首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Encephalitozoon cuniculi is a microsporidian parasite commonly found in rabbits that can infect humans, causing encephalitozoonosis. The prevalence of encephalitozoonosis is not well documented, even when many clinics suspect pet rabbits as being highly infected. This study investigated the seropositivity of E. cuniculi using ELISA. The examination of 186 rabbits using ELISA showed that 22.6% (42/186) were seropositive against E. cuniculi. In analysis with healthy status, all 42 seropositive sera were collected from clinically normal rabbits. Moreover, the gender and age of pet rabbits did not have anysignificant effect on E. cuniculi infection. To the best of our knowledge, this is the first report to describe the seroprevalence of E. cuniculi in pet rabbits and suggests that pet rabbits could act as an important reservoir of encephalitozoonosis for both pet animals and humans in Korea.  相似文献   

2.
Spores of Encephalitozoon cuniculi were recovered from foetal and placental tissues from blue fox females orally inoculated with the parasite. The results provided evidence for transplacental transmission of the causative agent of fox encephalitozoonosis.  相似文献   

3.
Samples of intestinal content from thirty fattened pigs of six farms slaughtered at an abattoir in North-Western Germany, and faecal samples of four pigs kept as laboratory animals at the Federal Institute for Risk Assessment (BfR, Berlin, Germany) were investigated for the occurrence of microsporidia by light microscopy, PCR and sequencing. A modified Webers trichrome staining and the immunohistochemistry (the Avidin-Biotin-Peroxidase-Complex technique with a polyclonal anti-Encephalitozoon cuniculi-serum and monoclonal antibodies against Encephalitozoon intestinalis and Enterocytozoon bieneusi) was used as a screening method for the light microscopical detection of these pathogenic eukaryotes. By this light microscopically methods microsporidia suspected organisms were found in all samples (100%). By the use of PCR, microsporidia were identified in fourteen samples (41.2%). The prevalence of microsporidia infections among the farms diversifies from 0 to 80% as considered by PCR. E. bieneusi was the most prevalent species and was identified in twelve fattened pigs (40%) from five of the six tested farms (83.3%) and in two of the four laboratory animals (50%). Three of the E. bieneusi species belonged to the genotype O, one to the genotype E, and one to the genotype F. Two isolates were identified as novel genotypes and two samples showed a mixed infection of different genotypes. In three faecal samples of the pigs from two farms E. cuniculi genotype III was identified. One sample contained both microsporidia species. To our knowledge, this is the first time that the genotype III of E. cuniculi was identified in swine.  相似文献   

4.
Microsporidia are intracellular pathogens that cause severe disease in immunocompromised humans and animals. We recently demonstrated that XID mice are more susceptible to Encephalitozoon cuniculi infection by intraperitoneal route, evidencing the role of B-1 cells in resistance against infection. The present study investigated the resistance and susceptibility against E. cuniculi oral infection, including the role of B-1 cells. BALB/c and BALB/c XID (B-1 cells deficient) mice were orally infected with E. cuniculi spores. No clinical symptoms were observed in infected animals; histopathology showed lymphoplasmocytic enteritis with degeneration of the apexes of the villi in all infected groups. Higher parasite burden was observed in infected BALB/c XID mice. In the spleen and peritoneum, all infected mice showed a decrease of lymphocytes, including CD8+ T cells, mostly in infected BALB/c XID mice. Adoptive transfer of B-1 cells (XID + B-1) was associated with a lower parasite burden. Pro-inflammatory cytokines (IFN-γ, TNF-α and IL-6) increased mostly in infected XID + B1 mice. Together, the present results showed that BALB/c XID mice infected by the oral route were more susceptible to encephalitozoonosis than BALB/c mice, demonstrating the B-1 cells importance in the control of the immune response against oral E. cuniculi infection.  相似文献   

5.
Encephalitozoon spp. is an obligate intracellular microsporidian parasite that infects a wide range of mammalian hosts, including humans. This study was conducted to determine the prevalence of Encephalitozoon spp. in wild living rodents from Poland, the Czech Republic and Slovakia. Faecal and spleen samples were collected from individuals of Apodemus agrarius, Apodemus flavicollis, Apodemus sylvaticus, and Myodes glareolus (n = 465) and used for DNA extraction. PCR, targeting the ITS region of the rRNA gene was performed. The overall prevalence of microsporidia was 15.1%. The occurrence of Encephalitozoon cuniculi in the abovementioned host species of rodents has been presented for the first time, with the highest infection rate recorded for A. flavicollis. Sequence analysis showed that the most frequent species was E. cuniculi genotype II (92.5%). E. cuniculi genotypes I (1.5%) and III (6.0%) were also identified.  相似文献   

