首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The countertransport of Ca2+ and Na+ across the membranes of the unicellular fresh-water algaChlamydomonas reinhardtii CW-15 and twoDunaliella species differing in salt tolerance was studied. All algae used are devoid of cell walls. The calcium uptake by twoDunaliella species depended markedly on the intracellular sodium concentration. This calcium uptake was accompanied by Na+ release. For 15 and 30 s after artificial gradient formation (Naint + greater than Naext +) the ratio of released Na+ to absorbed Ca2+ was 31 and 41, respectively. For the extremely halotolerantD. salina, the apparent Michaelis constant of the Ca2+ uptake was 33 M, and for the marine halotolerant algaD. maritima, it was equal to 400 M, presuming more efficient Na+-for-Ca2+ exchange inD. salina cells. Ouabain, an inhibitor of Na+/K+-ATPase, suppressed Na+ transfer by 25%, whereas the agents blocking Ca2+-channels did not affect the transport of Ca2+ and Na+. The oppositely directed transmembrane Ca2+ and Na+ transfer was shown to depend on the external concentrations of Na+ and H+. In the fresh-water algaC. reinhardtii CW-15 (Naext + greater than Naint +), the direction of Ca2+ and Na+ fluxes across the plasma membrane was opposite to those described for Dunaliella cells. The results obtained point to the ability of the Na+-Ca2+ exchanger function in plasma membranes of algal cells.  相似文献   

2.
The Na+-independent binding of [3H]-alanine to rat brain stem plus spinal cord was reinvestigated, in order to study in more detail the characteristics of previously described -alanine binding processes. Binding was absent when amino acid-free postnuclear supernatants or crude synaptic membranes were used. Experiments performed with several other Na+-free preparations showed a sole binding component, irrespective of the preparation used. Biochemical characterization of this Na+-independent binding, using frozen/thawed/washed synaptosomal-mitochodrial fractions, showed that binding reached a plateau between 7 min and 13 min, increasing thereafter. Binding was linear with fraction protein over a range of 200–415 g/ml incubation medium. Binding was completely inhibited by glycine, alanine, -aminobutyric acid, -aminoisobutyric acid, hypotaurine and strychnine, and to a lesser extent by 2,2-dimethyl--alanine, brucine and gelsemine. It was insensitive to taurine, -aminobutyric acid (GABA), 2-guanidinoethanesulfonic acid (GES), carnosine, and bicuculline methiodide. Binding was reversible, saturable (K D 20 M), and heat sensitive.  相似文献   

3.
The ionic requirements for K+-evoked efflux of endogenous taurine from primary cerebellar astrocyte cultures were studied. The Ca2+ ionophore A23187 evoked taurine efflux in a dose-dependent fashion with a time-course identical to that of K+-induced efflux. The Ca2+-channel antagonist nifedipine had no effect upon efflux induced by 10 or 50 mM K+. In addition, verapamil did not antagonize 50 mM K+-evoked efflux except at high, non-pharmacological concentrations (>100 M), and preincubation with 2 M -conotoxin had no effect on 50 mM K+-evoked efflux. Similarly, preincubation with 1 mM ouabain had no effect on the amount of taurine released by K+ stimulation, but did accelerate the onset of efflux by 2–4 min. Although 2 M tetrodotoxin had no effect on K+-evoked release, replacing Na+ with choline abolished the taurine efflux seen in response to K+ stimulation. Together, these findings suggest that neuronal N- and L-type Ca2+- and voltage-dependent Na+-channels are not involved in the influx of Ca2+ which appears to be necessary for K+-evoked taurine efflux, and that in addition to Ca2+, extracellular Na+ is also required.  相似文献   

