首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bet hedging at reproduction is expected to evolve when mothers are exposed to unpredictable cues for future environmental conditions, whereas transgenerational plasticity (TGP) should be favoured when cues reliably predict the environment offspring will experience. Since climate predictions forecast an increase in both temperature and climate variability, both TGP and bet hedging are likely to become important strategies to mediate climate change effects. Here, the potential to produce variably sized offspring in both warming and unpredictable environments was tested by investigating whether stickleback (Gasterosteus aculeatus) mothers adjusted mean offspring size and within‐clutch variation in offspring size in response to experimental manipulation of maternal thermal environment and predictability (alternating between ambient and elevated water temperatures). Reproductive output traits of F1 females were influenced by both temperature and environmental predictability. Mothers that developed at ambient temperature (17 °C) produced larger, but fewer eggs than mothers that developed at elevated temperature (21 °C), implying selection for different‐sized offspring in different environments. Mothers in unpredictable environments had smaller mean egg sizes and tended to have greater within‐female egg size variability, especially at 21 °C, suggesting that mothers may have dynamically modified the variance in offspring size to spread the risk of incorrectly predicting future environmental conditions. Both TGP and diversification influenced F2 offspring body size. F2 offspring reared at 21 °C had larger mean body sizes if their mother developed at 21 °C, but this TGP benefit was not present for offspring of 17 °C mothers reared at 17 °C, indicating that maternal TGP will be highly relevant for ocean warming scenarios in this system. Offspring of variable environment mothers were smaller but more variable in size than offspring from constant environment mothers, particularly at 21 °C. In summary, stickleback mothers may have used both TGP and diversified bet‐hedging strategies to cope with the dual stress of ocean warming and environmental uncertainty.  相似文献   

2.
Variability in demographic traits between individuals within populations has profound implications for both evolutionary processes and population dynamics. Parental effects as a source of non-genetic inheritance are important processes to consider to understand the causes of individual variation. In iteroparous species, parental age is known to influence strongly reproductive success and offspring quality, but consequences on an offspring fitness component after independence are much less studied. Based on 37 years longitudinal monitoring of a long-lived seabird, the wandering albatross, we investigate delayed effects of parental age on offspring fitness components. We provide evidence that parental age influences offspring performance beyond the age of independence. By distinguishing maternal and paternal age effects, we demonstrate that paternal age, but not maternal age, impacts negatively post-fledging offspring performance.  相似文献   

3.
Stressful parental (usually maternal) environments can dramatically influence expression of traits in offspring, in some cases resulting in phenotypes that are adaptive to the inducing stress. The ecological and evolutionary impact of such transgenerational plasticity depends on both its persistence across generations and its adaptive value. Few studies have examined both aspects of transgenerational plasticity within a given system. Here we report the results of a growth-chamber study of adaptive transgenerational plasticity across two generations, using the widespread annual plant Polygonum persicaria as a naturally evolved model system. We grew five inbred Polygonum genetic lines in controlled dry vs. moist soil environments for two generations in a fully factorial design, producing replicate individuals of each genetic line with all permutations of grandparental and parental environment. We then measured the effects of these two-generational stress histories on traits critical for functioning in dry soil, in a third (grandchild) generation of seedling offspring raised in the dry treatment. Both grandparental and parental moisture environment significantly influenced seedling development: seedlings of drought-stressed grandparents or parents produced longer root systems that extended deeper and faster into dry soil compared with seedlings of the same genetic lines whose grandparents and/or parents had been amply watered. Offspring of stressed individuals also grew to a greater biomass than offspring of nonstressed parents and grandparents. Importantly, the effects of drought were cumulative over the course of two generations: when both grandparents and parents were drought-stressed, offspring had the greatest provisioning, germinated earliest, and developed into the largest seedlings with the most extensive root systems. Along with these functionally appropriate developmental effects, seedlings produced after two previous drought-stressed generations had significantly greater survivorship in very dry soil than did seedlings with no history of drought. These findings show that plastic responses to naturalistic resource stresses experienced by grandparents and parents can "preadapt" offspring for functioning under the same stresses in ways that measurably influence realized fitness. Possible implications of these environmentally-induced, inherited adaptations are discussed with respect to ecological distribution, persistence under novel stresses, and evolution in natural populations.  相似文献   