6.
Encephalitozoon cuniculi genotype III disseminated intensively into most of the organs in all strains of mice, followed by a chronic infection with massive microsporidia persistence in immunodeficient mice and a partial decrease in C57Bl/6 mice. Treatment with 0.2 mg Albendazole/mouse/day temporarily reduces the number of affected organs in immunocompetent C57Bl/6 mice, but not in CD4−/− and CD8−/− mice. The application of medication temporarily decreased the spore burden at least by one order of magnitude in all groups.These results demonstrate that the E. cuniculi genotype III infection had a progressive course and surprisingly, Albendazole treatment had only a minimal effect. The E. cuniculi genotype III spore burden in individual organs reached up to 108 or 109 in immunocompetent or immunodeficient mice, respectively; however, these mice did not demonstrate any obvious clinical signs of microsporidiosis, and the immunodeficient mice survived longer. Our findings clearly show that the survival of mice does not correspond to spore burden, which provides new insight into latent microsporidiosis from an epidemiological point of view.  相似文献   

7.
The microsporidian Encephalitozoon cuniculi is an intracellular eukaryotic parasite considered to be an emerging opportunistic human pathogen. The infectious stage of this parasite is a unicellular spore that is surrounded by a chitin containing endospore layer and an external proteinaceous exospore. A putative chitin deacetylase (ECU11_0510) localizes to the interface between the plasma membrane and the endospore. Chitin deacetylases are family 4 carbohydrate esterases in the CAZY classification, and several bacterial members of this family are involved in evading lysis by host glycosidases, through partial de‐N‐acetylation of cell wall peptidoglycan. Similarly, ECU11_0510 could be important for E. cuniculi survival in the host, by protecting the chitin layer from hydrolysis by human chitinases. Here, we describe the biochemical, structural, and glycan binding properties of the protein. Enzymatic analyses showed that the putative deacetylase is unable to deacetylate chitooligosaccharides or crystalline β‐chitin. Furthermore, carbohydrate microarray analysis revealed that the protein bound neither chitooligosaccharides nor any of a wide range of other glycans or chitin. The high resolution crystal structure revealed dramatic rearrangements in the positions of catalytic and substrate binding residues, which explain the loss of deacetylase activity, adding to the unusual structural plasticity observed in other members of this esterase family. Thus, it appears that the ECU11_0510 protein is not a carbohydrate deacetylase and may fulfill an as yet undiscovered role in the E. cuniculi parasite.  相似文献   

8.

Neospora caninum, Toxoplasma gondii and Hammondia spp. are coccidian parasites similar in morphology. Molecular techniques are necessary to detect parasite DNA isolated from stool samples in wild canids because they were reported as definitive hosts of N. caninum life cycle. The objective of this study was to develop a highly sensitive and accurate molecular method for the identification of coccidian Apicomplexa parasites in crab-eating fox (Cerdocyon thous) and pampas fox (Lycalopex gymnocercus). Tissue samples from road-killed animals (pampas fox?=?46, crab-eating fox?=?55) and feces (pampas fox?=?84, crab-eating fox?=?2) were collected, and species were diagnosed through molecular assay. PCR was used for the amplification of a fragment of the coccidian Apicomplexa nss-rRNA gene. Additionally, we developed a novel real-time PCR TaqMan? probe approach to detect T. gondii- Hammondia spp. and N. caninum. This is the first report of N. caninum DNA in pampas fox feces (n?=?1), thus it was also detected from pampas fox tissues (n?=?1). Meanwhile, T. gondii was found in tissues of pampas (n?=?1) and crab-eating (n?=?1) foxes and H. triffittae in one crab-eating fox tissue. Despite the low percentage (2.5%) of positive samples, the molecular method developed in this study proved to be highly sensitive and accurate allowing to conduct an extensive monitoring analysis for these parasites in wildlife.

  相似文献   

9.
Encephalitozoon cuniculi is a unicellular, obligate intracellular eukaryotic parasite in the Microsporidia family and one of the agents responsible for microsporidosis infections in humans. Like most Microsporidia, the genome of E. cuniculi is markedly reduced and the organism contains mitochondria‐like organelles called mitosomes instead of mitochondria. Here we report the solution NMR structure for a protein physically associated with mitosome‐like organelles in E. cuniculi, the 128‐residue, adrenodoxin‐like protein Ec‐Adx (UniProt ID Q8SV19) in the [2Fe‐2S] ferredoxin superfamily. Oxidized Ec‐Adx contains a mixed four‐strand β‐sheet, β2‐β1‐β4‐β3 (↓↑↑↓), loosely encircled by three α‐helices and two 310‐helices. This fold is similar to the structure observed in other adrenodoxin and adrenodoxin‐like proteins except for the absence of a fifth anti‐parallel β‐strand next to β3 and the position of α3. Cross peaks are missing or cannot be unambiguously assigned for 20 amide resonances in the 1H‐15N HSQC spectrum of Ec‐Adx. These missing residues are clustered primarily in two regions, G48‐V61 and L94‐L98, containing the four cysteine residues predicted to ligate the paramagnetic [2Fe‐2S] cluster. Missing amide resonances in 1H‐15N HSQC spectra are detrimental to NMR‐based solution structure calculations because 1H‐1H NOE restraints are absent (glass half‐empty) and this may account for the absent β‐strand (β5) and the position of α3 in oxidized Ec‐Adx. On the other hand, the missing amide resonances unambiguously identify the presence, and immediate environment, of the paramagnetic [2Fe‐2S] cluster in oxidized Ec‐Adx (glass half‐full).  相似文献   

