首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Batch xanthan fermentations by Xanthomonas campestris NRRL B-1459 at various temperatures ranging between 22 degrees C and 35 degrees C were studied. At 24 degrees C or lower, xanthan formation lagged significantly behind cell growth, resembling typical secondary metabolism. However, at 27 degrees C and higher, xanthan biosynthesis followed cell growth from the beginning of the exponential phase and continued into the stationary phase. Cell growth at 35 degrees C was very slow; the specific growth rate was near zero. The specific growth rate had a maximum value of 0.26 h(-1) at temperatures between 27 degrees C and 31 degrees C. Cell yield decreased from 0.53 g/g glucose at 22 degrees C to 0.28 g/g glucose at 33 degrees C, whereas xanthan yield increased from 54% at 22 degrees C to 90% at 33 degrees C. The specific xanthan formation rate also increased with increasing temperature. The pyruvate content of xanthan produced at various temperatures ranged between 1.9% and 4.5%, with the maximum occurring between 27 degrees C and 30 degrees C. These results suggest that the optimal temperatures for cell growth are between 24 degrees C and 27 degrees C, whereas those for xanthan formation are between 30 degrees C and 33 degrees C. For single-stage batch fermentation, the optimal temperature for xanthan fermentation is thus dependent on the design criteria (i. e., fermentation rate, xanthan yield, and gum qualities). However, a two-stage fermentation process with temperature shift-up from 27 degrees C to 32 degrees C is suggested to optimize both cell growth and xanthan formation, respectively, at each stage, and thus to improve overall xanthan fermentation.  相似文献   

2.
Modelling Xanthomonas campestris batch fermentations in a bubble column   总被引:1,自引:0,他引:1  
Rate and yield expressions relating to biomass and xanthan formation and to nitrogen, glucose, and oxygen consumption were established for Xanthomonas campestris batch fermentations in a bubble column. Microbial growth was described by the logistic rate equation, characterized by a maximum specific growth rate mu(M) = 0.5 h(-1) and a maximum attainable cell concentration provided by nitrogenous compounds. With regard to carbon metabolism, the decrease with time in experimental yields and in the experimental specific rates of xanthan production and glucose assimilation demonstrated the inadequacy of the Luedeking-Piret model. These decreases were connected to the simultaneous drop in dissolved-oxygen tension observed during xanthan synthesis. The knowledge of metabolic pathways and energetic balance were used to establish the relationships between substrate utilization, ATP generation, and xanthan production. The model was structured by assuming the oxygen limitation of both the respiration rate and the efficiency of the oxidative phosphorylation mechanism (P/O ratio). Consequently, the specific rates and yield expressions became dependent on the dissolved-oxygen tension, i.e., of the volumetric oxygen transfer in the fermentor.  相似文献   

3.
A batch fermentation strategy using Xanthomonas campestris ATCC 13951 for xanthan gum production has been established in which all essential medium components are supplied at the onset. This has been achieved using sucrose as sole sugar feedstock. Sequential consumption of nitrogen sources (soybean hydrolysates, ammonium and nitrate salts) was observed to facilitate the further optimisation of the medium. Biomass accumulation was limited by phosphate availability. Xanthan yields of more than 60% (grams of xanthan per gram of sugar) have been obtained with constant acetyl content. However, pyruvyl substitution decreased as the growth rate declined, due to the metabolic constraints specific to phosphate depletion. High rates of carbon conversion into xanthan were observed throughout the culture and the ATP/ADP ratio was not affected by the decline in the specific growth rate.  相似文献   

4.
The kinetics of xanthan formation in Xanthomonas campestris continuous and fed-batch fermentations was studied along with metabolic changes due to growth rate variation. A maximum growth rate within the range 0.11–0.12 h–1 was obtained from the continuous culture data in defined medium, producing xanthan at rates up to 0.36 g l–1 h–1 corresponding to a maximum 67% glucose conversion at a dilution rate (D) of 0.05 h–1. Comparatively, fed-batch cultivation was more efficient, producing maximum xanthan at 0.75 g l–1 h–1 and 63% glucose conversion at 0.1 h–1. When reaching D=0.062 h–1 in continuous cultures, a change was observed and the values of the specific rate of substrate consumption shifted, initiating an uncoupled growth region expressing a lack of balance of the catabolic and anabolic reactions. The deviation was not accompanied by a change in specific xanthan production indicating that xanthan metabolism was not affected by D. For fed-batch-grown X. campestris cells within the range D=0.03–0.1 h–1, both metabolic parameters changed linearly with the growth rate showing a wide region coupled to growth. Outside that range, glucose accumulated and the specific xanthan production dropped, suggesting substrate inhibition. Correspondence to: J. C. Roseiro  相似文献   

