首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wild adult and reared larval Boreogadus saida were acclimated to 3·5° C before testing their cardiac response to acute warming. Heart rate transition temperatures during warming were similar for adult and larval hearts, except that the maximum temperature for heart rate was 3° C warmer for adults. Thus, in a rapidly warming Arctic Ocean, the upper temperature limit for larval rather than adult B. saida appears more likely to dictate the southern range of the species.  相似文献   

2.
Common killifish Fundulus heteroclitus were acclimated to ecologically relevant temperatures (5, 15 and 33°C) and their maximum heart rate (fHmax) was measured at each acclimation temperature during an acute warming protocol. Acclimation to 33°C increased peak fHmax by up to 32% and allowed the heart to beat rhythmically at a temperature 10°C higher when compared with acclimation to 5°C. Independent of acclimation temperature, peak fHmax occurred about 3°C cooler than the temperature that first produced cardiac arrhythmias. Thus, when compared with previously published values for the critical thermal maximum of F. heteroclitus, the temperature for peak fHmax was cooler and the temperature that first produced cardiac arrhythmias was similar to these critical thermal maxima. The considerable thermal plasticity of fHmax demonstrated in the present study is entirely consistent with eurythermal ecology of killifish, as shown previously for another eurythermal fish Gillichthys mirabilis.  相似文献   

3.
Here, we show that heart rate in zebrafish Danio rerio is dependent upon two pacemaking mechanisms and it possesses a limited ability to reset the cardiac pacemaker with temperature acclimation. Electrocardiogram recordings, taken from individual, anaesthetised zebrafish that had been acclimated to 18, 23 or 28°C were used to follow the response of maximum heart rate (fHmax) to acute warming from 18°C until signs of cardiac failure appeared (up to c. 40°C). Because fHmax was similar across the acclimation groups at almost all equivalent test temperatures, warm acclimation was limited to one significant effect, the 23°C acclimated zebrafish had a significantly higher (21%) peak fHmax and reached a higher (3°C) test temperature than the 18°C acclimated zebrafish. Using zatebradine to block the membrane hyperpolarisation-activated cyclic nucleotide–gated channels (HCN) and examine the contribution of the membrane clock mechanisms to cardiac pacemaking, f Hmax was significantly reduced (by at least 40%) at all acute test temperatures and significantly more so at most test temperatures for zebrafish acclimated to 28°C vs. 23°C. Thus, HCN channels and the membrane clock were not only important, but could be modified by thermal acclimation. Using a combination of ryanodine (to block sarcoplasmic calcium release) and thapsigargin (to block sarcoplasmic calcium reuptake) to examine the contribution of sarcoplasmic reticular handling of calcium and the calcium clock, f Hmax was again consistently reduced independent of the test temperature and acclimation temperature, but to a significantly lesser degree than zatebradine for zebrafish acclimated to both 28 and 18°C. Thus, the calcium clock mechanism plays an additional role in setting pacemaker activity that was independent of temperature. In conclusion, the zebrafish cardiac pacemaker has a limited temperature acclimation ability compared with known effects for other fishes and involves two pacemaking mechanisms, one of which was independent of temperature.  相似文献   

4.
The main finding of this study was that measuring maximum heart rate during incremental warming was an effective tool to estimate upper thermal limits in three small cyprinid Danio species, which differed significantly. Arrhenius breakpoint temperature for maximum heart rate, purportedly an index of optimum temperature, was 21·2 ± 0·4, 20·1 ± 0·4 and 18·9 ± 0·8° C (mean ± s.e .) for zebrafish Danio rerio, pearl danio Danio albolineatus and glowlight danio Danio choprae, respectively. The temperature where cardiac arrhythmias were first induced during warming (Tarr) was 36·6 ± 0·7, 36·9 ± 0·8 and 33·2 ± 0·8° C (mean ± s.e .) and critical thermal maximum (TCm) was 39·9 ± 0·1, 38·9 ± 0·1 and 37·2 ± 0·1° C (mean ± s.e .) for D. rerio, D. albolineatus and D. choprae, respectively. The finding that Tarr was consistently 3–4° C lower than TCm suggests that collapse of the cardiac life support system may be a critical trigger for upper temperature tolerance. The upper thermal limits established here, which correlate well with a broad natural environmental temperature range for D. rerio and a narrow one for D. choprae, suggest that upper thermal tolerance may be a genetic trait even among closely related species acclimated to common temperatures.  相似文献   