4.
Phenotypic plasticity may increase the performance and fitness and allow organisms to cope with variable environmental conditions. We studied within‐generation plasticity and transgenerational effects of thermal conditions on temperature tolerance and demographic parameters in Drosophila melanogaster. We employed a fully factorial design, in which both parental (P) and offspring generations (F1) were reared in a constant or a variable thermal environment. Thermal variability during ontogeny increased heat tolerance in P, but with demographic cost as this treatment resulted in substantially lower survival, fecundity, and net reproductive rate. The adverse effects of thermal variability (V) on demographic parameters were less drastic in flies from the F1, which exhibited higher net reproductive rates than their parents. These compensatory responses could not totally overcome the challenges of the thermally variable regime, contrasting with the offspring of flies raised in a constant temperature (C) that showed no reduction in fitness with thermal variation. Thus, the parental thermal environment had effects on thermal tolerance and demographic parameters in fruit fly. These results demonstrate how transgenerational effects of environmental conditions on heat tolerance, as well as their potential costs on other fitness components, can have a major impact on populations’ resilience to warming temperatures and more frequent thermal extremes.  相似文献   

5.
Nongenetic parental effects may affect offspring phenotype, and in species with multiple generations per year, these effects may cause life‐history traits to vary over the season. We investigated the effects of parental, offspring developmental and offspring adult temperatures on a suite of life‐history traits in the globally invasive agricultural pest Grapholita molesta. A low parental temperature resulted in female offspring that developed faster at low developmental temperature compared with females whose parents were reared at high temperature. Furthermore, females whose parents were reared at low temperature were heavier and more fecund and had better flight abilities than females whose parents were reared at high temperature. In addition to these cross‐generational effects, females developed at low temperature had similar flight abilities at low and high ambient temperatures, whereas females developed at high temperature had poorer flight abilities at low than at high ambient temperature. Our findings demonstrate a pronounced benefit of low parental temperature on offspring performance, as well as between‐ and within‐generation effects of acclimation to low temperature. In cooler environments, the offspring generation is expected to develop more rapidly than the parental generation and to comprise more fecund and more dispersive females. By producing phenotypes that are adaptive to the conditions inducing them as well as heritable, cross‐generational plasticity can influence the evolutionary trajectory of populations. The potential for short‐term acclimation to low temperature may allow expanding insect populations to better cope with novel environments and may help to explain the spread and establishment of invasive species.  相似文献   

6.
To determine the evolutionary importance of parental environmental effects in natural populations, we must begin to measure the magnitude of these effects in the field. For this reason, we conducted a combined growth chamber-field experiment to measure parental temperature effects in Plantago lanceolata. We grew in the field offspring of controlled crosses of chamber-grown parents subjected to six temperature treatments. Each treatment was characterized by a unique combination of maternal prezygotic (prior to fertilization), paternal prezygotic, and postzygotic (during fertilization and seed set) temperatures. Offspring were followed for three years to measure the effects of treatment on several life-history traits and population growth rate, our estimate of fitness. Parental treatment influenced germination, growth, and reproduction of newborns, but not survival or reproduction of offspring at least one year old. High postzygotic temperature significantly increased germination and leaf area at 17 weeks by approximately 35% and 2%, respectively. Probability of flowering and spike production in the newborn age class showed significant parental genotype x parental treatment interactions. High postzygotic temperature increased offspring fitness by approximately 50%. The strongest contributors to fitness were germination and probability of flowering and spike production of newborns. A comparison of our data with previously collected data for chambergrown offspring shows that the influence of parental environment on offspring phenotype is weaker but still biologically meaningful in the field. The results provide evidence that parental environment influences offspring fitness in natural populations of P. lanceolata and does so by affecting the life-history traits most strongly contributing to fitness. The data suggest that from the perspective of offspring fitness, natural selection favors parents that flower later in the flowering season in the North Carolina Piedmont when it is warmer. Genotypic-specific differences in response of offspring reproductive traits to parental environment suggest that parental environmental effects can influence the rate of evolutionary change in P. lanceolata.  相似文献   