4.
Preparations of synaptosomes isolated in sucrose or in Na+-rich media were compared with respect to internal pH (pH1), internal Ca2+ concentration ([Ca2+]i), membrane potential and45Ca2+ uptake due to K+ depolarization and Na+/Ca2+ exchange. We found that synaptosomes isolated in sucrose media have a pHi of 6.77±0.04 and a [Ca2+]i of about 260 nM, whereas synaptosomes isolated in Na+-rich ionic media have a pHi of 6.96±0.07 and a [Ca2+]i of 463 nM, but both types of preparations have similar membrane potentials of about –50 mV when placed in choline media. The sucrose preparation takes up Ca2+ only by voltage sensitive calcium channels (VSCC'S) when K+-depolarized, while the Na+-rich synaptosomes take up45Ca2+ both by VSCC'S and by Na+/Ca2+ exchange. The amiloride derivative 2, 4 dimethylbenzamil (DMB), at 30 M, inhibits both mechanisms of Ca2+ influx, but 5-(N-4-chlorobenzyl)-2, 4 dimethylbenzamil (CBZ-DMB), at 30 M, inhibits the Ca2+ uptake by VSCC'S, but not by Na+/Ca2+ exchange. Thus, DMB and CBZ-DMB permit distinguishing between Ca2+ flux through channels and through Na+/Ca2+ exchange. We point out that the different properties of the two types of synaptosomes studied account for some of the discrepancies in results reported in the literature for studies of Ca2+ fluxes and neurotransmitter release by different types of preparations of synaptosomes.Abbreviations used BCECF 2,7-Biscarboxyethyl-5(6)-carboxyfluorescein - BCECF/AM acetoxymethyl ester of BCECF - [Ca2+]i Internal free calcium ion concentration - CBZ-DMB 5-(N-4-chlorobenzyl)-2,4-dimethylbenzamil - DMB 2, 4-dimethylbenzamil - DMSO dimethyl sulfoxide - Indo-1/AM acetoxymethyl ester of Indo-1 - MES 2-|N-Morpholino|ethanesulfonic acid - NMG N-methyl-D-glucamine - pHi internal pH - TPP+ tetraphenylphosphonium - p plasma membrane potential  相似文献   

5.
The effects of ions on taurine and -alanine uptake were studied in astrocytes during cellular differentiation in primary cultures. The uptakes were strictly Na+-dependent and also inhibited by the omission of K+ and in the presence of ouabain suggesting that their transport is fuelled mainly by these cation gradients. Two sodium ions were associated in the transport of one taurine and -alanine molecule across cell membranes. A reduction in Cl concentration also markedly inhibited the uptake of both amino acids, indicating that this anion is of importance in the transport processes. The similar ion dependency profiles of taurine and -alanine uptake corroborate the assumption that the uptake of these amino acids in astrocytes is mediated by the same carrier. In Na+- and K+-free media both taurine and -alanine uptakes were reduced significantly more in 14-day-old or older than in 7-day-old cultures. No significant changes occurred in the coupling ratio between Na+ and taurine or -alanine as a function of spontaneous cellular differentiation or upon dBcAMP treatment. These results suggest that the uptake systems of these structurally related amino acids in astrocytes have reached a relatively high degree of functional maturity by two weeks in culture.  相似文献   

6.
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 m Ca2+ andV max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.  相似文献   

7.
Outside-out configuration of the patch clamp technique was used to test whether an intracellular application of G protein activator (GTPS) affects ATP-activated Ca2+-permeable channels in rat macrophages without any agonist in the bath solution. With 145 mm K+ (pCa 8.0) in the pipette solution, activity of channels permeable to a variety of divalent cations and Na+ was observed and general channel characteristics were found to be identical to those of ATP-activated ones. Absence of extracellular ATP makes it possible to avoid the influence of ATP receptor desensitization and to study the channel selectivity using a number of divalent cations (105 mm) and Na+ (145 mm) as the charge carriers. Permeability sequence estimated by extrapolated reversal potential measurements was: Ca2+ Ba2+ Mn2+ Sr2+ Na+ K+ = 68 30 26 10 3.5 1. Slope conductances (in pS) for permeant ions rank as follows: Ca2+ Sr2+ Na+ Mn2+ Ba2+ = 19 18 14 12 10. Unitary Ca2+ currents display a tendency to saturate with the Ca2+ concentration increase with apparent dissociation constant (K d ) of 10 mm. No block of Na+ permeation by extracellular Ca2+ in millimolar range was found. The data obtained suggest that (i) activation of some G protein is sufficient to gate the channels without the ATP receptor being occupied, (ii) the ATP receptor activation results in the gating of a special channel with the properties that differ markedly from those of the receptoroperated or voltage-gated Ca2+-permeable channels on the other cell types.DeceasedThe authors are grateful to K. Kiselyov and A. Mamin for technical assistance. The work was supported by the Russian Basic Research Foundation, Grant N 93-04-21722 and was made possible in part by Grant N R4A000 from the International Science Foundation.  相似文献   