5.
6.
Fundamental studies on the availability of oxygen from the decomposition of H(2)O(2), in vivo, by Xanthomonas campestris, when H(2)O(2) is used as an oxygen source are presented. It was found that the H(2)O(2) added extracellularly (0.1-6 mM) was decomposed intracellularly. Further, when H(2)O(2) was added, the flux of H(2)O(2) into the cell, is regulated by the cell. The steady-state H(2)O(2) flux into the cell was estimated to be 9.7 x 10(-8) mol m(-2) s(-1). In addition, it was proved that the regulation of H(2)O(2) flux was coupled to the protonmotive force (PMF) using experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), which disrupts PMF. The coupling constant between the rate of free energy availability from PMF and the rate of reduction of H(2)O(2) flux, was found to be 46.4 mol m(-2) s(-1) J(-1) from simulations using a developed model. Also, the estimated periplasmic catalase concentration was 1.4 x 10(-9) M.  相似文献   

7.
Fermentations of Xanthomonas campestris have been carried out on laboratory and pilot plant scales using various organic nitrogen sources in order to test their effectiveness in polysaccharide (xanthan) production. It was discovered that high nitrogen concentrations give highest yields of crude product and result in a need for only short fermentation times to achieve maximum product formation. These products, however, have inferior solution rheology to those produced from low-nitrogen media due partly to their high concentrations of co-precipitated microbial cells and partly to differences in tertiary molecular structure.  相似文献   

8.
Although available kinetic data provide a useful insight into the effects of medium composition on xanthan production by Xanthomonas campestris, they cannot account for the synergetic effects of carbon (glucose) and nitrogen (yeast extract) substrates on cell growth and xanthan production. In this work, we studied the effects of the glucose/yeast-extract ratio (G/YE) in the medium on cell growth and xanthan production in various operating modes, including batch, two-stage batch, and fed-batch fermentations. In general, both the xanthan yield and specific production rate increased with increasing G/YE in the medium, but the cell yield and specific growth rate decreased as G/YE increased. A two-stage batch fermentation with a G/YE shift from an initial low level (2.5% glucose/0.3% yeast extract) to a high level (5.0% glucose/0.3% yeast extract) at the end of the exponential growth phase was found to be preferable for xanthan production. This two-stage fermentation design both provided fast cell growth and gave a high xanthan yield and xanthan production rate. In contrast, fed-batch fermentation with intermittent additions of glucose to the fermentor during the stationary phase was not favorable for xanthan production because of the relatively low G/YE resulting in low xanthan production rate and yield. It is also important to use a moderately high yeast extract concentration in the medium in order to reach a high cell density before the culture enters the stationary phase. A high cell density is also important to the overall xanthan production rate. Received: 30 September 1996 / Received revision: 21 January 1997 / Accepted: 10 February 1997  相似文献   

9.
The fermentation kinetics of the homofermentative organism Lactobacillus delbrueckii in a glucose-yeast extract medium is studied in both batch and continuous culture under conditions of controlled pH. From a graphical analysis of the batch data, a mathematical model of the process is derived which relates bacterial growth, glucose utilization, and lactic acid formation. The parameters in the model represent the activity of the organism and are a function of pH, having a maximum value at about 5.90. In a continuous stirred tank fermentor (CSTF), the effect of pH, feed concentration, and residence time is observed. The feed medium is a constant ratio of two parts glucose to one part yeast extract plus added mineral salts. An approximate prediction of the steady-state behavior of the CSTF can be made using a method based on the kinetic model derived for the batch case. In making step changes from one steady state to another, the transient response is observed. Using the kinetic model to simulate the transient period, the calculated behavior qualitatively predicts the observed response.  相似文献   

10.
Xanthomonas campestris pathovar campestris is the causal agent of black rot disease of cruciferous plants. A cell-cell signalling system encoded by genes within the rpf cluster is required for the full virulence of this plant pathogen. This system has recently been implicated in regulation of the formation and dispersal of Xanthomonas biofilms.  相似文献   

11.
The phosphate solubilization activity of Xanthomonas campestris was measured in both the wild type and mutant strains using various carbon and nitrogen sources. Glucose was found to be the best in both (wild 39.9%; mutant 67.1%) strains followed by sucrose (46.8%) in the mutant and molasses (36.0%) in the wild type. Ammonium sulphate was the best nitrogen source for both the strains, followed by ammonium nitrate and urea. Dicalcium phosphate (DCP) was solubilized maximally by both the strains followed by tricalcium phosphate (TCP) and rock phosphate (RP) when various concentrations of different phosphate sources were tested.  相似文献   

