首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen H  He J  Fong S  Wilcox G  Wood C 《Journal of virology》2000,74(6):2703-2713
Jembrana disease virus (JDV) is a bovine lentivirus genetically similar to bovine immunodeficiency virus; it causes an acute and sometimes fatal disease in infected animals. This virus carries a very potent Tat that can strongly activate not only its own long terminal repeat (LTR) but also the human immunodeficiency virus (HIV) LTR. In contrast, HIV Tat cannot reciprocally activate the JDV LTR (H. Chen, G. E. Wilcox, G. Kertayadnya, and C. Wood, J. Virol. 73:658-666, 1999). This indicates that in transactivation JDV Tat may utilize a mechanism similar to but not the same as that of the HIV Tat. To further study the similarity of JDV and HIV tat in transactivation, we first tested the responses of a series of HIV LTR mutants to the JDV Tat. Cross-transactivation of HIV LTR by JDV Tat was impaired by mutations that disrupted the HIV type 1 transactivation response element (TAR) RNA stem-loop structure. Our results demonstrated that JDV Tat, like HIV Tat, transactivated the HIV LTR at least partially in a TAR-dependent manner. However, the sequence in the loop region of TAR was not as critical for the function of JDV Tat as it was for HIV Tat. The competitive inhibition of Tat-induced transactivation by the truncated JDV or HIV Tat, which consisted only of the activation domain, suggested that similar cellular factors were involved in both JDV and HIV Tat-induced transactivation. Based on the one-round transfection assay with HIV tat mutant proviruses, the cotransfected JDV tat plasmid can functionally complement the HIV tat defect. To further characterize the effect of JDV Tat on HIV, a stable chimeric HIV carrying the JDV tat gene was generated. This chimeric HIV replicated in a T-cell line, C8166, and in peripheral blood mononuclear cells, which suggested that JDV Tat can functionally substitute for HIV Tat. Further characterization of this chimeric virus will help to elucidate how JDV Tat functions and to explain the differences between HIV and JDV Tat transactivation.  相似文献   

2.
3.
Transactivation of heterologous promoters by HIV-1 tat.   总被引:3,自引:0,他引:3       下载免费PDF全文
P Han  R Brown    J Barsoum 《Nucleic acids research》1991,19(25):7225-7229
  相似文献   

4.
Cells expressing human immunodeficiency virus type 1 (HIV-1) tat can transactivate the HIV-1 long terminal repeat (LTR) in cocultured T lymphocytes. In this report, we describe the molecular requirements for transcellular activation of the LTR in Jurkat cells. An analysis with deletion mutants and blocking antibodies demonstrated a requirement for env expression in addition to tat expression for transcellular activation to occur. The results suggest that the transient association of CD4 and gp120 in cocultured cells is required for tat-mediated transcellular activation. The events that follow CD4-gp120 binding in transactivation, however, do not require the gp120-neutralizing domain, in contrast to HIV-mediated fusion and infection. The consequences of this interaction on cellular function are currently under investigation.  相似文献   

5.
6.
7.
D-Penicillamine, an amino acid analogue of cysteine, has been shown to inhibit the transactivation of HIV-1 LTR by the transactivator protein, tat protein. The transactivation was studied in Jurkat cells co-transfected with plasmids containing HIV-LTR sequences fused to the bacterial chloramphenicol acetyltransferase (CAT) gene and HIV tat gene. The expression of CAT activity was a measure of transactivation of LTR by the tat protein. Incubation of transfected Jurkat cells with D-penicillamine led to inhibition of CAT activity. This inhibition was found to be concentration-dependent; more than 90% inhibition of chloramphenicol acetylation was seen in extracts prepared from cultures incubated with 40 micrograms/ml of D-penicillamine. Earlier experiments have shown that D-penicillamine at 40 micrograms/ml can completely inhibit HIV-1 (HTLV-III B) replication in H9 cells [(1986) Drug Res. 36, 184-186]. These results suggest that inhibition of transactivation may be the molecular mechanism involved in the inhibition of HIV-1 replication by D-penicillamine.  相似文献   

