首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Abstract Genes responsible for the utilization of benzoate, anthranilate or catechol ( ben, ant, cat ) of Pseudomonas aeruginosa PAO were mapped precisely using a cosmid clone carrying all these genes. Genes were localized either by subcloning and complementation or by Tn 5 mutagenesis and mapping of the Tn 5 insertion. To achieve this, a novel Tn 5 mutagenesis procedure was developed by constructing a Tn 5 insertion derivative of the Escherichia coli strain S17-1. Preliminary mapping of the ben cat genes of P. putida PPN was accomplished by complementation using a PPN cosmid bank. Sequence homology was demonstrated by Southern hybridization between the ben regions of both P. aeruginosa and P. putida , implying an evolutionary relationship of this chromosomal region of these two pseudomonads.  相似文献   

2.
Genomic and proteomic approaches were used to investigate phthalate and benzoate catabolism in Rhodococcus sp. strain RHA1, a polychlorinated biphenyl-degrading actinomycete. Sequence analyses identified genes involved in the catabolism of benzoate (ben) and phthalate (pad), the uptake of phthalate (pat), and two branches of the beta-ketoadipate pathway (catRABC and pcaJIHGBLFR). The regulatory and structural ben genes are separated by genes encoding a cytochrome P450. The pad and pat genes are contained on a catabolic island that is duplicated on plasmids pRHL1 and pRHL2 and includes predicted terephthalate catabolic genes (tpa). Proteomic analyses demonstrated that the beta-ketoadipate pathway is functionally convergent. Specifically, the pad and pat gene products were only detected in phthalate-grown cells. Similarly, the ben and cat gene products were only detected in benzoate-grown cells. However, pca-encoded enzymes were present under both growth conditions. Activity assays for key enzymes confirmed these results. Disruption of pcaL, which encodes a fusion enzyme, abolished growth on phthalate. In contrast, after a lag phase, growth of the mutant on benzoate was similar to that of the wild type. Proteomic analyses revealed 20 proteins in the mutant that were not detected in wild-type cells during growth on benzoate, including a CatD homolog that apparently compensated for loss of PcaL. Analysis of completed bacterial genomes indicates that the convergent beta-ketoadipate pathway and some aspects of its genetic organization are characteristic of rhodococci and related actinomycetes. In contrast, the high redundancy of catabolic pathways and enzymes appears to be unique to RHA1 and may increase its potential to adapt to new carbon sources.  相似文献   

3.
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences.  相似文献   

4.
Two genes, nda2 and nda3, previously defined by cold sensitive nuclear division arrest (nda) mutations in the fission yeast Schizosaccharomyces pombe were studied. A mutant nda2-KM52 was found to be supersensitive (at the permissive temperature) to the tubulin-binding drugs such as thiabendazole, methylbenzimidazol-2yl carbamate and nocodazole. A single mutation in nda2 appears to cause both drug supersensitivity and cold sensitivity. The defective phenotypes of nda2-KM52 with a low concentration of the drugs were characterized by nuclear displacement and anomalously situated spindle pole bodies. The allele of the other mutant, nda3-KM311, was sh216 to be linked closely to the ben1 locus, which determines resistance to the drug. The identity of ben1 and nda3 genes was proved by a newly isolated mutant ben1-TB1005; it manifests ben1 resistance and the cold sensitive nda3 phenotype. At 22 degrees C, ben1-TB1005 showed cell branching and deformation characteristic of nda3-KM311. Eleven mutants supersensitive to thiabendazole were newly isolated by replica plating. Four strains were mapped in nda2, while the other four were in nda3. Most of the isolated mutants were blocked at nuclear division in the presence of a low concentration of the drug. Thus, the products of genes nda2 and nda3 (ben1) interact directly or indirectly with the drugs and control, in different ways, microtubular organization in the cells of S. pombe.  相似文献   

5.
6.
Summary Mutants resistant to the antimitotic compounds thiabendazole and methyl-2-benzimidazolecarbamate were isolated and analyzed genetically in the fission yeast, Schizosaccharomyces pombe. They comprised three groups in terms of genetic linkage. Mutants in one linkage group (ben1) differed phenotypically from those in the other two (ben2 and ben3). The former were resistant to the compounds at any physiological temperature tested, whereas the latter exhibited temperature dependent resistance. Through tetrad analysis, ben1 was mapped at the rightmost part of chromosome II, and ben2 was mapped near the centromere of the same chromosome. Haploidization experiments revealed the location of ben3 on chromosome II. By analogy with Aspergillus nidulans, it is suggested that one of these ben genes may code for tubulin.  相似文献   

