首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study establishes the bioenergetics budget of juvenile whitespotted bamboo shark Chiloscyllium plagiosum by estimating the standard metabolic rate (RS), measuring the effect of body size and temperature on the RS, and identifying the specific dynamic action (RSDA) magnitude and duration of that action in juvenile whitespotted bamboo sharks. The mean ±s .d . (RS) of six fish (500–620 g) measured in a circular closed respirometry system was 30·21 ± 5·68 mg O2 kg?1 h?1 at 18° C and 70·38 ± 14·81 mg O2 kg?1 h?1 at 28° C, respectively. There were no significant differences in RS between day and night at either 18 or 28° C (t‐test, P > 0·05). The mean ±s .d . Q10 for 18–28° C was 2·32 ± 0·06 (n = 6). The amount of oxygen consumed per hour changed predictably with body mass (M; 295–750 g) following the relationship: (n = 40, r2= 0·92, P < 0·05). The mean magnitude of RSDA was 95·28 ± 17·55 mg O2 kg?1 h?1. The amount of gross ingested energy (EI) expended as RSDA ranged from 6·32 to 12·78% with a mean ±s .d . of 8·01 ± 0·03%. The duration of the RSDA effect was 122 h. The energy content of juvenile whitespotted bamboo shark, squid and faeces determined by bomb calorimeter were 19·51, 20·3 and 18·62 kJ g dry mass?1. A mean bioenergetic budget for juvenile whitespotted bamboo sharks fed with squid at 18° C was 100C = 29·5G + 31·9RS+ 28·2RSDA+ 6·7F + 2·1E + 1·6U, where C = consumption, G = growth, F = egestion, E = excretion and U = unaccounted energy.  相似文献   

2.
The relationship between body mass (M) and metabolic rate was investigated through the assessment of active (RA) and standard (RS) metabolic rate at different life stages in zebrafish Danio rerio (5 day‐old larvae, 2 month‐old juveniles and 6 month‐old adults). Scaling exponents and constants were assessed for standard (RS = 0·273M0·965 in mgO2 g?1 h?1) and active metabolic rate (RA = 0·799M0·926 in mgO2 g?1 h?1). These data provide the basis for further experiments regarding the effects of environmental factors on aerobic metabolism throughout the life cycle of this species.  相似文献   

3.
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature‐controlled, Brett‐type swimming‐tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (LF), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (Ucrit) was 102·5 ± 13·7 cm s?1 or 4·6 ± 0·9 LF s?1. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (Umax,c) was 99·4 ± 14·4 cm s?1 or 4·5 ± 0·9 LF s?1. Oxygen consumption rate (M in mg O2 min?1) increased with swimming speed and with fish mass, but mass‐specific M (mg O2 kg?1 h?1) as a function of relative speed (LF s?1) did not vary significantly with fish size. Mean standard metabolic rate (RS) was 170 ± 38 mg O2 kg?1 h?1, and the mean ratio of M at Umax,c to RS, an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (Uopt), at which the gross cost of transport was a minimum of 2·14 J kg?1 m?1, was 3·8 LF s?1. In a subset of the fish studied (19·7–22·7 cm LF, 106–164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and LF. The mean propulsive wavelength was 86·7 ± 5·6 %LF or 73·7 ± 5·2 %LT. Mean ±s.d . yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm LF; 23·4, 25·3 and 26·4 cm LT), were 4·6 ± 0·1 and 17·1 ± 2·2 %LT, respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.  相似文献   

