首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The FHIT gene encompasses the most active common fragile site of the human genome and is thus exquisitely sensitive to intragenic alterations by DNA damaging agents, alterations that can lead to FHIT allele loss very early in the preneoplastic phase of cancer development, before or coincident with activation of the DNA damage checkpoint. Fhit protein expression is lost or reduced in many preneoplastic lesions and in >50% of cancers, Fhit knockout mice are highly susceptible to carcinogen induction of tumors and Fhit replacement in these mice by gene therapy induces apoptosis and significantly reduces tumor burden. But learning how Fhit induces apoptosis and suppresses tumors has been a challenge because interacting proteins, effectors of Fhit signals, have not been discovered.Nevertheless, the study of Fhit deficient mouse and human tissue-derived and cancer-derived cells in vitro has led to several important conclusions: repair protein-deficient cancers are more likely to be Fhit-deficient; Fhit-deficient cells show enhanced resistance to UVC, mitomycin C, camptothecin and ionizing radiation-induced cell killing, possibly due to strong activation of the ATR pathway following DNA damage; Fhit-deficient cells show higher efficiency of homologous recombination repair, a double-strand break repair pathway in mammalian cells; Fhit protein indirectly affects S-phase checkpoint and DNA repair. Finally, results of a recent study have suggested that the DNA damage-susceptible FRA3B/FHIT chromosome fragile region, paradoxically, encodes a protein, Fhit, that is necessary for protecting cells from accumulation of DNA damage, through modulation of checkpoint proteins Hus1 and phosphoChk1. Thus, inactivation of Fhit contributes to accumulation of abnormal checkpoint phenotypes in cancer development. It will be very important to determine mechanisms employed by Fhit in modulating checkpoint pathways, and to define consequences of Fhit loss in specific preneoplastic and neoplastic tissues, to provide rationales for effective replacement or reactivation of endogenous Fhit pathways in novel therapeutic or preventive approaches.  相似文献   

2.
3.
4.
Askari MD  Vo-Dinh T 《Biopolymers》2004,73(4):510-523
The fragile histidine triad (FHIT) tumor suppressor gene incorporates the common human chromosomal fragile site at 3p14.2. The structure and expression of the FHIT gene are frequently altered in many cancers. The tumor suppressor activity of the FHIT gene has been previously demonstrated as potentially involving apoptotic induction. Here, mitochondria are implicated as being involved in the apoptotic activity of the FHIT gene. A number of morphological and biochemical events, including the disruption of the inner mitochondrial transmembrane potential (Delta Psi(m)) and the release of apoptogenic cytochrome c protein into the cytoplasm, are characteristic features of the apoptotic program. The proapoptotic activity of the FHIT gene is studied by investigating the loss of Delta Psi(m) in mitochondria and translocation of cytochrome c. Synchronous luminescence (SL) spectroscopy is applied to measure mitochondrial incorporation of rhodamine 123 for direct analysis of alterations in the mitochondrial Delta Psi(m). The SL methodology is based on synchronous excitation in which the excitation and emission wavelengths are scanned simultaneously while a constant wavelength interval is maintained between the excitation and emission monochromators. An enhanced collapse of Delta Psi(m) in apoptotically induced FHIT expressing cells compared to FHIT negative cells is observed. The loss of Delta Psi(m) is greatly restricted in the presence of the apoptotic inhibitor, cyclosporin A. Cytoplasmic translocation of cytochrome c in the FHIT expressing cells as an early event in apoptosis is also demonstrated. It is concluded that Fhit protein expression maintained apoptotic function by altering the Delta Psi(m) and by enhancing cytochrome c efflux from the mitochondria.  相似文献   

5.
6.
The tumor suppressor gene FHIT is inactivated by genetic and epigenetic changes, i.e., loss of heterozygosity or promoter hypermethylation, in common human cancers. We recently showed that Fhit protein levels can be regulated by Fhit proteasome degradation mediated by EGF-dependent activation of EGFR family members, including HER2, whose overexpression is linked to poor prognosis in breast cancer. Analysis of a series of 384 human primary breast carcinomas revealed low/absent Fhit protein levels more frequently in HER2-overexpressing tumors. To test for a possible complementation of the FHIT and HER2 genes, tumor incidence was assessed in mice carrying one inactivated Fhit allele (Fhit+/-) crossed with FVB/N mice carrying the rat HER2/neu proto-oncogene driven by the mouse mammary tumor virus promoter. All Fhit heterozygous mice developed mammary tumors, whereas when both Fhit alleles (Fhit+/+) were present, tumor incidence was reduced in 27% of the mice, which remained tumor-free at 20 months. These findings suggest a protective role for FHIT in HER2-driven mammary tumors. Together, these data argue for the cooperation between Fhit and HER2 in breast carcinogenesis.  相似文献   