7.
8.
The genes coding for the myosin heavy chain isoforms (unc-54, myo-1, myo-2 and myo-3) and the actins (act-1,2,3 and act-4) have been mapped on the embryonic metaphase chromosomes of Caenorhabditis elegans by in situ hybridization. The genes were cloned in a cosmid vector and the entire cosmid was nick translated to incorporate biotin-labeled dUTP. This produced a probe DNA complementary to a 35-45 kb length of chromosomal DNA. The hybridization signal from the cosmid probe, detected by immunofluorescence, could be easily seen by eye. The clear signals and the specific hybridization of the cosmid probes provided a faster means of mapping these single copy genes than small probes cloned in plasmid or lambda vectors. The myosin heavy chain genes are not clustered. Only unc-54 and myo-1 mapped to the same chromosome; the unc-54 locus is at the extreme right end of linkage group I and myo-1 mapped 40-50% from the left end of linkage group I. Myo-2 mapped to the X, 52-75% from the left end. The myo-3 gene mapped to the middle of linkage group V near the cluster of three actin genes (act-1,2,3). The fourth actin gene, act-4 mapped to 20-35% from the left end of X.  相似文献   

9.
Pseudomonas putida KT2440-JD1 is able to cometabolize benzoate to cis, cis-muconate in the presence of glucose as growth substrate. P. putida KT2440-JD1 was unable to grow in the presence of concentrations above 50 mM benzoate or 600 mM cis, cis-muconate. The inhibitory effects of both compounds were cumulative. The maximum specific uptake rate of benzoate was higher than the specific production rate of cis, cis-muconate during growth on glucose in the presence of benzoate, indicating that a benzoate derivative accumulated in the cells, which is likely to be catechol. Catechol was shown to reduce the expression level of the ben operon, which encodes the conversion of benzoate to cis, cis-muconate. To prevent overdoses of benzoate, a pH-stat fed-batch process for the production of cis, cis-muconate from benzoate was developed, in which the addition of benzoate was coupled to the acidification of the medium. The maximum specific production rate during the pH-stat fed-batch process was 0.6 g (4.3 mmol) g dry cell weight(-1) h(-1), whereas 18.5 g L(-1) cis, cis-muconate accumulated in the culture medium with a molar product yield of close to 100%. Proteome analysis revealed that the outer membrane protein H1 was upregulated during the pH-stat fed-batch process, whereas the expression of 10 other proteins was reduced. The identified proteins are involved in energy household, transport, translation of RNA, and motility.  相似文献   

10.
Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encoded by the RHA1 benzoate catabolic genes, benABCDK, exhibit 33 to 65% identity with those of Acinetobacter sp. strain ADP1. The gene organization of the RHA1 benABCDK genes differs from that of ADP1. The RHA1 benABCDK region was localized on the chromosome, in contrast to the biphenyl catabolic genes, which are located on linear plasmids. Escherichia coli cells containing RHA1 benABCD transformed benzoate to catechol via 2-hydro-1,2-dihydroxybenzoate. They transformed neither 2- nor 4-chlorobenzoates but did transform 3-chlorobenzoate. The RHA1 benA gene was inactivated by insertion of a thiostrepton resistance gene. The resultant mutant strain, RBD169, neither grew on benzoate nor transformed benzoate, and it did not transform 3-chlorobenzoate. It did, however, exhibit diminished growth on biphenyl and growth repression in the presence of a high concentration of biphenyl (13 mM). These results indicate that the cloned benABCD genes could play an essential role not only in benzoate catabolism but also in biphenyl catabolism in RHA1. Six rhodococcal benzoate degraders were found to have homologs of RHA1 benABC. In contrast, two rhodococcal strains that cannot transform benzoate were found not to have RHA1 benABC homologs, suggesting that many Rhodococcus strains contain benzoate catabolic genes similar to RHA1 benABC.  相似文献   

11.
Muscarinic acetylcholine receptors in mammals consist of five subtypes (M1-M5) encoded by distinct genes. They are widely expressed throughout the body and play a variety of roles in the peripheral and central nervous systems. Although their pharmacological properties have been studied extensively in vitro, colocalization of the multiple subtypes in each tissue and lack of subtype-specific ligands have hampered characterization of the respective subtypes in vivo. We have mapped mouse genomic loci for all five genes (Chrm1-5) by restriction fragment length variant (RFLV) analyses in interspecific backcross mice. Chrm1, Chrm2, and Chrm3 were mapped to chromosome (Chr) 19, 6, and 13, respectively. Both Chrm4 and Chrm5 were mapped to Chr 2. Although a comparison of their map positions with other mutations in their vicinities suggested a possibility that the El2 (epilepsy 2) allele might be a mutation in Chrm5, sequencing analyses of the Chrm5 gene in the El2 mutant mice did not support such a hypothesis.  相似文献   

