首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.

Background

It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP.

Results

Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5′ end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans.

Conclusion

MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.
  相似文献   

2.
Wei  Runmin  Wu  Yanyan 《BMC genetics》2018,19(1):75-66

Background

Identification of interactions between epigenetic factors and treatments might lead to personalized intervention of diseases. This paper aims to examine the modification effect of fenofibrate therapy on the association of methylation levels and fasting blood triglycerides (TG), and the related biological pathways among methylation sites.

Results

Mixed-effects models were employed to assess pre- and posttreatment associations and drug modification effects simultaneously. Five cytosine-phosphate-guanine (CpG) sites were found to be associated with TG levels before and after the fenofibrate therapy: cg00574958, cg17058475, and cg01082498 on CPT1A gene, chromosome 11; cg03725309 on SARS, chromosome 1; and cg06500161 on ABCG1, chromosome 21. In addition, fenofibrate therapy modified the methylation levels on the following 4 CpG sites: cg20015535 (gene EGLN1, chromosome 1); cg24870738 (gene RNF220, chromosome 1); cg06891775 (gene LOC283050, chromosome 10); and cg00607630 (gene USP7, chromosome 16). Further, gene set enrichment analysis (GSEA) identified cancer- and metabolism-related pathways that were associated with TG-related CpG sites.

Conclusions

We identified modification effects of fenofibrate on the associations between blood TG levels and several CpG sites. Pathway enrichment analysis indicated the alternations in some metabolism and cancer-related pathways. Our findings have important implications for future research in pharmacoepigenetics and personalized medicine.
  相似文献   

3.

Background

An important feature in many genomic studies is quality control and normalization. This is particularly important when analyzing epigenetic data, where the process of obtaining measurements can be bias prone. The GAW20 data was from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN), a study with multigeneration families, where DNA cytosine-phosphate-guanine (CpG) methylation was measured pre- and posttreatment with fenofibrate. We performed quality control assessment of the GAW20 DNA methylation data, including normalization, assessment of batch effects and detection of sample swaps.

Results

We show that even after normalization, the GOLDN methylation data has systematic differences pre- and posttreatment. Through investigation of (a) CpGs sites containing a single nucleotide polymorphism, (b) the stability of breeding values for methylation across time points, and (c) autosomal gender-associated CpGs, 13 sample swaps were detected, 11 of which were posttreatment.

Conclusions

This paper demonstrates several ways to perform quality control of methylation data in the absence of raw data files and highlights the importance of normalization and quality control of the GAW20 methylation data from the GOLDN study.
  相似文献   

4.

Background

There are many variables affecting the onset of puberty in animals, including genetic, nutritional, and environmental factors. Recent studies suggest that epigenetic regulation, especially DNA methylation, plays a majorrole in the regulation of puberty. However, there have been no reports on DNA methylation of the pubertal genome.

Methods

We investigated DNA methylation in the female rat hypothalamus at prepuberty and puberty using reduced representation bisulfite sequencing technology. The identified genes and signaling pathways exhibiting changes to DNA methylation in pubertal rats were determined by Gene Ontogeny and Kyoto Encyclopedia of Genes and Genomes analysis.

Results

The distribution of the three types of methylated C bases in promoter and CpG island (CGI) regions in the hypothalamus was as follows: 87.79% CG, 3.05% CHG, 9.16% CHH for promoters, and 88.35% CG, 3.21% CHG, 88.35% CHH for CGI in prepubertal rats; and 90.78% CG, 2.13% CHG, 7.09% CHH for promoters, and 88.59% CG, 88.59% CHG, 8.35% CHH for CGI in pubertal animals. CG showed the highest percentage of methylation, and was the highest methylation state in CGI. Compared to prepubertal hyoyhalamus samples, we identified ten genes with altered methylation in promoter regions in the pubertal hypothalamus samples, and 43 genes with altered methylation in the CGI. Changes in DNA methylation were found in gonadotropin-releasing hormone signaling pathways, and the oocyte meiosis pathway.

Conclusion

Our results demonstrate changes in DNA methylation occur in female rats from prepuberty to puberty suggestng DNA methylation may play a crucial role in the regulation of puberty onset. This study provides essential information for future studies on the role of epigenetics in the regulation of puberty.
  相似文献   

5.