5.
The conduction properties of peripheral nerves from the Arctic fish species Arctic eelpouts (Lycodes sp.), snake blenny (Lumpenus lampretaeformis) and polar cod (Boreogadus saida), permanently adapted to low temperatures, were studied. Nerves of these fishes have two types of fibres, characterised by extracellular compound action potentials with fast (7 m/s) and slow (4 m/s) conduction velocities, as measured at 12 °C. The temperature dependence of the conduction velocity was bimodal, changing its slope at about 16 °C. The Q 10 above 16 °C was 1.12–1.49, while below 16 °C it was 1.82–2.16. Irreversible deterioration of the nerve was observed at temperatures around 19–27 °C. A comparison with data previously obtained from Mediterranean fishes indicates that Arctic fishes have similar temperature sensitivity of nerve conduction and a slight vertical displacement on the conduction velocity-temperature curves, which is insufficient to compensate the decrease of the conduction velocity at their physiological temperature, the conduction velocity of Arctic fishes being about one-half of that of temperate fishes. This suggests that this neurophysiological function is not fully cold-adapted in these Arctic fish species. Accepted: 3 June 2000  相似文献   

6.
Despite concern about the status of carbon (C) in the Arctic tundra, there is currently little information on how plant respiration varies in response to environmental change in this region. We quantified the impact of long‐term nitrogen (N) and phosphorus (P) treatments and greenhouse warming on the short‐term temperature (T) response and sensitivity of leaf respiration (R), the high‐T threshold of R, and associated traits in shoots of the Arctic shrub Betula nana in experimental plots at Toolik Lake, Alaska. Respiration only acclimated to greenhouse warming in plots provided with both N and P (resulting in a ~30% reduction in carbon efflux in shoots measured at 10 and 20 °C), suggesting a nutrient dependence of metabolic adjustment. Neither greenhouse nor N+P treatments impacted on the respiratory sensitivity to T (Q10); overall, Q10 values decreased with increasing measuring T, from ~3.0 at 5 °C to ~1.5 at 35 °C. New high‐resolution measurements of R across a range of measuring Ts (25–70 °C) yielded insights into the T at which maximal rates of R occurred (Tmax). Although growth temperature did not affect Tmax, N+P fertilization increased Tmax values ~5 °C, from 53 to 58 °C. N+P fertilized shoots exhibited greater rates of R than nonfertilized shoots, with this effect diminishing under greenhouse warming. Collectively, our results highlight the nutrient dependence of thermal acclimation of leaf R in B. nana, suggesting that the metabolic efficiency allowed via thermal acclimation may be impaired at current levels of soil nutrient availability. This finding has important implications for predicting carbon fluxes in Arctic ecosystems, particularly if soil N and P become more abundant in the future as the tundra warms.  相似文献   

7.
8.
The thermal sensitivity of Arctic fish species is poorly understood, yet such data are a critical component of forecasting and understanding ecosystem impacts of climate change. In this study, we experimentally measured temperature-dependent growth and routine swim activity in the juvenile stage of two Arctic gadids (Arctic cod, Boreogadus saida and saffron cod, Eleginus gracilis) and two North Pacific gadids (walleye pollock, Gadus chalcogrammus and Pacific cod, Gadus macrocephalus) over a 6-week growth period across five temperatures (0, 5, 9, 16 and 20 °C). Arctic cod demonstrated a cold-water, stenothermic response in that there was relatively high growth at 0 °C (0.73 % day?1), near-maximal growth at 5 °C (1.35 % day?1) and negative impacts on activity, growth and survival at 16 °C. In contrast, saffron cod demonstrated a warmer-water, eurythermic response, and temperature had a positive effect on growth and condition beyond 16 °C. However, despite these distinct thermal responses, walleye pollock and Pacific cod grew 2–3 times faster than Arctic gadids across a relatively broad temperature range above 5 °C. These results, coupled with possible northward expansion by both Pacific cod and walleye pollock, suggest Arctic cod are highly vulnerable to continued climate change in the Arctic, especially in coastal areas of the Beaufort and Chukchi Seas where temperatures already exceed 14 °C in the summer growth period.  相似文献   