4.
The relationship between gross primary productivity (GPP) and net primary productivity (NPP) is not fully understood. One of the uncertainties relevant to this issue is the magnitude of woody tissue respiration. Although some data exist for temperate and boreal zones, measurements of woody tissue respiration in tropical forests are sparse. We made in situ chamber measurements of woody tissue respiration in two tropical rain forests, one in the Brazilian Amazon (Reserva Jarú) and one in Central Cameroon (Mbalmayo Reserve). We made measurements on a wide range of species at each site and over a range of stem diameters from 0·02 to 1·4 m. The rate of efflux of carbon dioxide (CO2) from bark at 25 °C, Rt, varied from 0·1 to 5·2 µmol m?2 s?1 across the two sites, and the efflux was related to both volume and surface area components of the measured stem sections. The temperature response in Rt was slightly higher at Jarú than at Mbalmayo, with Q10 values of 1·8 (± 0·1 SE) and 1·6 (± 0·1 SE), respectively. A log–log regression showed that Rt was significantly related to stem diameter, D (P < 0·001; r2 = 0·58–0·62) and was significantly higher at Mbalmayo than at Jarú (P < 0·001), but that the rate of increase in Rt with stem diameter, D, was similar between sites. At the Mbalmayo site, tree growth measurements made over a 4 month period were used to make two estimates of the maintenance (Rm) and construction (Rc) components of respiration embedded in Rt. The two methods agreed closely, suggesting that Rm was approximately 80% of Rc at this site. Rm could be strongly related to D using a sigmoidal relationship that described both surface area and volume components as sources of respiratory CO2 (r2 = 0·71). This functional model was combined with inventory, growth and climate data for the Mbalmayo site to make a first estimate of annual above‐ground woody tissue respiration, RA, which was 257 (± 18 SE) g C m?2 year?1. This value corresponds to approximately 10% of GPP, slightly lower than that found for another tropical rain forest, but higher than for temperate forests. When combined with data from six other sites in tropical, temperate and boreal settings, a very strong relationship was found between RA and leaf area index (LAI), and between RA/GPP and LAI (P < 0·001, r2 = 0·98). This indicates that RA exerts an appreciable constraint on NPP and that this constraint varies closely with LAI across widely differing types of woody vegetation.  相似文献   

5.
A bioenergetics model for juvenile age‐0 year walleye pollock Theragra chalcogramma was applied to a spatially distinct grid of samples in the western Gulf of Alaska to investigate the influence of temperature and prey quality on size‐specific growth. Daily growth estimates for 50, 70 and 90 mm standard length (LS) walleye pollock during September 2000 were generated using the bioenergetics model with a fixed ration size. Similarities in independent estimates of prey consumption generated from the bioenergetics model and a gastric evacuation model corroborated the performance of the bioenergetics model, concordance correlation (rc) = 0·945, lower 95% CL (transformed) (L1) = 0·834, upper 95% CL (transformed) (L2) = 0·982, P < 0·001. A mean squared error analysis (MSE) was also used to partition the sources of error between both model estimates of consumption into a mean component (MC), slope component (SC), and random component (RC). Differences between estimates of daily consumption were largely due to differences in the means of estimates (MC= 0·45) and random sources (RC= 0·49) of error, and not differences in slopes (SC= 0·06). Similarly, daily growth estimates of 0·031–0·167 g day?1 generated from the bioenergetics model was within the range of growth estimates of 0·026–0·190 g day?1 obtained from otolith analysis of juvenile walleye pollock. Temperature and prey quality alone accounted for 66% of the observed variation between bioenergetics and otolith growth estimates across all sizes of juvenile walleye pollock. These results suggest that the bioenergetics model for juvenile walleye pollock is a useful tool for evaluating the influence of spatially variable habitat conditions on the growth potential of juvenile walleye pollock.  相似文献   

6.
The objective of this study was to determine the effect of freezing on the function in Atlantic salmon Salmo salar spermatozoa. The semen was frozen in Cortland's medium + 1.3M dimethyl sulphoxide + 0.3M glucose + 2% bovine serum albumin (final concentration) in a ratio of 1:3 (semen:cryoprotectant) as the treatment (T) and fresh semen as the control (F). Straws of 0·5 ml of sperm suspension were frozen in 4 cm of N2L. They were thawed in a thermoregulated bath (40° C). After thawing, the percentage of spermatozoa with fragmented DNA [transferase dUTP (deoxyuridine triphosphate) nick‐end labelling (TUNEL)], plasma membrane integrity (SYBR‐14/PI) and mitochondrial membrane potential (ΔΨMMit, JC‐1) were evaluated by flow cytometry and motility was evaluated by optical microscope under stroboscopic light. The fertilization rates of the control and treatment semen were tested at a sperm density of 1·5 × 107 spermatozoa oocyte?1, by observation of the first cleavages after 16 h incubation at 10° C. In the cryopreserved semen (T), the mean ± s.d . DNA fragmentation was 4·8 ± 2·5%; plasma membrane integrity 75·2 ± 6·3%; mitochondrial membrane potential 51·7 ± 3·6%; motility 58·5 ± 5·3%; curved line velocity (VCL) 61·2 ± 17·4 µm s?1; average‐path velocity (VAP) 50·1 ± 17·3 µm s?1; straight‐line velocity (VSL) 59·1 ± 18·4 µm s?1; fertilization rate 81·6 ± 1·9%. There were significant differences in the plasma membrane integrity, mitochondrial membrane potential, motility, fertilization rate, VCL, VAP and VSL compared with the controls (P < 0·05). Also the mitochondrial membrane potential correlated with motility, fertilization rate, VCL and VSL (r = 0·75; r = 0·59; r = 0·77 and r = 0·79, respectively; P < 0·05); and the fertilization rate correlated with VCL and VSL (r = 0·59 and r = 0·55, respectively).  相似文献   

