首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
We have characterized a deletion of approximately 9 kilobases which spans from intron 33 to exon 48 of one pro-alpha 1 (III) collagen allele in a patient with Ehlers-Danlos syndrome type IV. The mutation results in the production of an in-frame species of mRNA which lacks the sequences corresponding to residues 595-1,008 of the triple-helical domain. Thus, half of the pro-alpha 1 (III) chains synthesized by the patient's fibroblasts are nearly 30% shorter than normal. The procollagen III molecules composed of either three normal length or three shortened chains are thermally stable and efficiently secreted. In contrast, the procollagen III molecules that contain one or two shortened chains are unstable and are not secreted. Failure to secrete unstable molecules and a residual functional role of the shortened but stable homotrimers may explain the somewhat milder phenotype of this individual compared with that of another Ehlers-Danlos type IV patient bearing a deletion of similar size in the amino-terminal portion of the alpha 1 (III) collagen chain.  相似文献   

2.
We have studied the folding, processing, and association with two endoplasmic reticulum (ER) resident proteins of the abnormal type I procollagen molecules produced by a strain of fibroblasts harboring a 4.5 kilobase deletion in an allele of COL1A2 (Willing, M. C., Cohn, D.H., Starman, B. Holbrook, K.A., Greenberg, C.R., and Byers, P.H. (1988) J. Biol. Chem. 263, 8398-8404). By sequencing cDNA, we found that the mutant allele encodes pro alpha 2(I) chains that are shortened by 180 amino acids but retain the Gly-X-Y repeat pattern crucial for collagen triple helix formation. The type I procollagen molecules that incorporated the shortened chain were retained intracellularly and were stable. The triple helical domain in these molecules did not attain a normal conformation and remained accessible to posttranslational modifying enzymes amino-terminal to the deletion site for a prolonged period. The abnormal molecules folded into a triple helical conformation more slowly than the normal molecules, and the amino-terminal ends of the pro alpha 1(I) chains failed to become protease-resistant. While the abnormal procollagen molecules were not bound by the ER-resident protein BiP, they stably associated with protein disulfide isomerase, the beta-subunit of prolyl-4-hydroxylase. These results indicate that some mutations in type I collagen genes both transiently delay folding and permanently disrupt the structure of the triple helix and suggest that binding to prolyl-4-hydroxylase helps to retain certain abnormal procollagen molecules within the ER.  相似文献   

3.
We characterized a de novo 4.5 kilobase pair deletion in the paternally derived alpha 2(I) collagen allele (COL1A2) from a patient with perinatal lethal osteogenesis imperfecta. The intron-to-intron deletion removed the seven exons which encode residues 586-765 of the triple helical domain of the chain. Type I procollagen molecules that contain the mutant pro-alpha 2(I) chain have a lower than normal thermal stability, undergo increased post-translational modification amino-terminal to the deletion junction, and are retained within the rough endoplasmic reticulum. The block to secretion appears to result from improper assembly of the triple helix, apparently a consequence of a disruption of charge-charge interactions between the shortened pro-alpha 2(I) chain and normal pro-alpha 1(I) chains. The lethal effect may be due to decreased secretion of normal collagen and secretion of a small amount of abnormal collagen that disrupts matrix formation.  相似文献   

4.
Mutations in the COL3A1 gene that encodes the chains of type III procollagen result in the vascular form of Ehlers-Danlos syndrome (EDS), EDS type IV, if they alter the sequence in the triple-helical domain. Although other fibrillar collagen-gene mutations that lead to allele instability or failure to incorporate proalpha-chains into trimers-and that thus reduce the amount of mature molecules produced-result in clinically apparent phenotypes, no such mutations have been identified in COL3A1. Furthermore, mice heterozygous for Col3a1 "null" alleles have no identified phenotype. We have now found three frameshift mutations (1832delAA, 413delC, and 555delT) that lead to premature termination codons (PTCs) in exons 27, 6, and 9, respectively, and to allele-product instability. The mRNA from each mutant allele was transcribed efficiently but rapidly degraded, presumably by the mechanisms of nonsense-mediated decay. In a fourth patient, we identified a point mutation, in the final exon, that resulted in a PTC (4294C-->T [Arg1432Ter]). In this last instance, the mRNA was stable but led to synthesis of a truncated protein that was not incorporated into mature type III procollagen molecules. In all probands, the presenting feature was vascular aneurysm or rupture. Thus, in contrast to mutations in genes that encode the dominant protein of a tissue (e.g., COL1A1 and COL2A1), in which "null" mutations result in phenotypes milder than those caused by mutations that alter protein sequence, the phenotypes produced by these mutations in COL3A1 overlap with those of the vascular form of EDS. This suggests that the major effect of many of these dominant mutations in the "minor" collagen genes may be expressed through protein deficiency rather than through incorporation of structurally altered molecules into fibrils.  相似文献   