8.
Summary The presence of a coupled Na+/Ca2+ exchange system has been demonstrated in plasma membrane vesicles from rat pancreatic acinar cells. Na+/Ca2+ exchange was investigated by measuring45Ca2+ uptake and45Ca2+ efflux in the presence of sodium gradients and at different electrical potential differences across the membrane (=) in the presence of sodium. Plasma membranes were prepared by a MgCl2 precipitation method and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the plasma membrane, (Na++K+)-ATPase was enriched by 23-fold. Markers for the endoplasmic reticulum, such as RNA and NADPH cytochromec reductase, as well as for mitochondria, the cytochromec oxidase, were reduced by twofold, threefold and 10-fold, respectively. For the Na+/Ca2+ countertransport system, the Ca2+ uptake after 1 min of incubation was half-maximal at 0.62 mol/liter Ca2+ and at 20 mmol/liter Na+ concentration and maximal at 10 mol/liter Ca2+ and 150 mmol/liter Na+ concentration, respecitively. When Na+ was replaced by Li+, maximal Ca2+ uptake was 75% as compared to that in the presence of Na+. Amiloride (10–3 mol/liter) at 200 mmol/liter Na+ did not inhibit Na+/Ca2+ countertransport, whereas at low Na+ concentration (25 mmol/liter) amiloride exhibited dose-dependent inhibition to be 62% at 10–2 mol/liter. CFCCP (10–5 mol/liter) did not influence Na+/Ca2+ countertransport. Monensin inhibited dose dependently; at a concentration of 5×10–6 mol/liter inhibition was 80%. A SCN or K+ diffusion potential (=), being positive at the vesicle inside, stimulated calcium uptake in the presence of sodium suggesting that Na+/Ca2+ countertransport operates electrogenically, i.e. with a stoichiometry higher than 2 Na+ for 1 Ca2+. In the absence of Na+, did not promote Ca2+ uptake. We conclude that in addition to ATP-dependent Ca2+ outward transport as characterized previously (E. Bayerdörffer, L. Eckhardt, W. Haase & 1. Schulz, 1985,J. Membrane Biol. 84:45–60) the Na+/Ca2+ countertransport system, as characterized in this study, represents a second transport system for the extrusion of calcium from the cell. Furthermore, the high affinity for calcium suggests that this system might participate in the regulation of the cytosolic free Ca2+ level.  相似文献   

9.
This review summarizes our experiments on the significance of the -subunit in the functional expression of Na+/K+-ATPase. The -subunit acts like a receptor for the -subunit in the biogenesis of Na+/K+-ATPase and facilitates the correct folding of the -subunit in the membrane. The -subunit synthesized in the absence of the -subunit is subjected to rapid degradation in the endoplasmic reticulum. Several assembly sites are assigned in the sequence of the -subunit from the cytoplasmic NH2-terminal domain to the extracellular COOH-terminus: the NH2-terminal region of the extracellular domain, the conservative proline in the third disulfide loop, the hydrophobic amino acid residues near the COOH-terminus and the cysteine residues forming the second and the third disulfide bridges. Upon assembly, the -subunit confers a resistance to trypsin on the -subunit. The conformations induced in the -subunit of Na+/K+-ATPase by Na+/K+- and H+/K+-ATPase -subunits are somehow different from each other and are named the NK-type and KH-type, respectively. The extracellular domain of the -subunit is involved in the folding of the -subunit leading to trypsin-resistant conformations. The sequences from Cys150 to the COOH-terminus of the Na+/K+-ATPase -subunit and from Ile89 to the COOH–terminus of the H+/K+-ATPase -subunit are necessary to form trypsin-resistant conformations of the NK- and HK-type. respectively. The first disulfide loop of the extracellular domain of the -subunits is critical in the expression of functional Na+/K+-ATPase.  相似文献   