7.
Abstract: Cross-reactions between dopamine D3 and σ receptor ligands were investigated using (±)-7-hydroxy-N,N-di-n-[3H]propyl-2-aminotetralin [(±)-7-OH-[3H]DPAT], a putative D3-selective radioligand, in conjunction with the unlabeled σ ligands 1,3-di(2-tolyl)guanidine (DTG), carbetapentane, and R(?)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane [R(?)-PPAP]. In transfected CCL1.3 mouse fibroblasts expressing the human D3 receptor, neither DTG nor carbetapentane (0.1 µM) displaced (±)-7-OH-[3H]DPAT binding. R(?)-PPAP (0.1 µM) displaced 39.6 ± 1.0% of total (±)-7-OH-[3H]DPAT binding. In striatal and nucleus accumbens homogenates, (±)-7-OH-[3H]DPAT labeled a single site (15–20 fmol/mg of protein) with high (1 nM) affinity. Competition analysis with carbetapentane defined both high- and low-affinity sites in striatal (35 and 65%, respectively) and nucleus accumbens (59 and 41%, respectively) tissue, yet R(?)-PPAP identified two sites in equal proportion. Carbetapentane and R(?)-PPAP (0.1 µM) displaced ~20–50% of total (±)-7-OH-[3H]DPAT binding in striatum, nucleus accumbens, and olfactory tubercle in autoradiographic studies, with the nucleus accumbens shell subregion exhibiting the greatest displacement. To determine directly (+)-7-OH-[3H]DPAT binding to σ receptors, saturation analysis was performed in the cerebellum while masking D3 receptors with 1 µM dopamine. Under these conditions (+)-7-OH-[3H]DPAT labeled σ receptors with an affinity of 24 nM. These results suggest that (a) (±)-7-OH-[3H]DPAT binds D3 receptors with high affinity in rat brain and (b) a significant proportion of (±)-7-OH-[3H]DPAT binding consists of σ1 sites and the percentages of these sites differ among the subregions of the striatum and nucleus accumbens.  相似文献   

8.
Prolonged swimming performances of two as yet unnamed species of three‐spined stickleback, Gasterosteus spp., were compared. The two fishes (not yet formally described, referred to here as benthic and limnetic) inhabit different niches within Paxton Lake, Texada Island, British Columbia, Canada, and are recent, morphologically distinct species. Limnetics had longer endurance during prolonged swimming than did benthics. The mean regression of the log10 of fatigue time (Ft, s) on swimming speed (U, standard length, LS s?1) for limnetics (log10Ft = 7·03 ? 0·46U) had a similar slope, but a significantly higher intercept than that for benthics (log10Ft = 5·55 ? 0·43U). Adult benthics were larger, heavier and deeper‐bodied fish than limnetics. Limnetics, however, had a significantly greater pectoral fin edge:base ratio (mean ± s .e .: limnetics, 4·58 ± 0·43; benthics, 3·63 ± 0·27). In addition, limnetics had significantly lower drag coefficients (CD) than benthics (limnetics, log10CD = ?0·49log10Re + 0·66; benthics, log10CD = ?0·26log10Re ? 0·30) where Re is the Reynolds number [(LSU?1), where U and ν are swimming velocity and the kinematic viscosity of the water, respectively]. Compared to their ancestral form, the anadromous three‐spined stickleback Gasterosteus aculeatus L., limnetics and benthics had significantly longer and shorter endurance times, respectively. In addition, both these fishes had significantly higher fast‐start velocities than their ancestral form. Selection due to differential resource use may have lead to divergence of body form, and, therefore, of steady swimming performance. Therefore predation may be the selective force for the similar high escape performance in these two fishes.  相似文献   