5.
We have identified an infant with the perinatal lethal form of osteogenesis imperfecta (type II) whose cells synthesize in equal amounts two different pro alpha 1(I) chains of type I procollagen: one chain is normal in length, the other contains an insertion of approximately 50-70 amino acid residues within the triple helical domain defined by amino acids 123-220. The structure of the insertion is consistent with duplication of an approximately 600-base pair segment in one allele of the alpha 1(I) gene (COL1A1). These cells synthesize normal type I procollagen molecules as well as molecules that contain one or two mutant chains. Unlike type I procollagen molecules synthesized by cells from most other infants with osteogenesis imperfecta type II which contain increased lysyl hydroxylation and hydroxylysyl glycosylation along the triple helical domain, the abnormal molecules synthesized by these cells are not overmodified. The lethal effect of this mutation may result from secretion of about one-quarter the normal amount of normal type I procollagen and secretion of a large amount of a molecule which has a lowered melting temperature, is extended asymmetrically, and which has altered structure in domains important for cross-link formation and bone mineralization.  相似文献   

6.
Fibroblasts from a proband with Ehlers-Danlos syndrome type VII synthesized approximately equal amounts of normal and shortened pro alpha 2(I) chains of type I procollagen. Nuclease S1 probe protection experiments with mRNA demonstrated that the pro alpha 2(I) chains were shortened because of a deletion of most or all of the 54 nucleotides in exon 6, the exon that contains codons for the cleavage site for procollagen N-proteinase. Sequencing of genomic clones revealed a single-base mutation that converted the first nucleotide of intron 6 from G to A. Therefore, the mutation was a change, in the -GT-consensus splice site, that produced efficient exon skipping. Allele-specific oligonucleotide hybridizations demonstrated that the proband's mother, father, and brother did not have the mutation. Therefore, the mutation was a sporadic one. Analysis of potential 5' splice sites in the 5' end of intron 6 indicated that none had favorable values by the two commonly employed techniques for evaluating such sites. The proband is the fourth reported proband with Ehlers-Danlos syndrome VII with a single-base mutation that causes skipping of exon 6 in the splicing of RNA from either the COL1A1 gene or COL1A2 gene. No other mutations in the two type I procollagen genes have been found in the syndrome. Therefore, such mutations may be a common cause of the phenotype. The primers developed should be useful in screening for the same or similar mutations causing the disease.  相似文献   

7.
Skin fibroblasts from a patient with a lethal form of osteogenesis imprefecta were found to synthesize equal amounts of normal pro-alpha 1(I) chains and pro-alpha 1(I) chains which are about 10% shorter because of a deletion of about 100 amino acids in the middle of the alpha chain domain. The pro-alpha 1(I) chains were incorporated into three different kinds of trimers: a normal type I trimer with normal length pro-alpha 1(I) chains; a type Is trimer with one shortened pro-alpha 1(I) chain and two normal length chains; and a type Iss trimer containing two shortened pro-alpha 1(I) chains and one normal length pro-alpha 2(I) chain. As judged by resistance to digestion by chymotrypsin and trypsin, the type Is and Iss trimers denatured at a temperature at least 3 degrees C lower than normal type I procollagen. Procollagen containing the shortened pro-alpha 1(I) chains was slowly secreted by the cells but was degraded by extracellular proteinases within 6 h of chase into the medium. The results indicated that the presence of the shortened pro-alpha 1(I) chains in procollagen trimers produces a delay in rate of helix formation, overmodification of the polypeptides by post-translational enzymes, a decrease in the thermal stability of the trimers, and increased susceptibility of the protein to endogenous proteinases. Additionally, the fibroblasts of this patient synthesized and secreted a type III-like species of procollagen with unusual chromatographic properties.  相似文献   