7.
Parental experience alters survival-related phenotypes of offspring in both adaptive and nonadaptive ways, yielding rapid inter- and transgenerational fitness effects. Yet, fitness comprises survival and reproduction, and parental effects on mating decisions could alter the strength and direction of sexual selection, affecting long-term evolutionary trajectories. We used a full factorial design in which threespine stickleback (Gasterosteus aculeatus) mothers, fathers, both, or neither were exposed to a model predator at developmentally appropriate times to test for predator-induced maternal, paternal, and joint parental effects on daughters’ mating behavior. We tested the responsiveness, preferences, and mate choices of adult daughters in no-choice trials with wild-caught males who had varied sexual signals. Maternal and paternal predator exposure independently yielded daughters who preferred males who were intermediate in conspicuousness (with duller nuptial coloration and who courted less vigorously), relaxing the typical preference for the most conspicuous males. The combined effects of maternal and paternal predator exposure were not cumulative; when both parents were predator exposed, single-parent effects on mate preferences were reversed. Thus, we cannot assume that maternal and paternal effects additively combine to produce “parental” effects. Further, joint parental predator exposure yielded daughters who were three times less likely to mate at all. Stress-induced intergenerational parental effects on reproductive decisions such as those observed here may potentiate rapid transgenerational responses to novel and changing mating environments.  相似文献   

8.
Parental effects may produce adaptive or maladaptive plasticity that either facilitates persistence or increases the extinction risk of species and populations in a changing climate. However, empirical evidence of transgenerational adaptive plastic responses to climate change is still scarce. Here we conducted thermal manipulation experiments with a factorial design in a Chinese lacertid lizard (Takydromus septentrionalis) to identify the fitness consequences of parental effects in response to climate warming. Compared to present climate conditions, a simulated warming climate significantly advanced the timing of oviposition, depressed the immune capability of post-partum females, and decreased the hatching success of embryos, but did not affect female reproductive output (clutch size and egg mass). These results indicate that maternal warming negatively affects female health, and embryonic hatchability. More interestingly, we found that offspring from parents exposed to warming environments survived well under a simulated warming climate, but not under a present climate scenario. Accordingly, our study demonstrates anticipatory parental effects in response to a warming climate in an ectothermic vertebrate. However, the fitness consequences of this parental effect will depend on future climate change scenarios.  相似文献   

9.
Environmentally induced maternal effects on offspring phenotype are well known in plants. When genotypes or maternal lineages are replicated and raised in different environmental conditions, the phenotype of their offspring often depends on the environment in which the parents developed. However, the degree to which such maternal effects are maintained over subsequent generations has not been documented in many taxa. Here we report the results of a study designed to assess the effects of parental environment on vegetative and reproductive traits, using glasshouse-raised maternal lines sampled from natural populations of Arabidopsis thaliana . Replicates of five highly selfed lines from each of four wild populations were cultivated in two abiotic environments in the glasshouse, and the quality and performance of seeds derived from these two environments were examined over two generations. We found that offspring phenotype was strongly influenced by parental environment, but because the parental environments differed with respect to the time of seed harvest, it was not possible to distinguish clearly between parental environmental effects and the possible (but unlikely) effects of seed age on offspring phenotype. We observed a rapid decline in the expression of ancestral environmental effects, and no main environmental effects on progeny phenotype persisted in the second generation. The mechanism of transmission of environmental effects did not appear to be associated with the quantity or quality of reserves in the seeds, suggesting that environmental effects may be transmitted across subsequent generations via some mechanism that generates environment-specific gene expression.  相似文献   