9.
In coho salmon Oncorhynchus kisutch, no significant differences in critical thermal maximum (c. 26·9° C, CTmax) were observed among size‐matched wild‐type, domesticated, growth hormone (GH)‐transgenic fish fed to satiation, and GH‐transgenic fish on a ration‐restricted diet. Instead, GH‐transgenic fish fed to satiation had significantly higher maximum heart rate and Arrhenius breakpoint temperature (mean ± s.e. = 17·3 ± 0·1° C, TAB). These results provide insight into effects of modified growth rate on temperature tolerance in salmonids, and can be used to assess the potential ecological consequences of GH‐transgenic fishes should they enter natural environments with temperatures near their thermal tolerance limits.  相似文献   

10.
Oceans are experiencing increasing acidification in parallel to a distinct warming trend in consequence of ongoing climate change. Rising seawater temperatures are mediating a northward shift in distribution of Atlantic cod (Gadus morhua), into the habitat of polar cod (Boreogadus saida), that is associated with retreating cold water masses. This study investigates the competitive strength of the co-occurring gadoids under ocean acidification and warming (OAW) scenarios. Therefore, we incubated specimens of both species in individual tanks for 4 months, under different control and projected temperatures (polar cod: 0, 3, 6, 8 °C, Atlantic cod: 3, 8, 12, 16 °C) and PCO2 conditions (390 and 1170 µatm) and monitored growth, feed consumption and standard metabolic rate. Our results revealed distinct temperature effects on both species. While hypercapnia by itself had no effect, combined drivers caused nonsignificant trends. The feed conversion efficiency of normocapnic polar cod was highest at 0 °C, while optimum growth performance was attained at 6 °C; the long-term upper thermal tolerance limit was reached at 8 °C. OAW caused only slight impairments in growth performance. Under normocapnic conditions, Atlantic cod consumed progressively increasing amounts of feed than individuals under hypercapnia despite maintaining similar growth rates during warming. The low feed conversion efficiency at 3 °C may relate to the lower thermal limit of Atlantic cod. In conclusion, Atlantic cod displayed increased performance in the warming Arctic such that the competitive strength of polar cod is expected to decrease under future OAW conditions.  相似文献   

11.
Telemetered heart rate (fH) was examined as an indicator of activity and oxygen consumption rate (VO2) in adult, cultivated, Atlantic salmon, Salmo salar L. Heart rate was measured during sustained swimming in a flume for six fish at 10° C [mean weight, 1114 g; mean fork length (f. l.), 50·6 cm] and seven fish at 15° C (mean weight, 1119 g; mean f. l., 50·7 cm) at speeds of up to 2·2 body lengths/s. Semi–logarithmic relationships between heart rate and swimming speed were obtained at both temperatures. Spontaneously swimming fish in still water exhibited characteristic heart rate increases associated with activity. Heart rate and Vo2 were monitored simultaneously in a 575–1 circular respirometer for six fish (three male, three female) at 4° C (mean weight, 1804 g; mean F. L., 62· cm) and six fish (three male, three female) at 10° C (mean weight, 2045 g; mean f. l., 63·2 cm) during spontaneous but unquantified activity. Linear regressions were obtained by transforming data for both fH and Vo2 to log values. At each temperature, slopes of the regressions between fH and Vo2 for individual fishes were not significantly different, but in some cases elevations were. All differences in elevation were between male and female fish. There were no significant differences in regression slope or elevation for fish of the same sex at the two temperatures and so regressions were calculated for the sexes, pooling data from 4 and 10° C. There was no significant difference in the mean ± S. D. Vo2 between the sexes at 4° C (male, 66·0 ± 59·6 mgO2 kg?1 h?1; female, 88·0 ± 60·1 mgO2 kg?1 h?1) or 10° C (male, 166·2 ± 115·4 mgO2 kg?1 h?1; female, 169·2 ± 111–1 mgO2 kg?1h?1). Resting Vo2 (x?± s. d.) at 4°C was 36·7 ± 8.4 mgO2 kg?1 h?1, and 10° C was 72·8 ± 11·9 mgO2 kg?1 h?1. Maximum Vo2 (x?± S. D.) at 4° C was 250·6 ± 40·2 mgO2 kg?1 h?1, and at 10° C was 423·6 ± 25·2 mgO2 kg?1 h?1. Heart rate appears to be a useful indicator of metabolic rate over the temperature range examined, for the cultivated fish studied, but it is possible that the relationship for wild fish may differ.  相似文献   