12.
《Process Biochemistry》2007,42(7):1146-1149
Ram horns are waste materials from the meat industry. The objective of this study was to investigate the effects of various concentrations of ram horn (RHH) hydrolysate as a supplement on xanthan production from a local isolate of Xanthomonas campestris EBK-4 in batch culture. Firstly, ram horn hydrolysate was reproduced. The production of xanthan was influenced by the RHH. RHH supplementation promoted X. campestris growth, accelerated substrate metabolism, and increased xanthan production. A concentration of 3% v/v RHH resulted in the highest xanthan concentration (25.6 g/L) in 48 h. This value was 49% higher than that of control medium (17.1 g/L) in the absence of RHH in 60 h. The pyruvate content increased with increasing RHH concentrations. The application of RHH resulted in enhancement of xanthan production.  相似文献   

13.
It is well recognized that metabolic fluxes are the key variables that must be determined in order to understand metabolic regulation and patterns. However, owing to difficulties in measuring the flux values, evaluation of metabolic fluxes has not been an integral part of the most metabolic studies. Flux values for metabolites of glycolysis, tricarboxylic acid (TCA) cycle, and hexose monophosphate (HMP) pathway were obtained for batch and glucose-limited continuous cultures of Bacillus subtilis by combining the information from the stoichiometry of key biosynthetic reactions with the experimental data on concentrations of glucose and metabolic by-products, CO(2) evolution, and oxygen uptake rates. The results indicate that (1) the metabolic fluxes and energetic yield as well as the extent of flux mismatch in metabolic activity of glycolysis and the TCA cycle reactions can be accurately quantified; (2) the flux through the TCA cycle in continuous culture is much in excess of cell energetic and biosynthetic demands for precursors; (3) for the range of growth rates examined the TCA cycle flux increases almost in proportion to growth rate and is significantly repressed only at very high growth rates of batch cultures; and (4) for continuous cultures the isocitrate dehydrogenase catalyzed reaction of the TCA cycle is the major source of the reduced form of nicotinamide-adenine dinucleotide phosphate (NADPH) used in biosynthesis. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
15.
Meyer A  Pühler A  Niehaus K 《Planta》2001,213(2):214-222
The lipopolysaccharides (LPSXcc) of the phytopathogenic bacteria Xanthomonas campestris pv. campestris (X.c.c.) were purified from an exopolysaccharide-deficient mutant strain. The isolated LPSxcc induced an oxidative burst reaction in cell-suspension cultures of the non-host plant tobacco (Nicotiana tabacum L.) SRI. The oxidative burst elicited by LPSXcc differed from that induced by yeast elicitor (YE), a cell wall preparation of baker's yeast. The LPSXcc-induced oxidative burst was characterised by a slow increase in H2O2 production and an extended decline. Both the LPSXcc-and YE-induced oxidative bursts were completely blocked by the NAD(P)H-oxidase inhibitor diphenylene-iodonium. When LPSXcc and YE were applied in combination, a synergistic effect and the establishment of refractory states in the generation of H2O2 were observed. The amount of cytosolic calcium was measured in transgenic tobacco cell cultures carrying the apoaequorin gene by coelenterazine-derived chemiluminescence. Whereas YE induced a calcium peak within 1 min after application, LPSXcc induced a long-term calcium signal without transients. To our knowledge this is the first report on the elicitation of an oxidative burst in plant cell cultures by isolated LPS of a phytopathogenic bacterium.  相似文献   

16.
Previous studies have indicated that the yellow pigments (xanthomonadins) produced by phytopathogenic Xanthomonas bacteria are unimportant during pathogenesis but may be important for protection against photobiological damage. We used a Xanthomonas campestris pv. campestris parent strain, single-site transposon insertion mutant strains, and chromosomally restored mutant strains to define the biological role of xanthomonadins. Although xanthomonadin mutant strains were comparable to the parent strain for survival when exposed to UV light; after their exposure to the photosensitizer toluidine blue and visible light, survival was greatly reduced. Chromosomally restored mutant strains were completely restored for survival in these conditions. Likewise, epiphytic survival of a xanthomonadin mutant strain was greatly reduced in conditions of high light intensity, whereas a chromosomally restored mutant strain was comparable to the parent strain for epiphytic survival. These results are discussed with respect to previous results, and a model for epiphytic survival of X. campestris pv. campestris is presented.  相似文献   