8.
9.
10.
Human immunodeficiency virus (HIV)-infected CD8 lymphocytes have been reported in vivo, but the mechanism of infection remains unclear. Experiments using the thy/hu mouse model support export of intrathymically infected CD8 precursors, while recent in vitro data suggest that mature CD8 lymphocytes upregulate CD4 upon activation (generating a CD8bright CD4dim phenotype) and are susceptible to HIV infection. To determine whether these mechanisms operate in vivo and to assess their relative importance in the generation of circulating HIV-infected CD8 lymphocytes, we quantified HIV long terminal repeat (LTR) DNA in CD8+ CD4- and CD8bright CD4dim lymphocytes isolated from HIV-infected individuals by fluorescence-activated cell sorting. HIV infection of CD8 lymphocytes was demonstrated in 17 of 19 subjects, with a significant inverse relationship between level of infection and CD4 lymphocyte count (R = -0.73; P < 0.001). The level of HIV infection of CD8bright CD4dim lymphocytes was significantly higher (median, 1,730 HIV LTR copies/10(6) cells; n = 9) than that of CD8+ CD4- lymphocytes (undetectable in seven of nine individuals; P < 0.01) and approached that of CD4 lymphocytes from the same individuals (median, 3,660 HIV LTR copies/10(6) cells). CD8bright CD4dim lymphocytes represented 0.8 to 3.3% of total CD8 lymphocytes and were most prevalent in the memory subset. Thus, HIV-infected CD8 lymphocytes commonly circulate in HIV-infected individuals and are generated through infection of activated CD8 lymphocytes rather than through export of intrathymically infected precursors. The high level of infection of CD8bright CD4dim lymphocytes could have a direct role in the decline in CD8 lymphocyte function that accompanies HIV disease progression.  相似文献   

11.
12.
13.
14.
Lentiviruses are known to encode factors which trans activate expression from the viral long terminal repeat (LTR); the primary trans activator is the tat gene product. One of the putative accessory genes (tat) of the bovine immunodeficiency-like virus (BIV) bears sequence similarity to other lentivirus tat genes. This finding suggests that BIV may encode a trans-activating protein capable of stimulating LTR-directed gene expression. To test this hypothesis in vitro, BIV LTR-chloramphenicol acetyltransferase (CAT) reporter gene plasmids were constructed and transfected into three cell lines established from canine, bovine, or lapine tissues that are susceptible to BIV infection. The level of BIV LTR-directed CAT gene expression was significantly elevated in BIV-infected cells compared with uninfected cells. The relatively high basal-level expression of BIV LTR-CAT in uninfected canine and bovine cell lines suggests that cellular factors play a role in regulating BIV LTR-directed gene expression. Additionally, by using a clonal canine cell line in which the BIV LTR-CAT plasmid is stably expressed, BIV LTR-directed CAT expression is elevated 15- to 80-fold by cocultivation with BIV-infected cells, supporting the notion that BIV encodes a trans activator. The relative specificity of this viral activation was assessed by coculturing the clonal BIV LTR-CAT cell line with bovine leukemia virus- or bovine syncytial virus-infected cells; these bovine retroviruses increased expression from the BIV LTR only two- to threefold. Thus, BIV LTR regulatory elements in infected cells, like those of human immunodeficiency virus type 1 and other lentiviruses, are trans activated, presumably through the action of a Tat-like protein and cellular factors.  相似文献   

15.
HIV-specific CD8 T cell responses are defective in chronic HIV infection. In this study, we report that costimulation with either CD137L (4-1BBL) or CD80 (B7.1) enhanced the Ag-specific expansion and acquisition of effector function by HIV-specific memory CD8 T cells. Ag-specific T cells from recently infected donors showed maximal expansion with single costimulatory molecules. Dual costimulation of T cells from recently infected donors or from healthy donors responding to influenza epitopes led to enhanced responses when the accumulation of cytokines was measured. However, accumulation of regulatory cytokines, particularly IFN-gamma, led to inhibition of further Ag-specific CD8 T cell expansion in the cultures. This inhibition was relieved by neutralization of IFN-gamma or of IFN-gamma, TNF, and IL-10. Thus, strong costimulation of T cells in vitro can lead to induction of regulatory cytokines at levels that limit further T cell expansion. In marked contrast, T cells from long-term (>4 years) infected HIV+ donors exhibited reduced Ag-specific CD8 T cell expansion, reduced CD4 T cell responses, and minimal cytokine accumulation. Dual costimulation with both 4-1BBL and B7.1 enhanced responses of T cells from long-term infected subjects to a level similar to that obtained with T cells from early in HIV infection. Experiments with purified CD8 T cells showed that B7.1 and 4-1BBL could act directly and synergistically on CD8 T cells. Taken together, these data suggest that 4-1BBL and B7.1 have additive or synergistic effects on HIV-specific CD8 T cell responses and represent a promising combination for therapeutic vaccination for HIV.  相似文献   