12.
1. We examined the detailed temperature dependence (0–40 °C) of bacterial metabolism associated with fine sediment particles from three Danish lowland streams to test if temperature dependence varied between sites, seasons and quality of organic matter and to evaluate possible consequences of global warming. 2. A modified Arrhenius model with reversible denaturation at high temperatures could account for the temperature dependence of bacterial metabolism and the beginning of saturation above 35 °C and it was superior to the unmodified Arrhenius model. Both models overestimated respiration rates at very low temperatures (<5 °C), whereas Ratkowsky's model – the square root of respiration – provided an excellent linear fit between 0 and 30 °C. 3. There were no indications of differences in temperature dependence among samples dominated by slowly or easily degradable organic substrates. Optimum temperature, apparent minimum temperature, Q10‐values for 0–40 °C and activation energies of bacterial respiration were independent of season, stream site and degradability of organic matter. 4. Q10‐values of bacterial respiration declined significantly with temperature (e.g. 3.31 for 5–15 °C and 1.43 for 25–35 °C) and were independent of site and season. Q10‐values of bacterial production behaved similarly, but were significantly lower than Q10‐values of respiration implying that bacterial growth efficiency declined with temperature. 5. A regional warming scenario for 2071–2100 (IPCC A2) predicted that mean annual temperatures will increase by 3.5 °C in the air and 2.2–4.3 °C in the streams compared with the control scenario for 1961–1990. Temperature is expected to rise more in cool groundwater‐fed forest springs than in open, summer‐warm streams. Mean annual bacterial respiration is estimated to increase by 26–63% and production by 18–41% among streams assuming that established metabolism–temperature relationships and organic substrate availability remain the same. To improve predictions of future ecosystem behaviour, we further require coupled models of temperature, hydrology, organic production and decomposition.  相似文献   

13.
In an effort to explore the thermal limitations of Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, the critical thermal maxima (Tcmax) of 1+ year Lake Nanita strain O. c. pleuriticus were evaluated when acclimated to 10, 15 and 20° C. The mean ±s.d. Tcmax for O. c. pleuriticus acclimated to 10° C was 24·6 ± 2·0°C (n = 30), for 15° C‐acclimated fish was 26·9 ± 1·5° C (n = 23) and for 20° C‐acclimated fish was 29·4 ± 1·1° C (n = 28); these results showed a marked thermal acclimation effect (Q10 = 1·20). Interestingly, there was a size effect within treatments, wherein the Tcmax of larger fish was significantly lower than that of smaller fish acclimated to the same temperature. The critical thermal tolerances of age 0 year O. c. pleuriticus were also evaluated from three separate populations: Lake Nanita, Trapper Creek and Carr Creek reared under ‘common‐garden’ conditions prior to thermal acclimation. The Trapper Creek population had significantly warmer Tcmax than the Lake Nanita population, but that of the Carr Creek fish had Tcmax similar to both Trapper Creek and Lake Nanita fish. A comparison of these O. c. pleuriticus Tcmax results with those of other stream‐dwelling salmonids suggested that O. c. pleuriticus are less resistant to rapid thermal fluctuations when acclimated to cold temperatures, but can tolerate similar temperatures when acclimated to warmer temperatures.  相似文献   

14.
The influence of irradiance, photoperiod and temperature was determined for the growth kinetics of the diatoms Aulacoseira subarctica, Stephanodiscus astraea and Stephanodiscus hantzschii and the results compared with those of cyanobacteria. Irradiance and photoperiod relationships were qualitatively similar to those for cyanobacteria in that: (1) growth rate (K) was proportionally greater under short photoperiods, with ratios of K under continuous light to K under 3:21 light:dark (LD) cycles of 1·50, 1·80 and 2·96 for A. subarctica, S. astraea and S. hantzschii respectively; (2) at subsaturating irradiances, K was proportional to irradiance and independent of temperature with a negligible predicted maintenance growth rate requirement. Apparent growth efficiencies (GE) at subsaturating irradiances were 0·26±0·03, 0·42±0·03 and 0·50±0·03 divisions mol-1m2 for A. subarctica, S. astraea and S. hantzschii with the values for Stephanodiscus species comparable to values for Oscillatoria species. Under a 3:21 LD cycle at 4 °C, light-saturated growth rates were 0·066±0·004, 0·197±0·033 and 0·285±0·018 divisions day-1 for A. subarctica, S. astraea and S. hantzschii. S. hantzschii growth rate at 4 °C exceeded maximum Oscillatoria growth rates at 23 °C and the S. astraea growth rate at 4 °C was equivalent to O. agardhii growth rate at 20 °C. Temperature increases above 4 °C gave Q10 values between 4 °C and 12 °C of 3·68, 2·39 and 1·92 for A. subarctica, S. astraea and S. hantzschii, but higher temperatures resulted in minor increases in K. S. astraea growth rate peaked at 16 °C, declining sharply at higher temperatures. February to March in situ growth rates in Lough Neagh, mean temperature 4·3 °C, showed that the A. subarctica in situ K of 0·058 divisions day-1 was close to the laboratory K at 4 °C, but that S. astraea in situ K of 0·101 divisions day-1 was lower than the laboratory K at 4 °C.  相似文献   