9.
The effect of sampling with bongo (0·6 m diameter frame with 500 µm mesh) and Methot Isaac Kidd (MIK) (2 m diameter frame with 2 mm mesh finished with 500 µm codend) nets on standard length (LS) range and growth rate differences was tested for larval Sprattus sprattus (n = 906, LS range: 7·0–34·5 mm) collected during four cruises in the summer months of 2006, 2007, 2009 and 2010 in the southern Baltic Sea. Although the minimum size of larvae collected with the bongo and MIK nets was similar in each cruise (from c. 7 to 9 mm), the MIK nets permitted collecting larger specimens (up to c. 34 mm) than the bongo nets did (up to c. 27 mm). The growth rates of larvae collected with the bongo and MIK nets (specimens of the same size range were compared for three cruises) were not statistically different (mean = 0·55 mm day?1, n = 788, LS range: 7·0–27·4 mm), which means the material collected with these two nets can be combined and growth rate results between them were compared.  相似文献   

10.
At 7 days after first feeding (DAFF), the peptide hormone cholecystokinin (CCK) content (fmol individual?1) and the tryptic activity [μmol arginine‐methyl‐coumarinyl‐7‐amide (MCA) min?1 individual?1] per individual gut of Atlantic halibut Hippoglossus hippoglossus larvae were low: 0·2 ± 0·1 and 0·14 ± 0·10, respectively. Thereafter, both parameters increased with the increase in gut mass and reached 19·67 ± 5·58 and 2·71 ± 0·64 at 26 DAFF, respectively. Due to the small sample size, the dry mass (MG, mg) of the individual gut could not be determined accurately at 7 DAFF. At 13 DAFF MG represented 5·5% of whole body dry mass (Mw, mg) while at 26 DAFF it had increased to 23%. The mass specific tryptic activity [μmol MCA min?1 per mg dry mass (M)] in the gut increased from 2·74 ± 1 ± 98 at 13 DAFF to 5·00 ± 0·78 at 26 DAFF. There was more individual variation in the mass specific CCK content (fmol M?1) but no significant differences were found, although the data indicated an increase (from 23·38 ± 11·26 at 13 DAFF to 36·27 ± 8·96 fmol M?1 at 26 DAFF). At 7 DAFF the CCK content of the gut represented c. 2% of the whole body CCK content while it increased to c. 62% of the whole body CCK content at 26 DAFF. This demonstrates that it is necessary to separate neural and gastrointestinal sources of CCK in order to determine its alimentary role in fish larvae. Trypsin activity was only found in the gut compartment. In larvae aged 45 DAFF dietary proteins delivery into the gut by tube‐feeding appeared to stimulate post‐prandial secretion of CCK from the gut as well as stimulate pancreatic trypsin secretion, suggesting that both factors contribute to protein digestion.  相似文献   

11.
The rate of emergence of micropredatory gnathiid isopods from the benthos, the proportion of emerging gnathiids potentially eaten by Labroides dimidiatus, and the volume of blood that gnathiids potentially remove from fishes (using gnathiid gut volume) were determined. The abundance (mean ±s.e .) of emerging gnathiids was 41·7 ± 6·9 m?2 day?1 and 4552 ± 2632 reef?1 day?1 (reefs 91–125 m2). The abundance of emerging gnathiids per fish on the reef was 4·9 ± 0·8 day?1; but excluding the rarely infested pomacentrid fishes, it was 20·9 ± 3·8 day?1. The abundance of emerging gnathiids per patch reef was 66 ± 17% of the number of gnathiids that all adult L. dimidiatus per reef eat daily while engaged in cleaning behaviour. If all infesting gnathiids subsequently fed on fish blood, their total gut volume per reef area would be 17·4 ± 5·6 mm3 m?2 day?1; and per fish on the reefs, it would be 2·3 ± 0·5 mm?3 fish?1 day?1 and 10·3 ± 3·1 mm3 fish?1 day?1 (excluding pomacentrids). The total gut volume of gnathiids infesting caged (137 mm standard length, LS) and removed from wild (100–150 mm LS) Hemigymnus melapterus by L. dimidiatus was 26·4 ± 24·6 mm3 day?1 and 53·0 ± 9·6 mm3 day?1, respectively. Using H. melapterus (137 mm LS, 83 g) as a model, gnathiids had the potential to remove, 0·07, 0·32, 0·82 and 1·63% of the total blood volume per day of each fish, excluding pomacentrids, caged H. melapterus and wild H. melapterus, respectively. In contrast, emerging gnathiids had the potential of removing 155% of the total blood volume of Acanthochromis polyacanthus (10·7 mm LS, 0·038 g) juveniles. That L. dimidiatus eat more gnathiids per reef daily than were sampled with emergence traps suggests that cleaner fishes are an important source of mortality for gnathiids. Although the proportion of the total blood volume of fishes potentially removed by blood‐feeding gnathiids on a daily basis appeared to be low for fishes weighing 83 g, the cumulative effects of repeated infections on the health of such fish remains unknown; attacks on small juvenile fishes, may result in possibly lethal levels of blood loss.  相似文献   