10.
Phenotypic plasticity in parental care investment allows organisms to promptly respond to rapid environmental changes by potentially benefiting offspring survival and thus parental fitness. To date, a knowledge gap exists on whether plasticity in parental care behaviors can mediate responses to climate change in marine ectotherms. Here, we assessed the plasticity of parental care investment under elevated temperatures in a gonochoric marine annelid with biparental care, Ophryotrocha labronica, and investigated its role in maintaining the reproductive success of this species in a warming ocean. We measured the time individuals spent carrying out parental care activities across three phases of embryonic development, as well as the hatching success of the offspring as a proxy for reproductive success, at control (24℃) and elevated (27℃) temperature conditions. Under elevated temperature, we observed: (a) a significant decrease in total parental care activity, underpinned by a decreased in male and simultaneous parental care activity, in the late stage of embryonic development; and (b) a reduction in hatching success that was however not significantly related to changes in parental care activity levels. These findings, along with the observed unaltered somatic growth of parents and decreased brood size, suggest that potential cost‐benefit trade‐offs between offspring survival (i.e., immediate fitness) and parents'' somatic condition (i.e., longer‐term fitness potential) may occur under ongoing ocean warming. Finally, our results suggest that plasticity in parental care behavior is a mechanism able to partially mitigate the negative effects of temperature‐dependent impacts.  相似文献   

11.
Food shortage is an important selective factor shaping animal life‐history trajectories. Yet, despite its role, many aspects of the interaction between parental and offspring food environments remain unclear. In this study, we measured developmental plasticity in response to food availability over two generations and tested the relative contribution of paternal and maternal food availability to the performance of offspring reared under matched and mismatched food environments. We applied a cross‐generational split‐brood design using the springtail Orchesella cincta, which is found in the litter layer of temperate forests. The results show adverse effects of food limitation on several life‐history traits and reproductive performance of both parental sexes. Food conditions of both parents contributed to the offspring phenotypic variation, providing evidence for transgenerational effects of diet. Parental diet influenced sons’ age at maturity and daughters’ weight at maturity. Specifically, being born to food‐restricted parents allowed offspring to alleviate the adverse effects of food limitation, without reducing their performance under well‐fed conditions. Thus, parents raised on a poor diet primed their offspring for a more efficient resource use. However, a mismatch between maternal and offspring food environments generated sex‐specific adverse effects: female offspring born to well‐fed mothers showed a decreased flexibility to deal with low‐food conditions. Notably, these maternal effects of food availability were not observed in the sons. Finally, we found that the relationship between age and size at maturity differed between males and females and showed that offspring life‐history strategies in O. cincta are primed differently by the parents.  相似文献   

12.
Parasites can cause a broad range of sublethal fitness effects across a wide variety of host taxa. However, a host’s efforts to compensate for possible parasite-induced fitness effects are less well-known. Parental effects may beneficially alter the offspring phenotype if parental environments sufficiently predict the offspring environment. Parasitism is a common stressor across generations; therefore, parental infestation could reliably predict the likelihood of infestation for offspring. However, little is known about relationships between parasitism and transgenerational phenotypic plasticity. Thus, we investigated how maternal and grandmaternal infestation with fleas (Xenopsylla ramesis) affected offspring quality and quantity in a desert rodent (Meriones crassus). We used a fully-crossed design with control and infested treatments to examine litter size, pup body mass at birth, and pup mass gain before weaning for combinations of maternal and grandmaternal infestation status. No effect of treatment on litter size or pup body mass at birth was found. However, maternal and grandmaternal infestation status significantly affected pre-weaning body mass gain, a proxy for the rate of maturation, in male pups. Pups gained significantly more weight before weaning if maternal and grandmaternal infestation statuses matched, regardless of the treatment. Thus, pups whose mothers and grandmothers experienced similar risks of parasitism, either both non-parasitized or both infested, would reach sexual maturity more quickly than those pups whose mothers’ infestation status did not match that of their grandmothers. These results support the contention that parents can receive external cues such as the risk of parasitism, that prompt them to alter offspring provisioning. Therefore, parasites could be a mediator of environmentally-induced maternal effects and could affect host reproductive fitness across multiple generations.  相似文献   