8.
The dermis of a child with Ehlers-Danlos syndrome type IV (EDS-IV) contained about 11% of the normal amount of type III collagen and cultured dermal fibroblasts produced a reduced amount of type III procollagen which was secreted poorly. Type III collagen produced by these cells contained normal and abnormal alpha-chains and cyanogen bromide peptides. The site of the structural defect in the abnormal alpha 1 (III) chains was localized to the region of Met797, which is at the junction of the two carboxyl-terminal CB5 and CB9 cyanogen bromide peptides. Chemical cleavage of heteroduplexes formed between EDS-IV mRNA and a normal cDNA clone covering the CB5 and CB9 region showed that about 100 nucleotides were mismatched. Sequencing of amplified and cloned cDNA spanning the mutant region revealed a 108 nucleotide deletion corresponding to amino acid residues Gly775 to Lys810. The deleted nucleotide sequence corresponded to sequences that, by analogy to the organization of the type I collagen genes, should be precisely encoded by exon 41 of the COL3A1 gene. Sequencing of amplified genomic DNA, prepared using disimilar amounts of primers specific for exons 41 and 42, displayed a base substitution (G-to-A) in the highly conserved GT dinucleotide of the 5' splice site of intron 41. Normal sequences were also obtained from the normal allele. It is likely that the GT-to-AT transition at the splice donor site of intron 41 generated an abnormally spliced mRNA in which sequences of exon 40 and 42 were joined together with maintenance of the reading frame. The corresponding peptide deletion included the cyanogen bromide cleavage site Met797-Pro798 and the mammalian collagenase cleavage site at Gly781-Ile782. These losses account for the resistance of EDS-IV collagen to cyanogen bromide and mammalian collagenase digestion. Cultured fibroblasts produced normal homotrimer, mutant homotrimer, and mixed heterotrimer type III collagen molecules. The mutant homotrimer molecules were the major pepsin-resistant species and about 69% of the alpha 1(III) mRNA was in the mutant form.  相似文献   

9.
Molecular defects of type III procollagen in Ehlers-Danlos syndrome type IV   总被引:10,自引:0,他引:10  
Summary Fibroblasts from most patients with Ehlers-Danlos syndrome (EDS) type IV, a disorder characterized by fragility of skin, blood vessels, and internal organs, secrete reduced amounts of type III procollagen. In 7 of 8 cell strains analyzed, we found evidence of structural defects in half of the type III procollagen chains synthesized, such as deletions or bona fide amino acid substitutions, which cause delayed formation and destabilization of the collagen triple helix and, as a consequence, reduced secretion of the molecule. The data suggest that EDS type IV is often caused by heterozygosity for mutations at the COL3A1 locus, which affect the structure of type III procollagen. The triple-helical region of the molecule, like the homologous region of type I procollagen, appears to be particularly vulnerable.Parts of this work have been presented at the 2nd International Conference on Molecular Biology and Pathology of Matrix, Philadelphia, June 15–18, 1988  相似文献   

10.
11.
A mini-gene version of the human gene for a pro-alpha 1(I) chain of type I procollagen (COL1A1) was prepared that contained -2.5 kilobases of the promoter region and the 5'- and 3'-ends of the gene but lacked a large central region containing 41 exons. The construct was modeled after a sporadic in-frame deletion of the human gene that produced a lethal variant of osteogenesis imperfecta, because it caused synthesis of shortened pro-alpha 1(I) chains that associated with normal pro-alpha 1(I) and pro-alpha 2(I) chains and caused degradation of both the shortened and normal pro-alpha chains through a process called procollagen suicide. The mini-gene was used to prepare transgenic mice. Eight of 15 transgenic mice expressed varying levels of the gene. All except one of the Fo founders were phenotypically normal, but several of the founders were apparently mosaic since they produced F1 progeny that died shortly after birth with a distinctive phenotype. The phenotype included extensive fractures of ribs and long bones similar to the fractures seen in lethal variants of osteogenesis imperfecta. Mice with the lethal phenotype expressed much higher levels of the mini-gene than transgenic mice without the lethal phenotype. Experiments with cultured skin fibroblasts from the transgenic mice demonstrated that shortened pro-alpha 1(I) chains synthesized from the mini-gene became disulfide-linked to pro-alpha 1(I) chains synthesized from the endogenous mouse gene. The results demonstrate that a mutated type I procollagen gene based on the model of procollagen suicide can be used to produce a severe phenotype of osteogenesis imperfecta that is genetically transmitted.  相似文献   

12.
Summary Ehlers-Danlos syndrome (EDS) type IV is a rare and catastrophic genetic disorder of the connective tissue. Individuals from two families with this disorder were studied for a restriction fragment length polymorphism (RFLP) associated with the COL3A1 gene. Our results suggested cosegregation of the EDS type IV phenotype with a COL3A1 RFLP allele. Biochemical studies in cultured skin fibroblasts indicated the presence of different mutations affecting the stability and secretion of the pro1(III) chains of type III procollagen in the two families, thus suggesting that EDS type IV is biochemically heterogeneous. Our data demonstrated the feasibility of molecular diagnosis in this condition using COL3A1 gene related RFLPs.  相似文献   