12.
The sequence variability of distinct regions of the proviral env gene of human immunodeficiency virus type 2 strain ben (HIV-2ben) isolated sequentially over 3 to 4 years from six experimentally infected macaques was studied. The regions investigated were homologous to the V1, V2, V3, V4, V5, and V7 hypervariable regions identified in the env genes of HIV-1 and simian immunodeficiency virus SIVmac, respectively. In contrast to findings with HIV-1 and SIVmac, the V1- and V2-homologous regions were found to be highly conserved during the course of the HIV-2ben infection in macaques. The V3-homologous region showed a degree of variation comparable to that of HIV-1 but not of SIV. In the V4-, V5-, and V7-homologous regions, mutation hot spots were detected in most reisolates of the infected monkeys. Most of these mutations occurred during the first 10 weeks after infection. After 50 weeks, new mutations were rarely detected. At most mutation sites, a dynamic equilibrium between the mutated viral isotype and the infecting predominant wild type was present. This equilibrium might prevent an accumulation of mutations in isolates later in the course of infection.  相似文献   

13.
Our previous studies revealed that the genetic locus for chicken muscular dystrophy of abnormal muscle (AM) mapped to chromosome 2q, and that the region showed conserved synteny with human chromosome 8q11-24.3. In the current study, we mapped the chicken orthologues of genes from human chromosome 8q11-24 in order to identify the responsible gene. Polymorphisms in the chicken orthologues were identified in the parents of the resource family. Twenty-three genes and expressed sequence tags (ESTs) were mapped to chicken chromosome 2 by linkage analysis. The detailed comparative map shows a high conservation of synteny between chicken chromosome 2q and human chromosome 8q. The AM locus was mapped between [inositol(myo)-1(or4)-monophosphatase 1] (IMPA1) gene and [core-binding factor, runt domain, alpha-subunit 2; translocated to 1; cyclin D-related] (CBFA2T1) gene. The genes located between IMPA1 and CBFA2T1 are the most likely candidates for chicken muscular dystrophy.  相似文献   

14.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.  相似文献   

15.
The IncHII plasmid pHH1508a (208 kilobases) encodes resistance to potassium tellurite, trimethoprim, and streptomycin. Conjugative pili encoded by pHH1508a were isolated, purified, and used for preparation of anti-H pilus antiserum. Immuno-gold labelling experiments using H pilus specific antiserum showed that antigenic determinants were located along the entire length of the H pilus. Immuno-gold labelling and lysis studies using pilH alpha, a bacteriophage specific for H pili, were used to investigate transfer-deficient mutants of pHH1508a obtained by Tn5 mutagenesis and an in vitro constructed derivative of 96 kilobases, pDT1178, which also conferred resistance to potassium tellurite, trimethoprim, and streptomycin. The transfer-deficient mutants did not specify H pili, whereas pDT1178, which transferred at low frequency (1 x 10(-4) transconjugants per recipient), specified a small number of H pili. A naturally occurring plasmid, pMG110, was found to encode the production of H pili, but was completely transfer deficient (less than 1 x 10(-7) transconjugants per recipient). This study suggests that genes required for H pilus production and assembly as well as low level transfer are located separately within the 96-kilobase fragment of pDT1178 and that other genes, located outside this region, are essential for the regulation and full expression of conjugative transfer.  相似文献   

16.
Recent studies have revealed that the major genes of the mammalian sex determination pathway are also involved in sex determination of fish. Several studies have reported QTL in various species and strains of tilapia, regions contributing to sex determination have been identified on linkage groups 1, 3, and 23. Genes contributing to sex-specific mortality have been detected on linkage groups 2, 6, and 23. To test whether the same genes might control sex determination in mammals and fishes, we mapped 11 genes that are considered putative master key regulators of sex determination: Amh, Cyp19, Dax1, Dmrt2, Dmrta2, Fhl3l, Foxl2, Ixl, Lhx9, Sf1, and Sox8. We identified polymorphisms in noncoding regions of these genes and genotyped these sites for 90 individuals of an F2 mapping family. Mapping of Dax1 joined LG16 and LG21 into a single linkage group. The Amh and Dmrta2 genes were mapped to two distinct regions of LG23. The Amh gene was mapped 5 cM from UNH879 within a QTL region for sex determination and 2 cM from UNH216 within a QTL region for sex-specific mortality. Dmrta2 was mapped 4 cM from UNH848 within another QTL region for sex determination. Cyp19 was mapped to LG1 far from a previously reported QTL region for sex determination on this chromosome. Seven other candidate genes mapped to LG4, -11, -12, -14, and -17.  相似文献   

17.
18.
19.
20.
Pittard, James (School of Microbiology, University of Melbourne, Victoria, Australia), and B. J. Wallace. Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J. Bacteriol. 91:1494-1508. 1966.-A number of mutant strains of Escherichia coli K-12, which are blocked in the biosynthesis of the aromatic amino acids, were examined biochemically to determine their particular enzymatic deficiencies. The mutations carried by these strains were mapped by use of the methods of conjugation and transduction. Structural genes for five of the enzymes of the common pathway leading to chorismate and for the two enzymes converting chorismate to phenylpyruvate and p-hydroxyphenylpyruvate, respectively, were identified. Unlike the genes of the tryptophan operon most of these genes are distributed over widely separated regions of the chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号