13.
We investigated the effects of developmental and parental temperatures on several physiological and morphological traits of adult Drosophila melanogaster. Flies for the parental generation were raised at either low or moderate temperature (18°C or 25°C) and then mated in the four possible sex-by-parental temperature crosses. Their offspring were raised at either 18°C or 25°C and then scored as adults for morphological (dry body mass, wing size, and abdominal melanization [females only]), physiological (knock-down temperature, and thermal dependence of walking speed), and life history (egg size) traits. The experiment was replicated, and the factorial design allows us to determine whether and how paternal, maternal, and developmental temperatures (as well as offspring sex) influence the various traits. Sex and developmental temperature had major effects on all traits. Females had larger bodies and wings, higher knock-down temperatures, and slower speeds (but similar shaped performance curves) than males. Development at 25°C (versus at 18°C) increased knock-down temperature, increased maximal speed and thermal performance breadth, decreased the optimal temperature for walking, decreased body mass and wing size, reduced abdominal melanization, and reduced egg size. Parental temperatures influenced a few traits, but the effects were generally small relative to those of sex or developmental temperature. Flies whose mother had been raised at 25°C (versus at 18°C) had slightly higher knock-down temperature and smaller body mass. Flies whose father had been raised at 25°C had relatively longer wings. The effects of paternal, maternal, and developmental temperatures sometimes differed in direction. The existence of significant within- and between-generation effects suggests that comparative studies need to standardize thermal environments for at least two generations, that attempts to estimate “field” heritabilities may be unreliable for some traits, and that predictions of short-term evolutionary responses to selection will be difficult.  相似文献   

14.
Genetic models of maternal effects and models of mate choice have focused on the evolutionary effects of variation in parental quality. There have been, however, few attempts to combine these into a single model for the evolution of sexually selected traits. We present a quantitative genetic model that considers how male and female parental quality (together or separately) affect the expression of a sexually selected offspring trait. We allow female choice of males based on this parentally affected trait and examine the evolution of mate choice, parental quality and the indicator trait. Our model reveals a number of consequences of maternal and paternal effects. (1) The force of sexual selection owing to adaptive mate choice can displace parental quality from its natural selection optimum. (2) The force of sexual selection can displace female parental quality from its natural selection optimum even when nonadaptive mate choice occurs (e.g. runaway sexual selection), because females of higher parental quality produce more attractive sons and these sons counterbalance the loss in fitness owing to over-investment in each offspring. (3) Maternal and paternal effects can provide a source of genetic variation for offspring traits, allowing evolution by sexual selection even when those traits do not show direct genetic variation (i.e. are not heritable). (4) The correlation between paternal investment and the offspring trait influenced by the parental effects can result in adaptive mate choice and lead to the elaboration of both female preference and the male sexually selected trait. When parental effects exist, sexual selection can drive the evolution of parental quality when investment increases the attractiveness of offspring, leading to the elaboration of indicator traits and higher than expected levels of parental investment.  相似文献   

15.
The fitness of hybrids depends on the genetic disparity between parental taxa and the magnitude of their nuclear and non-nuclear contributions. To estimate the role of non-nuclear effects, we crossed red (R), white (W) and hybrid (H) mulberry in all combinations and compared the magnitude of maternal and paternal effects on offspring fitness (seed set, germination, survival and aboveground biomass) in a greenhouse environment. Variation in offspring fitness was determined largely by the identity of the maternal parent; specifically, progeny with white mothers had the highest cumulative fitness. As fathers, red, white, and hybrid mulberry had no effect on fitness, and maternal × paternal interactions were significant only for survival. Individual cross-types differed significantly for all fitness components except seed set. Offspring from hybrid crosses (W × R, H × R, H × W) often differed from at least one of the within-parent crosses (W × W, R × R) as well as from other hybrid crosses, although their fitness values never exceeded the most fit parent. Reciprocal crosses differed in only two of 15 possible parental combinations: W × H (cumulative fitness) and W × R (aboveground biomass). Overall, the strong asymmetry in magnitude of maternal and paternal effects suggests that fitness of hybrid mulberry is governed largely by non-nuclear, parental effects.  相似文献   