13.
The synthesis of type III procollagen was examined in cultured fibroblasts from ten patients with type IV Ehlers-Danlos syndrome, a heritable disorder of connective tissue. With fibroblasts from nine patients, a decreased amount of labeled type III procollagen was recovered in the medium after the cells were incubated with radioactive amino acids for 24 h. The results were compatible with undefined defects in type III procollagen. The culture medium from one patient contained apparently normal amounts of type III procollagen after a 24-h labeling. However, the pro-alpha 1(III) chains from the medium of the patient's fibroblasts appeared as an abnormally broad band when examined by gel electrophoresis in sodium dodecyl sulfate. Analysis of fragments generated by vertebrate collagenase and cyanogen bromide located a structural defect between amino acid residues 555 and 775 in half of the alpha 1(III) chains. Most of the patient's type III procollagen was susceptible to digestion by pepsin or a mixture of chymotrypsin and trypsin at temperatures at which normal type III procollagen resisted digestion. Cyanogen bromide digestion of samples of the patient's skin revealed that the amount of type III was reduced more than 4-fold. The results support the hypothesis that both normal and structurally altered pro-alpha 1(III) chains are being incorporated into type III procollagen synthesized by the patient's fibroblasts and that type III procollagen molecules containing one, two, or three structurally altered pro-alpha 1(III) chains are rapidly degraded by proteinases in the tissues.  相似文献   

14.
15.
Osteogenesis imperfecta (OI) is characterized by bone fragility and fractures that may be accompanied by bone deformity, dentinogenesis imperfecta, short stature, and shortened life span. About 90% of individuals with OI have dominant mutations in the type I collagen genes COL1A1 and COL1A2. Recessive forms of OI resulting from mutations in collagen-modifying enzymes and chaperones CRTAP, LEPRE1, PPIB, and FKBP10 have recently been identified. We have identified an autosomal-recessive missense mutation (c.233T>C, p.Leu78Pro) in SERPINH1, which encodes the collagen chaperone-like protein HSP47, that leads to a severe OI phenotype. The mutation results in degradation of the endoplasmic reticulum resident HSP47 via the proteasome. Type I procollagen accumulates in the Golgi of fibroblasts from the affected individual and a population of the secreted type I procollagen is protease sensitive. These findings suggest that HSP47 monitors the integrity of the triple helix of type I procollagen at the ER/cis-Golgi boundary and, when absent, the rate of transit from the ER to the Golgi is increased and helical structure is compromised. The normal 3-hydroxylation of the prolyl residue at position 986 of the triple helical domain of proα1(I) chains places the role of HSP47 downstream from the CRTAP/P3H1/CyPB complex that is involved in prolyl 3-hydroxylation. Identification of this mutation in SERPINH1 gives further insight into critical steps of the collagen biosynthetic pathway and the molecular pathogenesis of OI.  相似文献   

16.
We report the complete sequence of the human COL9A3 gene that encodes the alpha3 chain of heterotrimeric type IX collagen, a member of the fibril-associated collagens with interrupted triple helices family of collagenous proteins. Nucleotide sequencing defined over 23,000 base pairs (bp) of the gene and about 3000 bp of the 5'-flanking sequences. The gene contains 32 exons. The domain and exon organization of the gene is almost identical to a related gene, the human COL9A2 gene. However, exon 2 of the COL9A3 gene codes for one -Gly-X-Y- triplet less than exon 2 of the COL9A2 gene. The difference is compensated by an insertion of 9 bp coding for an additional triplet in exon 4 of the COL9A3 gene. As a result, the number of -Gly-X-Y- repeats in the third collagenous domain remains the same in both genes and ensures the formation of an in-register triple helix. In the course of screening this gene for mutations, heterozygosity for separate 9-bp deletions within the COL1 domain were identified in two kindreds. In both instances, the deletions did not co-segregate with any disease phenotype, suggesting that they were neutral variants. In contrast, similar deletions in triple helical domain of type I collagen are lethal. To study whether alpha3(IX) chains with the deletion will participate in the formation of correctly folded heterotrimeric type IX collagen, we expressed mutant alpha3 chains together with normal alpha1 and alpha2 chains in insect cells. We show here that despite the deletion, mutant alpha3 chains were secreted as heterotrimeric, triple helical molecules consisting of three alpha chains in a 1:1:1 ratio. The results suggest that the next noncollagenous domain (NC2) is capable of correcting the alignment of the alpha chains, and this ensures the formation of an in-register triple helix.  相似文献   