7.
8.
FHIT, at a constitutively active chromosome fragile site, is often a target of chromosomal aberrations and deletion in a large fraction of human tumors. Inactivation of murine Fhit allelessignificantly increases susceptibility of mice to spontaneous and carcinogen-induced tumorigenesis. In this study, transgenic mice, carrying a human FHIT cDNA under control of the endogenous promoter, were produced to determine the effect of Fhit expression, from a nonfragile cDNA transgene outside the fragile region, on carcinogen-induced tumor susceptibility of wildtype and Fhit heterozygous mice. Mice received sufficient oral doses of N-nitrosomethybenzylamine (NMBA) to cause forestomach tumors in >80% of nontransgenic control mice. Although the level of expression of the FHIT transgene in the recombinant mouse strains was much lower than the level of endogenous Fhit expression, the tumor burden in NMBA-treated male transgenic mice was significantly reduced, while female transgenic mice were not protected. To determine if the difference in protection could be due to differences in epigenetic changes at the transgene loci in male versus female mice, we examined expression, hypermethylation and induced re-expression of FHIT transgenes in male and female mice or cells derived from them. The transgene was methylated in male and female mice and in cell lines established from male and female transgenic kidneys, the FHIT locus was both hypermethylated and deacetylated. It is likely that the FHIT transgene is more tightly silenced in female transgenic mice, leading to a lack of protection from tumor induction.  相似文献   

9.
脆性组氯酸三联体(FHIT)基因定位于染色体的3p14.2,经细胞生物学、肿瘤分子生物学研究,及转基因、基因敲除技术等实验证实其为抑癌基因。FHIT主要通过某种信号途径诱导凋亡,从而抑制肿瘤细胞的增殖。研究认为,FHIT通过FHIT-底物复合物产生抑癌作用。越来越多的研究结果表明FHIT在肿瘤的预防和治疗中具有很好的应用前景。  相似文献   

10.
11.
The "Rosetta Stone" hypothesis proposes that the existence of a fusion protein in some organisms predicts that the separate polypeptides function in the same biochemical pathway in other organisms and may physically interact. In Drosophila melanogaster and Caenorhabditis elegans, NitFhit protein is composed of two domains, a fragile histidine triad homolog and a bacterial and plant nitrilase homolog. We assessed the biological effects of mammalian Nit1 expression in comparison with Fhit and observed that: 1) Nit1 expression was observed in most normal tissues and overlapped partially with Fhit expression; 2) Nit1-deficient mouse kidney cells exhibited accelerated proliferation, resistance to DNA damage stress, and increased cyclin D1 expression; 3) cyclin D1 was up-regulated in Nit1 null mammary gland and skin; 4) Nit1 overexpression induced caspase-dependent apoptosis in vitro; and 5) Nit1 allele deficiency led to increased incidence of N-nitrosomethylbenzylamine-induced murine forestomach tumors. Thus, the biological effects of Nit1 expression are similar to Fhit effects. Adenoviruses carrying recombinant NIT1 and FHIT induced apoptosis in Fhit- and Nit1-deficient cells, respectively, suggesting that Nit1-Fhit interaction is not essential for function of either protein. The results suggest that Nit1 and Fhit share tumor suppressor signaling pathways, while localization of the NIT1 gene at a stable, rather than fragile, chromosome site explains the paucity of gene alterations and in frequent loss of expression of the NIT1 gene in human malignancies.  相似文献   

12.
13.
Common chromosome fragile sites are highly recombinogenic and susceptible to deletions during the development of environmental carcinogen-induced epithelial tumors. Previous studies showed that not only genetic but also epigenetic alterations in cancerous cells are involved in inactivation of the genes FHIT and WWOX at chromosome fragile sites, reported to be potential tumor suppressor genes. Here we investigated the effect of UV light on the gene expression. After exposure to UV, the mRNA and protein of the two genes in murine embryonic fibroblasts (MEF) were unstable, apparently at the G1-S phase of the cell cycle, which was consistent with nuclear run-on assay. A study of MEFs synchronized via a double thymidine block indicated that, after the exposure, the expression of Fhit and Wwox was reduced in E2f-1-deficient cells and markedly in wild-type cells, whereas the reduction was partially inhibited in Trp53-deficient cells; cells at the S phase seemed to be sensitive to exogenous FHIT, suggesting a role of the checkpoint at the G1-S phase in the stability of gene expression and a possible involvement of FHIT function at the S phase. The transfection experiment showed that the UV-induced decrease in expression was partially inhibited by transfection of kinase-dead Atr (ataxia telangiectasia mutated and Rad3 related), which is a sensor of UV-induced damage. Taken together, the present study showed that UV-induced alterations of the fragile site gene expression are involved at least partially in the checkpoint function, suggesting the role in the process of carcinogenesis after exposure to UV.  相似文献   