10.
Microsporidia are opportunistic pathogens that infect a wide range of invertebrates and vertebrates. To assess the potential role of dogs in the transmission of these zoonotic pathogens, a total of 282 fecal samples from dogs in the Central Anatolia Region of Turkey were analyzed by utilizing species specific polymerase chain reaction for the four most frequent human microsporidia. Two microsporidia species were recognized in 41 samples (14.5%). Encephalitozoon intestinalis was detected in 35 samples (12.4%) and it was the most common microsporidium. The second microsporidium, E. cuniculi, was identified in six (2.1%) of the samples. Sequence analysis of the intergenic spacer of the ribosomal ribonucleic acid (RNA) internal transcribed spacer (ITS) gene revealed the presence of three E. intestinalis haplotypes closely associated with each other. No polymorphic region was found among the ITS sequences of E. cuniculi isolates and they were characterized as genotype III. This study provides the first data on the zoonotic microsporidia species from dogs in Turkey.  相似文献   

11.
A restriction map of the 2.8-Mb genome of the unicellular eukaryote Encephalitozoon cuniculi (phylum Microspora), a mammal-infecting intracellular parasite, has been constructed using two restriction enzymes with 6 bp recognition sites (BssHII and MluI). The fragments resulting from either single digestions of the whole molecular karyotype or double digestions of 11 individual chromosomes have been separated by two-dimensional pulsed field gel electrophoresis (2D-PFGE) procedures. The average distance between successive restriction sites is ~19 kb. The terminal regions of the chromosomes show a common pattern covering ~15 kb and including one 16S–23S rDNA unit. Results of hybridisation and molecular combing experiments indicate a palindromic-like orientation of the two subtelomeric rDNA copies on each chromosome. We have also located 67 DNA markers (clones from a partial E.cuniculi genomic library) by hybridisation to restriction fragments. Partial or complete sequencing has revealed homologies with known protein-coding genes for 32 of these clones. Evidence for two homologous chromosomes III, with a size difference (3 kb) related to a subtelomeric deletion/insertion event, argues for diploidy of E.cuniculi. The physical map should be useful for both the whole genome sequencing project and studies on genome plasticity of this widespread parasite.  相似文献   

12.

Background  

Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair.  相似文献   

13.
Rabbits infected either orally or intratracheally with cell culture-grown Encephalitozoon cuniculi were monitored regularly for serum antibody levels and E. cuniculi in the urine. Their responses were compared with intravenously inoculated and uninoculated control rabbits. All rabbits receiving E. cuniculi developed serum antibodies, generally within 3 weeks, and excreted E. cuniculi by 6 weeks. In the acute stage of infection, the organs most affected were lung, kidney and liver; the brain and gut were unaffected. However, during chronic infection, the brain, kidney, and heart were the only organs found to be involved. Antibody levels were very high at this stage. Thus both the oral and tracheal routes may be normal routes of infection with E. cuniculi in adult rabbits.  相似文献   

14.
Finland blue fox (Alopex lagopus) has great reputation in pelt industry around the world for its large size and top-ranking fur quality; however, both the herd size and the average survival rate of purebred offspring are rather low in production systems in China. Surgical transfer of blue fox embryos was investigated as a means to increase the population fox and also as a possible means to conserve endangered canine species. The animals were chosen on the basis of synchrony in natural oestrus. During the reproductive season of blue fox, 59 embryos were flushed from 6 farmed donors 9-11 days after the first insemination, and 53 embryos were transferred surgically into the uteri of the 6 paired recipients with natural synchronized oestrous. Two of the recipients littered 46-49 days after embryo transfer; one gave birth to 7 pups and the other 1 pup. This report describes the first successful embryo transfer in the farmed blue fox in China.  相似文献   

15.
16.

Background

Alveolar echinococcosis (AE) is a severe helminth disease affecting humans, which is caused by the fox tapeworm Echinococcus multilocularis. AE represents a serious public health issue in larger regions of China, Siberia, and other regions in Asia. In Europe, a significant increase in prevalence since the 1990s is not only affecting the historically documented endemic area north of the Alps but more recently also neighbouring regions previously not known to be endemic. The genetic diversity of the parasite population and respective distribution in Europe have now been investigated in view of generating a fine-tuned map of parasite variants occurring in Europe. This approach may serve as a model to study the parasite at a worldwide level.