17.
Type I procollagen is a heterotrimer composed of two proalpha1(I) chains and one proalpha2(I) chain, encoded by the COL1A1 and COL1A2 genes, respectively. Mutations in these genes usually lead to dominantly inherited forms of osteogenesis imperfecta (OI) by altering the triple helical domains, but a few affect sequences in the proalpha1(I) C-terminal propeptide (C-propeptide), and one, which has a phenotype only in homozygotes, alters the proalpha2(I) C-propeptide. Here we describe four dominant mutations in the COL1A2 gene that alter sequences of the proalpha2(I) C-propeptide in individuals with clinical features of a milder form of the disease, OI type IV. Three of the four appear to interfere with disulfide bonds that stabilize the C-propeptide conformation and its interaction with other chains in the trimer. Cultured cells synthesized proalpha2(I) chains that were slow to assemble with proalpha1(I) chains to form heterotrimers and that were retained intracellularly. Some alterations led to the uncharacteristic formation of proalpha1(I) homotrimers. These findings show that the C-propeptide of proalpha2(I), like that of the proalpha1(I) C-propeptide, is essential for efficient assembly of type I procollagen heterotrimers. The milder OI phenotypes likely reflect a diminished amount of normal type I procollagen, small populations of overmodified heterotrimers, and proalpha1(I) homotrimers that are compatible with normal skeletal growth.  相似文献   

18.
Ehlers-Danlos syndrome (EDS) type IV is a dominantly inherited disorder that results from mutations in the type III collagen gene (COL3A1). We studied the structure of the COL3A1 gene of an individual with EDS type IV and that of her phenotypically normal parents. The proband was heterozygous for a 2-kb deletion in COL3A1, while her father was mosaic for the same deletion in somatic and germ cells. In fibroblasts from the father, approximately two-fifths of the COL3A1 alleles carried the deletion, but only 10% of the COL3A1 alleles in white blood cells were of the mutant species. The deletion in the mutant allele extended from intron 7 into intron 11. There was a 12-bp direct repeat in intron 7 and intron 11, the latter about 60 bp 5' to the junction. At the breakpoint there was a duplication of 10 bp from intron 11 separated by an insertion of 4 bp contained within the duplicated sequence. The father was mosaic for the deletion so that the gene rearrangement occurred during his early embryonic development prior to lineage allocation. These findings suggest that at least some of the deletions seen in human genes may occur during replication, rather than as a consequence of meiotic crossing-over, and that they thus have a risk for recurrence when observed de novo.  相似文献   

19.
Cultured dermal fibroblasts from an infant with the lethal perinatal form of osteogenesis imperfecta (type II) synthesize normal and abnormal forms of type I procollagen. The abnormal type I procollagen molecules are excessively modified during their intracellular stay, have a lower than normal melting transition temperature, are secreted at a reduced rate, and form abnormally thin collagen fibrils in the extracellular matrix in vitro. Overmodification of the abnormal type I procollagen molecules was limited to the NH2-terminal three-fourths of the triple helical domain. Two-dimensional mapping of modified and unmodified alpha chains of type I collagen demonstrated neither charge alterations nor large insertions or deletions in the region of alpha 1(I) and alpha 2(I) in which overmodification begins. Both the structure and function of type I procollagen synthesized by cells from the parents of this infant were normal. The simplest interpretation of the results of this study is that the osteogenesis imperfecta phenotype arose from a new dominant mutation in one of the genes encoding the chains of type I procollagen. Given the requirement for glycine in every third position of the triple helical domain, the mutation may represent a single amino acid substitution for a glycine residue. These findings demonstrate further heterogeneity in the biochemical basis of osteogenesis imperfecta type II and suggest that the nature and location of mutations in type I procollagen may determine phenotypic variation.  相似文献   

20.
We have investigated one member of a family with dominant osteogenesis imperfecta type IV through three generations. In protein-chemical studies of cultured fibroblasts derived from the proband, collagen I was overmodified, with normal processing of procollagen 1, normal thermal stability, and a cyanogen bromide peptide map that suggested a C-terminal location of the structural abnormality in the collagen triple helix. Sequencing of the gene encoding the 2(I) chain of collagen I (COL1A2) indicated a nine base-pair deletion of nucleotides 3418–3426. When a polymerase chain reaction product containing the nucleotides in question was electrophoresed in a 12% polyacrylamide gel, two bands with a difference in size of nine base pairs could be shown. Sequencing of the lower molecular weight band confirmed the deletion of the nine base pairs involving codons 1003–1006 of COL1A2. The deletion introduced aSfiI restriction site that was used for confirmation of the deletion in genomic DNA from the proband. The deletion resulted in the removal of three amino acids (Gly-Pro-Pro), but this did not disrupt the Gly-X-Y sequence of the collagen triple helix, as is often the case in the more common glycine substitutions. We discuss the ways in which this deletion could result in osteogenesis imperfecta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号