16.
Simian immunodeficiency virus from rhesus macaques (SIVmac), like human immunodeficiency virus type 1 (HIV-1), encodes a transactivator (tat) which stimulates long terminal repeat (LTR)-directed gene expression. We performed cotransfection assays of SIVmac and HIV-1 tat constructs with LTR-CAT reporter plasmids. The primary effect of transactivation for both SIVmac and HIV-1 is an increase in LTR-directed mRNA accumulation. The SIVmac tat gene product partially transactivates an HIV-1 LTR, whereas the HIV-1 tat gene product fully transactivates an SIVmac LTR. Significant transactivation is achieved by the product of coding exon 1 of the HIV-1 tat gene; however, inclusion of coding exon 2 results in a further increase in mRNA accumulation. In contrast, coding exon 2 of the SIVmac tat gene is required for significant transactivation. These results imply that the tat proteins of SIVmac and HIV-1 are functionally similar but not interchangeable. In addition, an in vitro-generated mutation in SIVmac tat disrupts splicing at the normal splice acceptor site at the beginning of coding exon 2 and activates a site approximately 15 nucleotides downstream. The product of this splice variant stimulates LTR-directed gene expression. This alternative splice acceptor site is also used by a biologically active provirus with an efficiency of approximately 5% compared with the upstream site. These data suggest that a novel tat protein is encoded during the course of viral infection.  相似文献   

17.
Expression cloning of functional receptor used by SARS coronavirus   总被引:32,自引:0,他引:32  
We have expressed a series of truncated spike (S) glycoproteins of SARS-CoV and found that the N-terminus 14-502 residuals were sufficient to bind to SARS-CoV susceptible Vero E6 cells. With this soluble S protein fragment as an affinity ligand, we screened HeLa cells transduced with retroviral cDNA library from Vero E6 cells and obtained a HeLa cell clone which could bind with the S protein. This cell clone was susceptible to HIV/SARS pseudovirus infection and the presence of a functional receptor for S protein in this cell clone was confirmed by the cell-cell fusion assay. Further studies showed the susceptibility of this cell was due to the expression of endogenous angiotensin-converting enzyme 2 (ACE2) which was activated by inserted LTR from retroviral vector used for expression cloning. When human ACE2 cDNA was transduced into NIH3T3 cells, the ACE2 expressing NIH3T3 cells could be infected with HIV/SARS pseudovirus. These data clearly demonstrated that ACE2 was the functional receptor for SARS-CoV.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) is transactivated by various extracellular signals and viral cofactors that include human herpesviruses. These transactivators are capable of transactivating the HIV-1 LTR through the transactivation response element, NF-kappa B, or other regulatory binding elements. Human herpesvirus 6 (HHV-6) is a potential cofactor of HIV-1. Here, we report that an HHV-6 gene segment, ZVH14, which can neoplastically transform NIH 3T3 and human keratinocytes, is capable of transactivating HIV-1 LTR chloramphenicol acetyltransferase constructs in an Sp1 binding site-dependent manner. Transactivation increased synergistically in the presence of multiple Sp1 sites and was dramatically reduced by cotransfection with oligomers designed to form triplex structures with HIV-1 LTR Sp1 binding sites. HIV-1 LTR NF-kappa B sites were not essential for ZVH14-mediated transactivation. A putative open reading frame in ZVH14, B115, which may encode a highly basic peptide consisting of 115 amino acid residues, showed transactivation capacity similar to that of ZVH14. This open reading frame also transactivated the HIV-1 LTR in an Sp1 site-dependent fashion in African green monkey kidney cells and human T cells. These data suggest that HHV-6 may stimulate HIV-1 replication via transactivation of Sp1 binding sites present in the HIV-1 promoter.  相似文献   

19.
All human immunodeficiency virus mRNAs contain a sequence known as TAR (trans-activating responsive sequence). The TAR element forms a stable RNA stem-loop structure which binds the HIV tat (trans-activator) protein and mediates increased viral gene expression. In principle, molecules which bind to the TAR RNA structure would inhibit trans-activation by perturbing the native RNA secondary structure. We have constructed a series of phosphodiester and phosphorothioate antisense oligonucleotides which specifically bind to the HIV TAR element. Specific binding to the TAR element was demonstrated in vitro with enzymatically synthesized TAR RNA. The TAR-directed phosphorothioates inhibited trans-activation in a sequence-dependent fashion in a cell culture model using an HIV LTR/human placental alkaline phosphatase gene fusion and tat protein supplied in trans. The molecules also inhibited HIV replication in both acute and chronically infected viral assays, but without sequence specificity. We have constructed a series of vectors consisting of the MMTV promoter and 5'-untranslated region of four different mRNAs, including the TAR region, to study the effect of TAR on gene expression in heterologous systems. The results suggest that, in the absence of the HIV LTR, the TAR element has a repressive effect on gene expression, which is relieved by tat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号