Methodology/Principal Findings

The genetic diversity of E. multilocularis was assessed based upon the tandemly repeated microsatellite marker EmsB in association with matching fox host geographical positions. Our study demonstrated a higher genetic diversity in the endemic areas north of the Alps when compared to other areas.

Conclusions/Significance

The study of the spatial distribution of E. multilocularis in Europe, based on 32 genetic clusters, suggests that Europe can be considered as a unique global focus of E. multilocularis, which can be schematically drawn as a central core located in Switzerland and Jura Swabe flanked by neighbouring regions where the parasite exhibits a lower genetic diversity. The transmission of the parasite into peripheral regions is governed by a “mainland–island” system. Moreover, the presence of similar genetic profiles in both zones indicated a founder event.  相似文献   

17.
Proton nuclear magnetic resonance (1H NMR) was used to study the in vivo metabolism of Trypanosoma cruzi, the pathogen causing American trypanosomiasis (Chagas' disease). Three clones were isolated from a strain of T. cruzi (Bolivia strain), The clones I, II and III and the original strain were characterized according to the spectra of their metabolic pathways to test the hypothesis that clonal evolution of T. cruzi has a major impact on biologically relevant properties of this parasite. T. cruzi (Bolivia strain) excreted acetate, alanine, glycerol, and succinate as major end products, in the proportion 6:4:2:2. Comparing the spectra of T. cruzi clones with the original Bolivia strain revealed both quantitative, as well as qualitative differences in the metabolites excreted: the clones I and II, as opposed to the Bolivia strain and clone III, excreted significant quantities of ethanol.  相似文献   

18.
Microsporidian spores were isolated from two squirrel monkeys (Saimiri sciureus) that had been bred at an animal-breeding colony in Japan. The spores were identified as Encephalitozoon cuniculi on the basis of nucleotide sequence analysis of the small-subunit (SSU) rRNA gene. The internal transcribed spacer (ITS) gene sequence revealed that these isolates were classified into genotype III because it contained tetrarepeats of 5'-GTTT-3'. However, the sequences of the polar tube protein (PTP) gene of the monkey isolates were not identical to a reported sequence of genotype III but were quite similar to a reported sequence of genotype II. On the other hand, sequence analysis of the spore wall protein 1 (SWP-1) gene revealed that the monkey isolates did not belong to any of genotypes I, II and III. These results suggest that the present E. cuniculi isolates of squirrel monkey origin are a new subtype of E. cuniculi ITS genotype III that can cause a disseminated infection.  相似文献   

19.
The functional response of predators to prey density variations has previously been investigated in order to understand predation patterns. However, the consequences of functional response on parasite transmission remain largely unexplored. The rodents Microtus arvalis and Arvicola terrestris are the main prey of the red fox Vulpes vulpes in eastern France. These species are intermediate and definitive hosts of the cestode Echinococcus multilocularis. We explored the dietary and contamination responses of the red fox to variations in prey density. The dietary response differed between the two prey species: no response for M. arvalis and a type III-like (sigmoidal) response for A. terrestris that shows possible interference with M. arvalis. The fox contamination response followed a type II shape (asymptotic) for both species. We conclude that fox predation is species specific and E. multilocularis transmission is likely to be regulated by a complex combination of predation and immunologic factors. These results should provide a better understanding of the biological and ecological mechanisms involved in the transmission dynamics of trophically transmitted parasites when multiple hosts are involved. The relevance of the models of parasite transmission should be enhanced if non-linear patterns are taken into account.  相似文献   

20.
The relationship among the three cellular domains Archaea, Bacteria, and Eukarya has become a central problem in unraveling the tree of life. This relationship can now be studied as the completely sequenced genomes of representatives of these cellular domains become available. We performed a bioinformatic investigation of the Encephalitozoon cuniculi proteome. E. cuniculi has the smallest sequenced eukaryotic genome, 2.9 megabases coding for 1997 proteins. The proteins of E. cuniculi were compared with a previously characterized set of eukaryotic signature proteins (ESPs). ESPs are found in a eukaryotic cell, whether from an animal, a plant, a fungus, or a protozoan, but are not found in the Archaea and the Bacteria. We demonstrated that 85% of the ESPs have significant sequence similarity to proteins in E. cuniculi. Hence, E. cuniculi, a minimal eukaryotic cell that has removed all inessential proteins, still preserves most of the ESPs that make it a member of the Eukarya. The locations and functions of these ESPs point to the earliest history of eukaryotes.Reviewing Editor: Dr. Manyuan Long  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号