Background

Studies that aim at explaining phenotypes or disease susceptibility by genetic or epigenetic variants often rely on clustering methods to stratify individuals or samples. While statistical associations may point at increased risk for certain parts of the population, the ultimate goal is to make precise predictions for each individual. This necessitates tools that allow for the rapid inspection of each data point, in particular to find explanations for outliers.

Results

ACES is an integrative cluster- and phenotype-browser, which implements standard clustering methods, as well as multiple visualization methods in which all sample information can be displayed quickly. In addition, ACES can automatically mine a list of phenotypes for cluster enrichment, whereby the number of clusters and their boundaries are estimated by a novel method. For visual data browsing, ACES provides a 2D or 3D PCA or Heat Map view. ACES is implemented in Java, with a focus on a user-friendly, interactive, graphical interface.

Conclusions

ACES has been proven an invaluable tool for analyzing large, pre-filtered DNA methylation data sets and RNA-Sequencing data, due to its ease to link molecular markers to complex phenotypes. The source code is available from https://github.com/GrabherrGroup/ACES.
  相似文献   

6.

Background

DNA sequence can be viewed as an unknown language with words as its functional units. Given that most sequence alignment algorithms such as the motif discovery algorithms depend on the quality of background information about sequences, it is necessary to develop an ab initio algorithm for extracting the “words” based only on the DNA sequences.

Methods

We considered that non-uniform distribution and integrity were two important features of a word, based on which we developed an ab initio algorithm to extract “DNA words” that have potential functional meaning. A Kolmogorov-Smirnov test was used for consistency test of uniform distribution of DNA sequences, and the integrity was judged by the sequence and position alignment. Two random base sequences were adopted as negative control, and an English book was used as positive control to verify our algorithm. We applied our algorithm to the genomes of Saccharomyces cerevisiae and 10 strains of Escherichia coli to show the utility of the methods.

Results

The results provide strong evidences that the algorithm is a promising tool for ab initio building a DNA dictionary.

Conclusions

Our method provides a fast way for large scale screening of important DNA elements and offers potential insights into the understanding of a genome.
  相似文献   

7.
8.

Background

Mixtures of beta distributions are a flexible tool for modeling data with values on the unit interval, such as methylation levels. However, maximum likelihood parameter estimation with beta distributions suffers from problems because of singularities in the log-likelihood function if some observations take the values 0 or 1.

Methods

While ad-hoc corrections have been proposed to mitigate this problem, we propose a different approach to parameter estimation for beta mixtures where such problems do not arise in the first place. Our algorithm combines latent variables with the method of moments instead of maximum likelihood, which has computational advantages over the popular EM algorithm.

Results

As an application, we demonstrate that methylation state classification is more accurate when using adaptive thresholds from beta mixtures than non-adaptive thresholds on observed methylation levels. We also demonstrate that we can accurately infer the number of mixture components.

Conclusions

The hybrid algorithm between likelihood-based component un-mixing and moment-based parameter estimation is a robust and efficient method for beta mixture estimation. We provide an implementation of the method (“betamix”) as open source software under the MIT license.
  相似文献   

9.

Background

DNA methylation has been identified to be widely associated to complex diseases. Among biological platforms to profile DNA methylation in human, the Illumina Infinium HumanMethylation450 BeadChip (450K) has been accepted as one of the most efficient technologies. However, challenges exist in analysis of DNA methylation data generated by this technology due to widespread biases.

Results

Here we proposed a generalized framework for evaluating data analysis methods for Illumina 450K array. This framework considers the following steps towards a successful analysis: importing data, quality control, within-array normalization, correcting type bias, detecting differentially methylated probes or regions and biological interpretation.

Conclusions

We evaluated five methods using three real datasets, and proposed outperform methods for the Illumina 450K array data analysis. Minfi and methylumi are optimal choice when analyzing small dataset. BMIQ and RCP are proper to correcting type bias and the normalized result of them can be used to discover DMPs. R package missMethyl is suitable for GO term enrichment analysis and biological interpretation.
  相似文献   

10.