12.
Aggregation behavior and hydrodynamic parameters of insulin have been determined from static and dynamic light scattering experiments and intrinsic viscosity measurements carried out at pH 4.0, 7.5, and 9.0 in the temperature range 20–40°C in aqueous solutions. The protein aggregated extensively at elevated temperatures in the acidic solutions. Intermolecular interactions were found to be attractive and to increase with temperature. The measured intrinsic viscosity [η], diffusion coefficient D0, molecular weight M, and radius of gyration Rg exhibited the universal behavior: M[η] = (2.4 ± 02) × 10−27 (Re,η/Re,D)3(D/T)−3 and (D0n)−1 ≃ (√6 πη0ζβ/kBT) [1 + 0.201)(v3)√n], where n is the number of segments in the polypeptide. The effective hydrodynamic radii deduced from [η], (Re, η) and the same deduced from D0, (Re,D) showed a constant ratio, (Re,η/Re,D = 1.1 ± 0.1). Re,D/Rg = ξ was found to be (0.76 ± 0.07). From the known solvent viscosity η0, the segment length β was deduced to be (10 ± 1) Å. The excluded volume was deduced to be (5 Å)3 regardless of pH. The Flory-Huggins interaction parameter was found to be χ = 0.45 ± 0.04, independent of pH and temperature. © 1998 John Wiley & Sons, Inc. Biopoly 45: 1–8, 1998  相似文献   

13.
The life history of the long‐snouted seahorse Hippocampus guttulatus was characterized using mark‐recapture data collected within a focal study site and catch data from 53 additional sites in the Ria Formosa coastal lagoon, southern Portugal. Population structure in benthic habitats was characterized by high local densities (0·3–1·5 m?2), equal sex ratios and few juveniles <70 mm. Adult H. guttulatus maintained small (19·9 ± 12·4 m2), strongly overlapping home ranges during multiple reproductive seasons. Recruited (benthic) juveniles exhibited significantly lower site fidelity than adults. A Ford‐Walford plot of standard length (LS) at time t against LS measured during the previous year from tagged juveniles and adults led to estimates of the von Bertalanffy parameters K = 0·571 and L = 197·6 mm. The growth rate of planktonic juveniles (inferred from previous studies), was greater than predicted by the von Bertalanffy model, providing evidence of an ontogenetic shift in growth trajectory. The instantaneous rate of natural mortality, M, ranged from 1·13 to 1·22 year?1(annual survival rate = 29·4–32·2%). Sexes did not differ in movement, growth or survival patterns. On average, H. guttulatus measured 12·2 ± 0·8 mm at birth. Planktonic juveniles recruited to vegetated habitat at 96·0 ± 8·0 mm (0·25 years), had mature brood pouches (males only) at 109·4 mm (0·49 years), began maintaining home ranges and reproducing at 125–129 mm (0·85–0·94 years), and lived for 4·3–5·5 years. Early age at maturity, rapid growth rates, and short generation times suggested that H. guttulatus may recover rapidly when direct (e.g. exploitation) and indirect (e.g. by‐catch and habitat damage) effects of disturbance cease, but may be vulnerable to extended periods of poor recruitment.  相似文献   

