesis of secondary bile acids, which in turn decreases activation of nuclear receptors such as farnesoid X receptor (FXR), pregnane X receptor, Takeda G-protein–coupled bile acid protein 5 and vitamin D receptor. These receptors are important in energy regulation and their dysregulation can cause NAFLD. Therefore, stimulation of nuclear receptors especially FXR has been extensively explored for the amelioration of NAFLD. However, paradoxical effects of nuclear receptor activation are a major problem for the clinical application of nuclear receptor stimuli. We further posit that microbiome restoration could be an alternative approach for the treatment of NAFLD. Several gut bacteria are now known to be involved in bile acid metabolism. It will be necessary to identify which one/ones is/are feasible. Careful selection of commensal bacteria for probiotics may lead to an effective therapy for NAFLD.  相似文献   

17.
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.  相似文献   

18.
Navarrete M  Araque A 《Neuron》2010,68(1):113-126
Endocannabinoids and their receptor CB1 play key roles in brain function. Astrocytes express CB1Rs that are activated by endocannabinoids released by neurons. However, the consequences of the endocannabinoid-mediated neuron-astrocyte signaling on synaptic transmission are unknown. We show that endocannabinoids released by hippocampal pyramidal neurons increase the probability of transmitter release at CA3-CA1 synapses. This synaptic potentiation is due to CB1R-induced Ca(2+) elevations in astrocytes, which stimulate the release of glutamate that activates presynaptic metabotropic glutamate receptors. While endocannabinoids induce synaptic depression in the stimulated neuron by direct activation of presynaptic CB1Rs, they indirectly lead to synaptic potentiation in relatively more distant neurons by activation of CB1Rs in astrocytes. Hence, astrocyte calcium signal evoked by endogenous stimuli (neuron-released endocannabinoids) modulates synaptic transmission. Therefore, astrocytes respond to endocannabinoids that then potentiate synaptic transmission, indicating that astrocytes are actively involved in brain physiology.  相似文献   

19.
《Autophagy》2013,9(12):2385-2386
Nonalcoholic fatty liver disease (NAFLD), typically associated with overnutrition and obesity, is one of the most common liver diseases both in the US and worldwide. During obesity and NAFLD, lipotoxic injuries to hepatocytes can provoke formation of protein inclusions consisting of SQSTM1/p62 and ubiquitinated proteins. It has been suggested that autophagy deregulation during obesity contributes to protein inclusion formation and progression of other liver pathologies including insulin resistance, steatohepatitis, and hepatocellular carcinoma. To examine how lipotoxicity and obesity affect autophagy, we established an in vitro system where cultured HepG2 cells exhibit prominent accumulation of SQSTM1 and ubiquitinated proteins in insoluble inclusion bodies upon treatment with saturated fatty acids. Using this system and a mouse model of obesity, we have determined that obesity induces chronic elevation of cytosolic calcium levels in hepatocytes, which interferes with the fusion between autophagosomes and lysosomes. Intriguingly, pharmacological inhibition of calcium channels using the FDA-approved drug verapamil successfully restores autophagic flux and suppresses protein inclusions, not only in HepG2 cells but also in mouse liver. Verapamil also reduces hepatic lipid droplet accumulation, insulin resistance and steatohepatitis, suggesting that calcium channel blockers can be used for correction of general NAFLD pathologies. Indeed, there have been a number of clinical observations in which beneficial effects of calcium channel blockers against obesity-associated metabolic pathologies are observed in humans and animal models.  相似文献   

20.
Hwan-Woo Park  Jun Hee Lee 《Autophagy》2014,10(12):2385-2386
Nonalcoholic fatty liver disease (NAFLD), typically associated with overnutrition and obesity, is one of the most common liver diseases both in the US and worldwide. During obesity and NAFLD, lipotoxic injuries to hepatocytes can provoke formation of protein inclusions consisting of SQSTM1/p62 and ubiquitinated proteins. It has been suggested that autophagy deregulation during obesity contributes to protein inclusion formation and progression of other liver pathologies including insulin resistance, steatohepatitis, and hepatocellular carcinoma. To examine how lipotoxicity and obesity affect autophagy, we established an in vitro system where cultured HepG2 cells exhibit prominent accumulation of SQSTM1 and ubiquitinated proteins in insoluble inclusion bodies upon treatment with saturated fatty acids. Using this system and a mouse model of obesity, we have determined that obesity induces chronic elevation of cytosolic calcium levels in hepatocytes, which interferes with the fusion between autophagosomes and lysosomes. Intriguingly, pharmacological inhibition of calcium channels using the FDA-approved drug verapamil successfully restores autophagic flux and suppresses protein inclusions, not only in HepG2 cells but also in mouse liver. Verapamil also reduces hepatic lipid droplet accumulation, insulin resistance and steatohepatitis, suggesting that calcium channel blockers can be used for correction of general NAFLD pathologies. Indeed, there have been a number of clinical observations in which beneficial effects of calcium channel blockers against obesity-associated metabolic pathologies are observed in humans and animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号