Background

Longitudinal data and repeated measurements in epigenome-wide association studies (EWAS) provide a rich resource for understanding epigenetics. We summarize 7 analytical approaches to the GAW20 data sets that addressed challenges and potential applications of phenotypic and epigenetic data. All contributions used the GAW20 real data set and employed either linear mixed effect (LME) models or marginal models through generalized estimating equations (GEE). These contributions were subdivided into 3 categories: (a) quality control (QC) methods for DNA methylation data; (b) heritability estimates pretreatment and posttreatment with fenofibrate; and (c) impact of drug response pretreatment and posttreatment with fenofibrate on DNA methylation and blood lipids.

Results

Two contributions addressed QC and identified large statistical differences with pretreatment and posttreatment DNA methylation, possibly a result of batch effects. Two contributions compared epigenome-wide heritability estimates pretreatment and posttreatment, with one employing a Bayesian LME and the other using a variance-component LME. Density curves comparing these studies indicated these heritability estimates were similar. Another contribution used a variance-component LME to depict the proportion of heritability resulting from a genetic and shared environment. By including environmental exposures as random effects, the authors found heritability estimates became more stable but not significantly different. Two contributions investigated treatment response. One estimated drug-associated methylation effects on triglyceride levels as the response, and identified 11 significant cytosine-phosphate-guanine (CpG) sites with or without adjusting for high-density lipoprotein. The second contribution performed weighted gene coexpression network analysis and identified 6 significant modules of at least 30 CpG sites, including 3 modules with topological differences pretreatment and posttreatment.

Conclusions

Four conclusions from this GAW20 working group are: (a) QC measures are an important consideration for EWAS studies that are investigating multiple time points or repeated measurements; (b) application of heritability estimates between time points for individual CpG sites is a useful QC measure for DNA methylation studies; (c) drug intervention demonstrated strong epigenome-wide DNA methylation patterns across the 2 time points; and (d) new statistical methods are required to account for the environmental contributions of DNA methylation across time. These contributions demonstrate numerous opportunities exist for the analysis of longitudinal data in future epigenetic studies.
  相似文献   

11.
12.

Background

An accumulation of evidence has revealed the important role of epigenetic factors in explaining the etiopathogenesis of human diseases. Several empirical studies have successfully incorporated methylation data into models for disease prediction. However, it is still a challenge to integrate different types of omics data into prediction models, and the contribution of methylation information to prediction remains to be fully clarified.

Results

A stratified drug-response prediction model was built based on an artificial neural network to predict the change in the circulating triglyceride level after fenofibrate intervention. Associated single-nucleotide polymorphisms (SNPs), methylation of selected cytosine-phosphate-guanine (CpG) sites, age, sex, and smoking status, were included as predictors. The model with selected SNPs achieved a mean 5-fold cross-validation prediction error rate of 43.65%. After adding methylation information into the model, the error rate dropped to 41.92%. The combination of significant SNPs, CpG sites, age, sex, and smoking status, achieved the lowest prediction error rate of 41.54%.

Conclusions

Compared to using SNP data only, adding methylation data in prediction models slightly improved the error rate; further prediction error reduction is achieved by a combination of genome, methylation genome, and environmental factors.
  相似文献   

13.

Background

Periodontitis i.e. inflammation of the periodontium is a multifactorial disease. Antimicrobial peptides (AMPs) which demonstrate a broad-spectrum of activity against varied number of bacteria, fungi, viruses, and parasites, and cancerous cells have been linked to periodontitis. The AMPs even possess the caliber of immunomodulation, and are significantly responsive to innate immuno-stimulation and infections. LL-37 plays a salubrious role by preventing and in treatment of chronic forms of periodontitis.

Objective

In the present work we will review the role of antimicrobial peptide LL-37 in periodontitis.

Methods

A systematic search was carried out from the beginning till August, 2016 using the Pubmed search engine. The keywords included “LL-37,” “periodontitis,” “Papillon–Lefevre syndrome,” “Morbus Kostmann,” “Haim-Munk syndrome” along with use of Boolean operator “and.”

Results

The search resulted in identifying 67 articles which included articles linking LL-37 with periodontitis, articles on Papillon–Lefevre syndrome, Morbus Kostmann, Haim-Munk syndrome, LL-37 and periodontitis and articles on pathogenicity of periodontitis.