14.
Abstract: [(2S,2′R,3′R)-2-(2′,3′-[3H]Dicarboxycyclopropyl)glycine ([3H]DCG IV) binding was characterized in vitro in rat brain cortex homogenates and rat brain sections. In cortex homogenates, the binding was saturable and the saturation isotherm indicated the presence of a single binding site with a KD value of 180 ± 33 nM and a Bmax of 780 ± 70 fmol/mg of protein. The nonspecific binding, measured using 100 µM LY354740, was <30%. NMDA, AMPA, kainate, l (?)-threo-3-hydroxyaspartic acid, and (S)-3,5-dihydroxyphenylglycine were all inactive in [3H]DCG IV binding up to 1 mM. However, several compounds inhibited [3H]DCG IV binding in a concentration-dependent manner with the following rank order of potency: LY341495 = LY354740 > DCG IV = (2S,1′S,2′S)-2-(2-carboxycyclopropyl)glycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (2S,1′S,2′S)-2-methyl-2-(2-carboxycyclopropyl)glycine > l -glutamate = ibotenate > quisqualate > (RS)-α-methyl-4-phosphonophenylglycine = l (+)-2-amino-3-phosphonopropionic acid > (S)-α-methyl-4-carboxyphenylglycine > (2S)-α-ethylglutamic acid > l (+)-2-amino-4-phosphonobutyric acid. N-Acetyl-l -aspartyl-l -glutamic acid inhibited the binding in a biphasic manner with an IC50 of 0.2 µM for the high-affinity component. The binding was also affected by GTPγS, reducing agents, and CdCl2. In parasagittal sections of rat brain, a high density of specific binding was observed in the accessory olfactory bulb, cortical regions (layers 1, 3, and 4 > 2, 5, and 6), caudate putamen, molecular layers of the hippocampus and dentate gyrus, subiculum, presubiculum, retrosplenial cortex, anteroventral thalamic nuclei, and cerebellar granular layer, reflecting its preferential (perhaps not exclusive) affinity for pre- and postsynaptic metabotropic glutamate mGlu2 receptors. Thus, the pharmacology, tissue distribution, and sensitivity to GTPγS show that [3H]DCG IV binding is probably to group II metabotropic glutamate receptors in rat brain.  相似文献   

15.
16.
In wild ballan wrasse Labrus bergylta, mass–length relationships were not different between genders, and positive allometry was found in the mixed‐gender population. Male‐biased sexual size dimorphism was significant and the most effective morphometric method for sexing L. bergylta outside of the species spawning window used body mass (MB in g), total body length (LT in mm) and Fulton's condition factor (K) as discriminant variables to predict gender with 91% accuracy. The discriminant score (SD) of a specimen can be calculated as SD = 0·01 MB ? 0·016 LT ? 3·835 K + 6·252 to predict its gender as female or male if SD is < 1·459 or SD is > 1·504, respectively. There was a potential trend towards earlier sexual inversion compared to previous studies at comparable latitudes. Sex change is a phenotypically plastic trait under social control in haremic fishes and should be monitored in increasingly exploited L. bergylta.  相似文献   

17.
Dissolved inorganic phosphorus (DIP ) is an essential macronutrient for maintaining metabolism and growth in autotrophs. Little is known about DIP uptake kinetics and internal P‐storage capacity in seaweeds, such as Ulva lactuca (Chlorophyta). Ulva lactuca is a promising candidate for biofiltration purposes and mass commercial cultivation. We exposed U. lactuca to a wide range of DIP concentrations (1–50 μmol · L?1) and a nonlimiting concentration of dissolved inorganic nitrogen (DIN ; 5,000 μmol · L?1) under fully controlled laboratory conditions in a “pulse‐and‐chase” assay over 10 d. Uptake kinetics were standardized per surface area of U. lactuca fronds. Two phases of responses to DIP ‐pulses were measured: (i) a surge uptake (VS ) of 0.67 ± 0.10 μmol · cm?2 · d?1 and (ii) a steady state uptake (VM ) of 0.07 ± 0.03 μmol · cm?2 · d?1. Mean internal storage capacity (ISCP ) of 0.73 ± 0.13 μmol · cm?2 was calculated for DIP . DIP uptake did not affect DIN uptake. Parameters of DIN uptake were also calculated: VS  = 12.54 ± 1.90 μmol · cm?2 · d?1, VM  = 2.26 ± 0.86 μmol · cm?2 · d?1, and ISCN  = 22.90 ± 6.99 μmol · cm?2. Combining ISC and VM values of P and N, nutrient storage capacity of U. lactuca was estimated to be sufficient for ~10 d. Both P and N storage capacities were filled within 2 d when exposed to saturating nutrient concentrations, and uptake rates declined thereafter at 90% for DIP and at 80% for DIN . Our results contribute to understanding the ecological aspects of nutrient uptake kinetics in U. lactuca and quantitatively evaluating its potential for bioremediation and/or biomass production for food, feed, and energy.  相似文献   