10.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

11.
Volume-sensitive taurine transport in fish erythrocytes   总被引:5,自引:0,他引:5  
Summary Taurine plays an important role in cell volume regulation in both vertebrates and invertebrates. Erythrocytes from two euryhaline fish species, the eel (Anguilla japonica) and the starry flounder (Platichthys stellatus) were found to contain high intracellular concentrations of this amino acid ( 30 mmol per liter of cell water). Kinetic studies established that the cells possessed a saturable high-affinity Na+-dependent -amino-acid transport system which also required Cl for activity (apparentK m (taurine) 75 and 80 m;V max 0.85 and 0.29 mol/g Hb per hr for eel (20°C) and flounder cells (10°C), respectively. This -system operated with an apparent Na+/Cl/taurine coupling ratio of 211. A reduction in extracellular osmolarity, leading to an increase in cell volume, reversibly decreased the activity of the transporter. In contrast, low medium osmolarity stimulated the activity of a Na+-independent nonsaturable transport route selective for taurine, -amino-n-butyric acid and small neutral amino acids, producing a net efflux of taurine from the cells. Neither component of taurine transport was detected in human erythrocytes. It is suggested that these functionally distinct transport routes participate in the osmotic regulation of intracellular taurine levels and hence contribute to the homeostatic regulation of cell volume. Volume-induced increases in Na+-independent taurine transport activity were suppressed by noradrenaline and 8-bromoadenosine-3, 5-cyclic monophosphate, but unaffected by the anticalmodulin drug, pimozide.  相似文献   

12.
The release of the inhibitory amino acid -alanine was investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice, using a superfusion system. The release was enhanced by -alanine itself and the structural analogs taurine and -aminobutyrate. It was dependent on Na+, but independent of Ca2+ in both mature and immature hippocampus, being thus mostly mediated by uptake carriers operating in an outward direction. The release was potentiated in the developing mice, but not affected in the adults, by the ionotropic glutamate receptor agonists N-methyl-D-aspartate, kainate, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and tetrazolylglycine in a receptor-mediated manner. Cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals, greatly enhanced -alanine release at both ages, but more markedly in the adults. The great amounts of -alanine, together with the inhibitory amino acids taurine and -aminobutyrate, released simultaneously with the excitatory amino acids in the hippocampus may constitute an important protective mechanism against excitotoxicity, which leads to neuronal death.  相似文献   

13.
Summary A systematic study was made of the action of 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid (SITS) and 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS) on active Ca2+ transport of human erythrocytes. Pumping activity was estimated in inside-out vesicles (IOV's) by means of Ca2+-selective electrodes or use of tracer45Ca2+. The stilbenes exhibited an approximately equal inhibitory potency and their action could be overcome by carbonyl cyanidep-trifluoromethoxyphenylhydrazone (FCCP) at low but not at high stilbene concentrations. In the absence of DIDS. Ca2+ transport was not affected upon addition of valinomycin, but it was appreciably reduced when vesicles were preincubated with low DIDS concentrations. Such an effect was strictly dependent on the external K+ concentration and it was abolished when valinomycin was added together with FCCP. Similar results were obtained using IOV's prepared from intact cells which had been previously exposed to the stilbene. The findings clearly demonstrate the presence in human red cells of a partially electrogenic Ca2+ pump, exchanging one Ca2+ ion for one proton.  相似文献   

14.
The accumulation of the -amyloid peptide (AP) in the brain, produced from the ubiquitously expressed amyloid precursor protein (APP) is a defining feature of Alzheimer's disease (AD). Consistent with studies demonstrating the importance of skin biopsy in the diagnosis of neurodegenerative disorders, we investigated whether differences in intracellular free calcium levels ([Ca2+]i) of cultured cutaneous fibroblasts derived from sporadic AD patients and from age-matched control individuals might be present. [Ca2+]i was measured in Fura-2AM-loaded human fibroblasts by dual wavelength spectrofluorimetry. AD cells exhibited lower [Ca2+]i as compared to the control cultures. Exposure of fibroblasts to AP resulted in increased [Ca2+]i of the control cells, but not of AD fibroblasts. Our test could prove useful in supporting the diagnosis of (sporadic) AD in patients suspected of suffering from the disease.  相似文献   

15.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

16.
Summary A Na+-dependent hexose transport system with similar characteristics to that observed in the kidney is retained in a cultured epithelial cell line from pig kidney (LLC-PK1). The active transport of methyl-d-glucoside ( MGP), a nonmetabolizable sugar, which shares the glucose-galactose transport system in kidney cells is mediated through a Na+-dependent, substrate-saturable process. The kinetic analysis of the effect of Na+ on the uptake of MGP indicated that the Na+-sugar cotransport system is an affinity type system in which the binding of either sugar or Na+ to carrier increases the affinity for the other ligand without affecting theV max. The sequence of selectivity for different sugars studied by the inhibition produced in the uptake of MGP is very similar to that reported in rat kidney, rabbit kidney cortex slices, and rabbit renal brush border membrane vesicles. Phlorizin, even at very low concentration, almost completely inhibits MGP uptake. Conversely, phloretin at the same low concentration stimulated the sugar accumulation by inhibition of efflux, probably at the level of the basolateral membrane. Sulfhydryl group inhibitors also blocked the MGP uptake, suggesting that these groups were required for normal functioning of the sugar carrier system. This sugar transport system is an important functional marker to study the molecular events associated with the development of polarization in epithelial cells.  相似文献   