Conclusion

The literature search concluded that LL-37 plays a pivotal role in preventing and treatment of severe form of periodontitis.
  相似文献   

14.
15.

Background

Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA.

Results

We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods.

Conclusions

The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.
  相似文献   

16.

Background

Erythropoiesis is regulated by a range of intrinsic and extrinsic factors, including different cytokines. Recently, the role of catecholamines has been highlighted in the development of erythroid cell lineages.

Objective

This study focuses on the biological links interconnecting erythroid development and the sympathetic nervous system. The emerging evidence that underscores the role of catecholamines in the regulation of erythropoietin and other erythropoiesis cytokines are thoroughly reviewed, in addition to elements such as iron and the leptin hormone that are involved in erythropoiesis.

Methods

Relevant English-language studies were identified and retrieved from the PubMed search engine (1981–2017) using the following keywords: “Erythropoiesis”, “Catecholamines”, “Nervous system”, and “Cytokines.”

Results

Chronic social stress alters and suppresses erythroid development. However, the physiological release of catecholamines is an additional stimulator of erythropoiesis in the setting of anemia. Therefore, the severity and timing of catecholamine secretion might distinctly regulate erythroid homeostasis.

Conclusion

Understanding the relationship of catecholamines with different elements of the erythroid islands will be essential to find the tightly regulated production of red blood cells (RBCs) in both chronic and physiological catecholamine activation.
  相似文献   

17.

Background

Integrative analysis on multi-omics data has gained much attention recently. To investigate the interactive effect of gene expression and DNA methylation on cancer, we propose a directed random walk-based approach on an integrated gene-gene graph that is guided by pathway information.

Methods

Our approach first extracts a single pathway profile matrix out of the gene expression and DNA methylation data by performing the random walk over the integrated graph. We then apply a denoising autoencoder to the pathway profile to further identify important pathway features and genes. The extracted features are validated in the survival prediction task for breast cancer patients.

Results

The results show that the proposed method substantially improves the survival prediction performance compared to that of other pathway-based prediction methods, revealing that the combined effect of gene expression and methylation data is well reflected in the integrated gene-gene graph combined with pathway information. Furthermore, we show that our joint analysis on the methylation features and gene expression profile identifies cancer-specific pathways with genes related to breast cancer.

Conclusions

In this study, we proposed a DRW-based method on an integrated gene-gene graph with expression and methylation profiles in order to utilize the interactions between them. The results showed that the constructed integrated gene-gene graph can successfully reflect the combined effect of methylation features on gene expression profiles. We also found that the selected features by DA can effectively extract topologically important pathways and genes specifically related to breast cancer.
  相似文献   

18.
19.

Background

Reduced representation bisulfite sequencing (RRBS) has been widely used to profile genome-scale DNA methylation in mammalian genomes. However, the applications and technical performances of RRBS with different fragment sizes have not been systematically reported in pigs, which serve as one of the important biomedical models for humans. The aims of this study were to evaluate capacities of RRBS libraries with different fragment sizes to characterize the porcine genome.

Results

We found that the MspI-digested segments between 40 and 220 bp harbored a high distribution peak at 74 bp, which were highly overlapped with the repetitive elements and might reduce the unique mapping alignment. The RRBS library of 110–220 bp fragment size had the highest unique mapping alignment and the lowest multiple alignment. The cost-effectiveness of the 40–110 bp, 110–220 bp and 40–220 bp fragment sizes might decrease when the dataset size was more than 70, 50 and 110 million reads for these three fragment sizes, respectively. Given a 50-million dataset size, the average sequencing depth of the detected CpG sites in the 110–220 bp fragment size appeared to be deeper than in the 40–110 bp and 40–220 bp fragment sizes, and these detected CpG sties differently located in gene- and CpG island-related regions.

Conclusions

In this study, our results demonstrated that selections of fragment sizes could affect the numbers and sequencing depth of detected CpG sites as well as the cost-efficiency. No single solution of RRBS is optimal in all circumstances for investigating genome-scale DNA methylation. This work provides the useful knowledge on designing and executing RRBS for investigating the genome-wide DNA methylation in tissues from pigs.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号