14.
15.
16.
Fragile histidine triad (FHIT) gene is involved in deletions on the short arm of chromosome 3 in various human cancers. We found that 47% of colorectal adenomas, which is a higher frequency than that of K-ras, showed altered expression of the Fhit protein by Western blot analysis. The amount of Fhit protein was inversely correlated with the degree of dysplasia. Importantly, 27% of low-grade dysplastic adenomas showed altered expression of Fhit protein. Additionally, expression of human Fhit protein in human colon carcinoma cell line SW480 exhibited a marked inhibition of growth and rendered SW480 cells highly susceptible to undergo apoptosis compared with control cells. These findings suggest that altered expression of the FHIT gene is a quite early aberration in the development of colorectal tumors and that Fhit protein may act as a tumor suppressor.  相似文献   

17.
Fragile Histidine Triad (Fhit) gene deletion, methylation, and reduced Fhit protein expression occur in about 70% of human epithelial tumors and, in some cancers, are clearly associated with tumor progression. Specific Fhit signal pathways have not been identified, although it has been shown that Fhit overexpression leads to apoptosis in many cancer cell lines. We report in this study that Fhit-/- cells derived from gene knockout mice show much stronger S and G2 checkpoint responses than their wild type counterparts. The strong checkpoint responses are regulated by the ATR/CHK1 pathway, which contributes to the radioresistance of Fhit-/- cells. These results indicate an association of Fhit gene inactivation with increased survival after DNA damage, which is related to the over-active checkpoints regulated by the ATR/CHK1 pathway. These results also suggest the potential effects of Fhit-dependent DNA damage response on tumor progression.  相似文献   

18.
WWOX is a gene that spans an extremely large chromosomal region. It is derived from within chromosomal band 16q23.2 which is a region with frequent deletions and other alterations in a variety of different cancers. This chromosomal band also contains the FRA16D common fragile site (CFS). CFSs are chromosomal regions found in all individuals which are highly unstable. WWOX has also been demonstrated to function as a tumor suppressor that is involved in the development of many cancers. Two other highly unstable CFSs, FRA3B (3p14.2) and FRA6E (6q26), also span extremely large genes, FHIT and PARK2, respectively, and these two genes are also found to be important tumor suppressors. There are a number of interesting similarities between these three large CFS genes. In spite of the fact that they are derived from some of the most unstable chromosomal regions in the genome, they are found to be highly evolutionarily conserved and the chromosomal region spanning the mouse homologs of both WWOX and FHIT are also CFSs in mice. Many of the other CFSs also span extremely large genes and many of these are very attractive tumor suppressor candidates. WWOX is therefore a member of a very interesting family of very large CFS genes.  相似文献   

19.
Diadenosines as FHIT-ness instructors   总被引:5,自引:0,他引:5  
FHIT is a tumor suppressor gene that is frequently inactivated in human cancer. Although the Fhit protein is known to hydrolyze diadenosine triphosphate (Ap(3)A), this hydrolase activity is not required for Fhit-mediated oncosuppression. Indeed, the molecular mechanisms and the regulatory elements of Fhit oncosuppression are largely unknown. Here, we review physiological and pathological aspects of Fhit in the context of the Ap(n)A family of signaling molecules, as well as the involvement of Fhit in apoptosis and the cell cycle in cancer models. We also discuss recent findings of novel Fhit interactions that may lead to new hypotheses about biochemical mechanisms underlying the oncosuppressor activity of this gene.  相似文献   

20.
Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common chromosome fragile sites are exquisitely sensitive to replication stress, it has been proposed that their clonal alterations in cancer cells are due to stress sensitivity rather than to a selective advantage imparted by loss of expression of fragile gene products. Here, we show in normal, transformed, and cancer-derived cell lines that Fhit-depletion causes replication stress-induced DNA double-strand breaks. Using DNA combing, we observed a defect in replication fork progression in Fhit-deficient cells that stemmed primarily from fork stalling and collapse. The likely mechanism for the role of Fhit in replication fork progression is through regulation of Thymidine kinase 1 expression and thymidine triphosphate pool levels; notably, restoration of nucleotide balance rescued DNA replication defects and suppressed DNA breakage in Fhit-deficient cells. Depletion of Fhit did not activate the DNA damage response nor cause cell cycle arrest, allowing continued cell proliferation and ongoing chromosomal instability. This finding was in accord with in vivo studies, as Fhit knockout mouse tissue showed no evidence of cell cycle arrest or senescence yet exhibited numerous somatic DNA copy number aberrations at replication stress-sensitive loci. Furthermore, cells established from Fhit knockout tissue showed rapid immortalization and selection of DNA deletions and amplifications, including amplification of the Mdm2 gene, suggesting that Fhit loss-induced genome instability facilitates transformation. We propose that loss of Fhit expression in precancerous lesions is the first step in the initiation of genomic instability, linking alterations at common fragile sites to the origin of genome instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号