17.
Functionally active Na2+,K2+-ATPase isozymes containing three types of the catalytic subunits (1, 2, and 3) were obtained from calf brain by two methods: selective removal of contaminating proteins according to Jorgensen (1974) and selective solubilization of the enzyme with subsequent reformation of the membrane structure according to Esmann (1988). All preparations were characterized with respect to ouabain-inhibition constants. The presence of the cytoskeleton protein tubulin (3 isoform) in the high-molecular-weight complex of Na2+,K2+-ATPase 31 isozyme from brain stem axolemma and the junction between Na2+,K2+-ATPase 3 subunit and tubulin 3 subunit are shown for the first time.  相似文献   

18.
Mitochondria in Ca2+ Signaling and Apoptosis   总被引:8,自引:0,他引:8  
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injuryand programmed cell death; mitochondria play a pivotal role in the regulation of such cytosolicCa2+ ([Ca2+]c) signals. Mitochondria are endowed with multiple Ca2+ transport mechanismsby which they take up and release Ca2+ across their inner membrane. These transport processesfunction to regulate local and global [Ca2+]c, thereby regulating a number of Ca2+-sensitivecellular mechanisms. The permeability transition pore (PTP) forms the major Ca2+ effluxpathway from mitochondria. In addition, Ca2+ efflux from the mitochondrial matrix occursby the reversal of the uniporter and through the inner membrane Na+/Ca2+ exchanger. Duringcellular Ca2+ overload, mitochondria take up [Ca2+]c, which, in turn, induces opening of PTP,disruption of mitochondrial membrane potential (m) and cell death. In apoptosis signaling,collapse of ;m and cytochrome c release from mitochondria occur followed by activationof caspases, DNA fragmentation, and cell death. Translocation of Bax, an apoptotic signalingprotein from the cytosol to the mitochondrial membrane, is another step during thisapoptosis-signaling pathway. The role of permeability transition in the context of cell death in relationto Bcl-2 family of proteins is discussed.  相似文献   

19.
Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 M) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 M), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 M applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.  相似文献   

20.
The microsomal fraction isolated from dog mesenteric nerve fibres was found to contain ATPase activity stimulated by micromolar concentrations of Ca ions. Such a high-affinity Ca2+-ATPase (hereafter referred to as HA Ca-ATPase) followed a Michaelis-Menten kinetics with Km for Ca ions of 0.4 M and Vmax=12.5±2.4 mol Pi.mg–1h–1. The examination of the subcellular origin of HA Ca-ATPase revealed that this enzyme is associated with axonal plasma membranes as documented by its co-purification with several plasma membrane marker enzymes and with tetrodotoxin-sensitive3H-saxitoxin binding. The addition of exogenous magnesium ions (Mg) resulted in a non-competitive inhibition of HA Ca-ATPase with Ki=0.5 mM. The reaction velocity of HA Ca-ATPase was also inhibited by other divalent ions with the order of potency Mg>Mn >ZnCo>Ni. In contrast to low affinity (high Km) Mg- and Ca-ATPase, the HA Ca-ATPase was insensitive to the inhibition by sodium azide (10 mM) and sodium fluoride (10 mM). Similarly, the specific activity of HA Ca-ATPase was unaffected by vanadate (100 M) and N-ethylmaleinimide (100 M). It is concluded that axonal plasma membranes of dog mesenteric nerves contain HA Ca-ATPase which seems to be unrelated to calcium-transporting Mg-dependent, Ca-stimulated ATPase.Abbreviations used BSA bovine serum albumin - HA Ca-ATPase high-affinity Ca2+-ATPase - K-pNPPase onabain-sensitive, K+-stimulated p-nitrophenyl phosphatase - NEM N-ethylmaleinimide - SIM 250 mM sucrose, 10 mM imidazole-HCl pH 7.4 - TRIS tris (hydroxymethyl) aminomethane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号