15.
Responses of foliar light-saturated net assimilation rate (Amax), capacity for photosynthetic electron transport (Jmax) and mitochondrial respiration rate (Rd) to long-term canopy light and temperature environment were investigated in a temperate deciduous canopy composed of Populus tremula L. in the upper (17–28 m) and of Tilia cordata Mill. in the lower canopy layer (4–17 m). Climatic measurements indicated that seasonal average daily maximum air temperature (Tmax) was 5·5 °C (range 0·7–10·5 °C) higher in the top than in the bottom of the canopy, and strong positive correlations were observed between Tmax and seasonal average integrated quantum flux density (Qint), as well as between seasonal average daily mean temperature and Qint. Because of changes in leaf dry mass and nitrogen per unit area, Amax, Jmax, and Rd scaled positively with Qint in both species at a common leaf temperature (T). According to Jmax versus T response curves and dark chlorophyll fluorescence transients, photosynthetic electron transport was less heat resistant in P. tremula with optimum temperature of Jmax, Topt, of 33·5 ± 0·6 °C than in T. cordata with Topt of 40·7 ± 0·6 °C. This difference was suggested to manifest evolutionary adaptation of photosynthetic electron transport to cooler environments in P. tremula, the range of which extends farther north than that in T. cordata. Possibly because of acclimation to long-term canopy temperature environment, Topt was positively related to Qint in P. tremula, foliage of which was also exposed to higher irradiances and temperatures, but not in T. cordata, in the canopy of which quantum flux densities and temperatures were lower, and gradients in the environmental factors less pronounced. Parallel to changes in Topt, the activation energy for photosynthetic electron transport decreased with increasing Qint in P. tremula, indicating that Jmax of leaves acclimated to colder environment was more responsive to T in lower temperatures than that of high T acclimated leaves. Similar alterations in the activation energy for mitochondrial respiration rate were also observed, indicating that acclimation to temperature of mitochondrial and chloroplastic electron transport proceeds in a co-ordinated manner, and possibly involves long-term changes in membrane fluidity properties. We conclude that, because of correlations between temperature and light, the shapes of Jmax versus T, and Rd versus T response curves vary within tree canopies, and this needs to be taken account in modelling whole canopy photosynthesis.  相似文献   

16.
The effect of warming on the oxygen requirements and the survival of benthic organisms under hypoxia was tested using a meta‐analysis of published results of experiments evaluating the effects of temperature on the median lethal time and median lethal concentration of benthic macrofauna under hypoxia. The meta‐analysis confirmed that survival times under hypoxia were reduced by on average 74% and that median lethal concentration increased by on average 16% when marine benthic organisms were exposed to warmer temperatures. Warming reduced survival times of marine benthic macrofauna under hypoxia by a median of 3.95±1.67 h °C?1 and increased the oxygen thresholds for hypoxia‐driven mortality by a median of 1.02±0.15% saturation °C?1 or 0.07±0.01 mg O2 L?1 °C?1. The corresponding Q10 values averaged 3.01±0.29 for the median survival time and 2.09±0.20 for the median lethal oxygen concentration. Use of these Q10 values predicts that the 4 °C warming expected during the 21st century will lead to survival times 35.6% lower under hypoxia and that the threshold oxygen concentrations for high mortality to occur will increase by, on average, 25.5% if bottom water temperature increased by 4 °C. Hence, ocean warming is expected to increase the vulnerability of benthic macrofauna to reduced oxygen concentrations and expand the area of coastal ecosystems affected by hypoxia.  相似文献   

17.
Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0–10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long‐term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m?2 s?1, control: 2.34 ± 0.29 μmol m?2 s?1; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass‐specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long‐term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C‐rich calcareous temperate forest soils.  相似文献   