18.
In the present study, dry mass (MD, μg) and routine respiration rate (RR) (μl O2 ind?1 h?1) were measured for larval cod, Gadus morhua (L.) that were reared and tested at 5.0, 7.5, and 10.0°C. Bi‐hourly measurements of RR were made on groups of larvae using a closed‐circuit respirometer over a 24‐h period (14L : 10D light regime) to test temperature and body size effects and whether unfed larvae exhibited diel differences in metabolism. At 10°C, the relationship between mean RR and mean MD was: ln RR = 1.16·lnMD ? 6.57 (n = 31, r2 = 0.883, P < 0.001). The exponential increase in RR with temperature was described by a Q10 of 3.00. Diel differences in unfed larvae were only apparent in groups of the largest larvae. A comparison of Q10 estimates from this and other studies suggest a linear decrease in the effect of temperature on cod RR with increasing log MD for sizes encompassing larvae to large juveniles. The trend may explain, in part, observations of cod juveniles exploiting a wider range of in situ temperatures than larvae. Finally, the two most comprehensive data sets on larval cod RR compare poorly (approximately five‐fold differences) and our results support the assertion that daily metabolic energy loss in many larval cod individual‐based models were based upon measurements that over‐estimated hourly metabolic rates by a factor of approximately four.  相似文献   

19.
Key components of swimming metabolism: standard metabolism (Rs), active metabolism (Ra) and absolute aerobic scope for activity (RaRs) were determined for small age 0 year Atlantic cod Gadus morhua. Gadus morhua juveniles grew from 0·50 to 2·89 g wet body mass (MWB) over the experimental period of 100 days, and growth rates (G) ranged from 1·4 to 2·9% day?1, which decreased with increasing size. Metabolic rates were recorded by measuring changes in oxygen consumption over time at different activity levels using modified Brett‐type respirometers designed to accommodate the small size and short swimming endurance of small fishes. Power performance relationships were established between oxygen consumption and swimming speed measurements were repeated for individual fish as each fish grew. Mass‐specific standard metabolic rates () were calculated from the power performance relationships by extrapolating to zero swimming speed and decreased from 7·00 to 5·77 μmol O2 g?1 h?1, mass‐specific active metabolic rates () were calculated from extrapolation to maximum swimming speed (Umax) and decreased from 26·18 to 14·35 μmol O2 g?1 h?1 and mass‐specific absolute scope for activity was calculated as the difference between active and standard metabolism () and decreased from 26·18 to 14·35 μmol O2 g?1 h?1 as MWB increased. Small fish with low Rs had bigger aerobic scopes but, as expected, Rs was higher in smaller fish than larger fish. The measurements and results from this study are unique as Rs, Ra and absolute aerobic scopes have not been previously determined for small age 0 year G. morhua.  相似文献   

20.
Uptake rates of dissolved inorganic phosphorus and dissolved inorganic nitrogen under unsaturated and saturated conditions were studied in young sporophytes of the seaweeds Saccharina latissima and Laminaria digitata (Phaeophyceae) using a “pulse‐and‐chase” assay under fully controlled laboratory conditions. In a subsequent second “pulse‐and‐chase” assay, internal storage capacity (ISC) was calculated based on VM and the parameter for photosynthetic efficiency Fv/Fm. Sporophytes of S. latissima showed a VS of 0.80 ± 0.03 μmol · cm?2 · d?1 and a VM of 0.30 ± 0.09 μmol · cm?2 · d?1 for dissolved inorganic phosphate (DIP), whereas VS for DIN was 11.26 ± 0.56 μmol · cm?2 · d?1 and VM was 3.94 ± 0.67 μmol · cm?2 · d?1. In L. digitata, uptake kinetics for DIP and DIN were substantially lower: VS for DIP did not exceed 0.38 ± 0.03 μmol · cm?2 · d?1 while VM for DIP was 0.22 ± 0.01 μmol · cm?2 · d?1. VS for DIN was 3.92 ± 0.08 μmol · cm?2 · d?1 and the VM for DIN was 1.81 ± 0.38 μmol · cm?2 · d?1. Accordingly, S. latissima exhibited a larger ISC for DIP (27 μmol · cm?2) than L. digitata (10 μmol · cm?2), and was able to maintain high growth rates for a longer period under limiting DIP conditions. Our standardized data add to the physiological understanding of S. latissima and L. digitata, thus helping to identify potential locations for their cultivation. This could further contribute to the development and modification of applications in a bio‐based economy, for example, in evaluating the potential for bioremediation in integrated multitrophic aquacultures that produce biomass simultaneously for use in the food, feed, and energy industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号