17.
Quorum sensing and virulence regulation in Xanthomonas campestris   总被引:1,自引:0,他引:1  
It is now clear that cell–cell communication, often referred to as quorum sensing (QS), is the norm in the prokaryotic kingdom and this community-wide genetic regulatory mechanism has been adopted for regulation of many important biological functions. Since the 1980s, several types of QS signals have been identified, which are associated commonly with different types of QS mechanisms. Among them, the diffusible signal factor (DSF)-dependent QS system, originally discovered from bacterial pathogen Xanthomonas campestris pv. campestris , is a relatively new regulatory mechanism. The rapid research progress over the last few years has identified the chemical structure of the QS signal DSF, established the DSF regulon, and unveiled the general signaling pathways and mechanisms. Particular noteworthy are that DSF biosynthesis is modulated by a novel posttranslational autoinduction mechanism involving protein–protein interaction between the DSF synthase RpfF and the sensor RpfC, and that QS signal sensing is coupled to intracellular regulatory networks through a second messenger cyclic-di-GMP and a global regulator Clp. Genomic and genetic analyses show that the DSF QS-signaling pathway regulates diverse biological functions including virulence, biofilm dispersal, and ecological competence. Moreover, evidence is emerging that the DSF QS system is conserved in a range of plant and human bacterial pathogens.  相似文献   

18.
The complete genome sequence of the Xanthomonas campestris pv. campestris strain B100 was established. It consisted of a chromosome of 5,079,003bp, with 4471 protein-coding genes and 62 RNA genes. Comparative genomics showed that the genes required for the synthesis of xanthan and xanthan precursors were highly conserved among three sequenced X. campestris pv. campestris genomes, but differed noticeably when compared to the remaining four Xanthomonas genomes available. For the xanthan biosynthesis genes gumB and gumK earlier translational starts were proposed, while gumI and gumL turned out to be unique with no homologues beyond the Xanthomonas genomes sequenced. From the genomic data the biosynthesis pathways for the production of the exopolysaccharide xanthan could be elucidated. The first step of this process is the uptake of sugars serving as carbon and energy sources wherefore genes for 15 carbohydrate import systems could be identified. Metabolic pathways playing a role for xanthan biosynthesis could be deduced from the annotated genome. These reconstructed pathways concerned the storage and metabolization of the imported sugars. The recognized sugar utilization pathways included the Entner-Doudoroff and the pentose phosphate pathway as well as the Embden-Meyerhof pathway (glycolysis). The reconstruction indicated that the nucleotide sugar precursors for xanthan can be converted from intermediates of the pentose phosphate pathway, some of which are also intermediates of glycolysis or the Entner-Doudoroff pathway. Xanthan biosynthesis requires in particular the nucleotide sugars UDP-glucose, UDP-glucuronate, and GDP-mannose, from which xanthan repeat units are built under the control of the gum genes. The updated genome annotation data allowed reconsidering and refining the mechanistic model for xanthan biosynthesis.  相似文献   

19.
Mu Y  Wang G  Yu HQ 《Bioresource technology》2006,97(11):1302-1307
The kinetics of batch anaerobic hydrogen production by mixed anaerobic cultures was systemically investigated in this study. Unstructured models were used to describe the substrate utilization, biomass growth and product formation in the hydrogen production process. The relationship between the substrate, biomass and products were also evaluated. Experimental results show that the Michaelis-Menten equation, Logistic model and modified Gompertz equation all could be adopted to respectively describe the kinetics of substrate utilization, biomass growth and product formation. Furthermore, the relationship between the acidogenic products and biomass was simulated by Luedeking-Piret model very well. The experimental results suggest that the formation of hydrogen and the main aqueous products, i.e., butyrate and acetate, was all growth-associated.  相似文献   

20.
Chung WJ  Shu HY  Lu CY  Wu CY  Tseng YH  Tsai SF  Lin CH 《Proteomics》2007,7(12):2047-2058
The bacterium Xanthomonas campestris pathovar campestris (XCC) 17 is a local isolate that causes crucifer black rot disease in Taiwan. In this study, its proteome was separated using 2-DE and the well-resolved proteins were excised, trypsin digested, and analyzed by MS. Over 400 protein spots were analyzed and 281 proteins were identified by searching the MS or MS/MS spectra against the proteome database of the closely related XCC ATCC 33913. Functional categorization of the identified proteins matched 141 (50%) proteins to 81 metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In addition, we performed a comparative proteome analysis of the pathogenic strain 17 and an avirulent strain 11A to reveal the virulence-related proteins. We detected 22 up-regulated proteins in strain 17 including the degrading enzymes EngXCA, HtrA, and PepA, which had been shown to have a role in pathogenesis in other bacteria, and an anti-host defense protein, Ohr. Thus, further functional studies of these up-regulated proteins with respect to their roles in XCC pathogenicity are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号