18.
Summer habitat use by sympatric Arctic charr Salvelinus alpinus, young Atlantic salmon Salmo salar and brown trout Salmo trutta was studied by two methods, direct underwater observation and electrofishing, across a range of habitats in two sub-arctic rivers. More Arctic charr and fewer Atlantic salmon parr were observed by electrofishing in comparison to direct underwater observation, perhaps suggesting a more cryptic behaviour by Arctic charr. The three species segregated in habitat use. Arctic charr, as found by direct underwater observation, most frequently used slow (mean ±s .d . water velocity 7·2 ± 16·6 cm s−1) or often stillwater and deep habitats (mean ±s .d . depth 170·1 ± 72·1 cm). The most frequently used mesohabitat type was a pool. Young Atlantic salmon favoured the faster flowing areas (mean ±s .d . water velocity 44·0 ± 16·8 cm s−1 and depth 57·1 ± 19·0 cm), while brown trout occupied intermediate habitats (mean ±s .d . water velocity 33·1 ± 18·6 cm s−1 and depth 50·2 ± 18·0 cm). Niche overlap was considerable. The Arctic charr observed were on average larger (total length) than Atlantic salmon and brown trout (mean ±s .d . 21·9 ± 8·0, 10·2 ± 3·1 and 13·4 ± 4·5 cm). Similar habitat segregation between Atlantic salmon and brown trout was found by electrofishing, but more fishes were observed in shallower habitats. Electrofishing suggested that Arctic charr occupied habitats similar to brown trout. These results, however, are biased because electrofishing was inefficient in the slow-deep habitat favoured by Arctic charr. Habitat use changed between day and night in a similar way for all three species. At night, fishes held positions closer to the bottom than in the day and were more often observed in shallower stream areas mostly with lower water velocities and finer substrata. The observed habitat segregation is probably the result of interference competition, but the influence of innate selective differences needs more study.  相似文献   

19.
The Arctic Ocean currently has the highest global average pH. However, due to increasing atmospheric CO2 levels, it will become a region with one of the lowest global pH levels. In addition, Arctic waters will also increase in temperature as a result of global warming. These environmental changes can pose a significant threat for marine species, and in particular true Arctic species that are adapted to the historically cold and relatively stable abiotic conditions of the region. Consequently, we investigated some key physiological responses of brittlestar Ophiocten sericeum, a polar endemic which can dominate benthic infauna, to a temperature increase of 3.5°C (ambient, 5–8.5°C) and CO2 induced reduction in pH of 0.6 units (pH 7.7) and 1 unit (pH 7.3) below ambient (pH 8.3). Metabolism was upregulated at low pH. Faster arm regeneration stimulated by increased temperature was counteracted by low pH; at pH 7.3 in the high-temperature treatment, the maintenance of calcium carbonate structures in undersaturated conditions resulted in reduction in the rate of arm regeneration, possibly due to accelerated the use of energy reserves. If so, this could result in an energy deficit at times of increased energetic costs associated with responding to the combined factors of high temperature and low pH.  相似文献   

20.
Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short‐term temperature dependencies of Antarctic soil bacterial community growth rates, using the leucine incorporation technique, in order to predict future changes in temperature sensitivity of resident soil bacterial communities. Soil samples were collected along a climate gradient consisting of locations on the Antarctic Peninsula (Anchorage Island, 67 °34′S, 68 °08′W), Signy Island (60 °43′S, 45 °38′W) and the Falkland Islands (51 °76′S 59 °03′W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell‐field habitats. The bacterial communities were adapted to the mean annual temperature of their environment, as shown by a significant correlation between the mean annual soil temperature and the minimum temperature for bacterial growth (Tmin). Every 1 °C rise in soil temperature was estimated to increase Tmin by 0.24–0.38 °C. The optimum temperature for bacterial growth varied less and did not have as clear a relationship with soil temperature. Temperature sensitivity, indicated by Q10 values, increased with mean annual soil temperature, suggesting that bacterial communities from colder regions were less temperature sensitive than those from the warmer regions. The OTC warming (generally <1 °C temperature increases) over 3 years had no effects on temperature relationship of the soil bacterial community. We estimate that the predicted temperature increase of 2.6 °C for the Antarctic Peninsula would increase Tmin by 0.6–1 °C and Q10 (0–10 °C) by 0.5 units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号