16.
Phenotypic plasticity can occur across generations (transgenerational plasticity) when environments experienced by the previous generations influenced offspring phenotype. The evolutionary importance of transgenerational plasticity, especially regarding within‐generational plasticity, is a currently hot topic in the plasticity framework. How long an environmental effect can persist across generations and whether multigenerational effects are cumulative are primordial—for the evolutionary significance of transgenerational plasticity—but still unresolved questions. In this study, we investigated how the grand‐parental, parental and offspring exposures to predation cues shape the predator‐induced defences of offspring in the Physa acuta snail. We expected that the offspring phenotypes result from a three‐way interaction among grand‐parental, parental and offspring environments. We exposed three generations of snails without and with predator cues according to a full factorial design and measured offspring inducible defences. We found that both grand‐parental and parental exposures to predator cues impacted offspring antipredator defences, but their effects were not cumulative and depended on the defences considered. We also highlighted that the grand‐parental environment did alter reaction norms of offspring shell thickness, demonstrating an interaction between the grand‐parental transgenerational plasticity and the within‐generational plasticity. We concluded that the effects of multigenerational exposure to predator cues resulted on complex offspring phenotypic patterns which are difficult to relate to adaptive antipredator advantages.  相似文献   

17.
Knowledge of how genetic effects arising from parental care influence the evolution of offspring traits comes almost exclusively from studies of maternal care. However, males provide care in some taxa, and often this care differs from females in quality or quantity. If variation in paternal care is genetically based then, like maternal care and maternal effects, paternal effects may have important consequences for the evolution of offspring traits via indirect genetic effects (IGEs). IGEs and direct–indirect genetic covariances associated with parental care can contribute substantially to total heritability and influence predictions about how traits respond to selection. It is unknown, however, if the magnitude and sign of parental effects arising from fathers are the same as those arising from mothers. We used a reciprocal cross‐fostering experiment to quantify environmental and genetic effects of paternal care on offspring performance in the burying beetle, Nicrophorus vespilloides. We found that IGEs were substantial and direct–indirect genetic covariances were negative. Combined, these patterns led to low total heritabilities for offspring performance traits. Thus, under paternal care, offspring performance traits are unlikely to evolve in response to selection, and variation in these traits will be maintained in the population despite potentially strong selection on these traits. These patterns are similar to those generated by maternal care, indicating that the genetic effects of care on offspring performance are independent of the caregiver's sex.  相似文献   

18.
Maternal environments typically influence the phenotype of their offspring. However, the effect of the paternal environment or the potential for joint effects of both parental environments on offspring characters is poorly understood. Two populations of Campanula americana, a woodland herb with a variable life history, were used to determine the influence of maternal and paternal light and nutrient environments on offspring seed characters. Families were grown in the greenhouse in three levels of light or three levels of nutrients. Crosses were conducted within each environmental gradient to produce seeds with all combinations of maternal and paternal environments. On average, increasing maternal nutrient and light levels increased seed mass and decreased percentage germination. The paternal environment affected seed mass, germination time, and percentage germination. However, the influence of the paternal environment varied across maternal environments, suggesting that paternal environmental effects should be evaluated in the context of maternal environments. Significant interactions between family and the parental environments for offspring characters suggest that parental environmental effects are genetically variable. In C. americana, the timing of germination determines life history. Therefore parental environmental effects on germination timing, and genetic variation in those parental effects, suggest that parental environments may influence life history evolution in this system.  相似文献   

19.
Parents often have important influences on their offspring's traits and/or fitness (i.e., maternal or paternal effects). When offspring fitness is determined by the joint influences of offspring and parental traits, selection may favor particular combinations that generate high offspring fitness. We show that this epistasis for fitness between the parental and offspring genotypes can result in the evolution of their joint distribution, generating genetic correlations between the parental and offspring characters. This phenomenon can be viewed as a coadaptive process in which offspring genotypes evolve to function with the parentally provided environment and, in turn, the genes for this environment become associated with specific offspring genes adapted to it. To illustrate this point, we present two scenarios in which selection on offspring alone alters the correlation between a maternal and an offspring character. We use a quantitative genetic maternal effect model combined with a simple quadratic model of fitness to examine changes in the linkage disequilibrium between the maternal and offspring genotypes. In the first scenario, stabilizing selection on a maternally affected offspring character results in a genetic correlation that is opposite in sign to the maternal effect. In the second scenario, directional selection on an offspring trait that shows a nonadditive maternal effect can result in selection for positive covariances between the traits. This form of selection also results in increased genetic variation in maternal and offspring characters, and may, in the extreme case, promote host-race formation or speciation. This model provides a possible evolutionary explanation for the ubiquity of large genetic correlations between maternal and offspring traits, and suggests that this pattern of coinheritance may reflect functional relationships between these characters (i.e., functional integration).  相似文献   

20.
To predict the possible evolutionary response of a plant species to a new environment, it is necessary to separate genetic from environmental sources of phenotypic variation. In a case study of the invader Solidago altissima, the influences of several kinds of parental effects and of direct inheritance and environment on offspring phenotype were separated. Fifteen genotypes were crossed in three 5 × 5 diallels excluding selfs. Clonal replicates of the parental genotypes were grown in two environments such that each diallel could be made with maternal/paternal plants from sand/sand, sand/soil, soil/sand, and soil/soil. In a first experiment (1989) offspring were raised in the experimental garden and in a second experiment (1990) in the glasshouse. Parent plants growing in sand invested less biomass in inflorescences but produced larger seeds than parent plants growing in soil. In the garden experiment, phenotypic variation among offspring was greatly influenced by environmental heterogeneity. Direct genetic variation (within diallels) was found only for leaf characters and total leaf mass. Germination probability and early seedling mass were significantly affected by phenotypic differences among maternal plants because of genotype ( genetic maternal effects ) and soil environment ( general environmental maternal effects ). Seeds from maternal plants in sand germinated better and produced bigger seedlings than seeds from maternal plants in soil. They also grew taller with time, probably because competition accentuated the initial differences. Height growth and stem mass at harvest (an integrated account of individual growth history) of offspring varied significantly among crosses within parental combinations ( specific environmental maternal effects ). In the glasshouse experiment, the influence of environmental heterogeneity and competition could be kept low. Except for early characters, the influence of direct genetic variation was large but again leaf characters (= basic module morphology) seemed to be under stricter genetic control than did size characters. Genetic maternal effects, general environmental maternal effects, and specific environmental maternal effects dominated in early characters. The maternal effects were exerted both via seed mass and directly on characters of young offspring. Persistent effects of the general paternal environment ( general environmental paternal effects ) were found for leaf length and stem and leaf mass at harvest. They were opposite in direction to the general environmental maternal effects, that is the same genotypes produced “better mothers” in sand but “better fathers” in soil. The general environmental paternal effects must have been due to differences in pollen quality, resulting from pollen selection within the male parent or leading to pre- or postzygotic selection within the female parent. The ranking of crosses according to mean offspring phenotypes was different in the two experiments, suggesting strong interaction of the observed effects with the environment. The correlation structure among characters changed less between experiments than did the pattern of variation of single characters, but under the competitive conditions in the garden plant height seemed to be more directly related to fitness than in the glasshouse. Reduced competition could also explain why maternal effects were less persistent in the glasshouse than in the garden experiment. Evolution via selection of maternal effects would be possible in the study population because these effects are in part due to genetic differences among parents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号