首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of CD4 endocytosis in human immunodeficiency virus infection.   总被引:6,自引:4,他引:2       下载免费PDF全文
We have analyzed the role of CD4 endocytosis in human immunodeficiency virus (HIV) entry by measuring the infection of HeLa cells expressing various CD4 constructs with endocytosis rates of between 0.2 and 30%/min in a quantitative infectious focus assay. For a number of laboratory-adapted HIV-1 and HIV-2 strains, the highest levels of infection were found on cells with very limited CD4 endocytosis, while cells with efficient CD4 uptake were only poorly infectable, suggesting that CD4 internalization is not required for HIV entry. This was confirmed in a modified assay involving prebinding of HIV-1LAI to HeLa-CD4 cells at 4 degrees C, synchronized virus entry during warming to 37 degrees C, and neutralization of virions remaining at the cell surface with anti-V3 loop antibodies. Warming cells in hypertonic medium inhibited CD4 endocytosis but did not affect the rate or the extent of infection. These studies confirm that HIV infection does not require endocytosis and that laboratory-adapted virus strains can enter HeLa-CD4 cells by fusion at the plasma membrane.  相似文献   

2.
To evaluate the feasibility of using transgenic rabbits expressing CCR5 and CD4 as a small-animal model of human immunodeficiency virus type 1 (HIV) disease, we examined whether the expression of the human chemokine receptor (CCR5) and human CD4 would render a rabbit cell line (SIRC) permissive to HIV replication. Histologically, SIRC cells expressing CD4 and CCR5 formed multinucleated cells (syncytia) upon exposure to BaL, a macrophagetropic strain of HIV that uses CCR5 for cell entry. Intracellular viral capsid p24 staining showed abundant viral gene expression in BaL-infected SIRC cells expressing CD4 and CCR5. In contrast, neither SIRC cells expressing CD4 alone nor murine 3T3 cells expressing CCR5 and CD4 exhibited significant expression of p24. These stably transfected rabbit cells were also highly permissive for the production of virions upon infection by two other CCR5-dependent strains (JR-CSF and YU-2) but not by a CXCR4-dependent strain (NL4-3). The functional integrity of these virions was demonstrated by the successful infection of human peripheral blood mononuclear cells (PBMC) with viral stocks prepared from these transfected rabbit cells. Furthermore, primary rabbit PBMC were found to be permissive for production of infectious virions after circumventing the cellular entry step. These results suggest that a transgenic rabbit model for the study of HIV disease may be feasible.  相似文献   

3.
Virions of the type 1 human immunodeficiency virus (HIV-1) can enter target cells by fusion or endocytosis, with sharply different functional consequences. Fusion promotes productive infection of the target cell, while endocytosis generally leads to virion inactivation in acidified endosomes or degradation in lysosomes. Virion fusion and endocytosis occur equally in T cells, but these pathways have been regarded as independent because endocytosis of HIV virions requires neither CD4 nor CCR5/CXCR4 engagement in HeLa-CD4 cells. Using flow cytometric techniques to assess the binding and entry of green fluorescent protein (GFP)-Vpr-labeled HIV virions into primary peripheral blood mononuclear cells, we have found that HIV fusion and endocytosis are restricted to the CD4-expressing subset of cells and that both pathways commonly require the initial binding of HIV virions to surface CD4 receptors. Blockade of CXCR4-tropic HIV virion fusion with AMD3100, a CXCR4-specific entry inhibitor, increased virion entry via the endocytic pathway. Similarly, inhibition of endosome acidification with bafilomycin A1, concanamycin A, or NH(4)Cl enhanced entry via the fusion pathway. Although fusion remained dependent on CD4 and chemokine receptor binding, the endosome inhibitors did not alter surface expression of CD4 and CXCR4. These results suggest that fusion in the presence of the endosome inhibitors likely occurs within nonacidified endosomes. However, the ability of these inhibitors to impair vesicle trafficking from early to late endosomes in some cells could also increase the recycling of these virion-containing endosomes to the cell surface, where fusion occurs. In summary, our results reveal an unexpected, CD4-mediated reciprocal relationship between the pathways governing HIV virion fusion and endocytosis.  相似文献   

4.
《Research in virology》1991,142(2-3):183-188
Human immunodeficiency virus (HIV) complexed with human anti-HIV IgG can attach to Fcγ receptors (Fch) of mononuclear phagocytes. To determine whether the FcR-mediated infection that results also requires interaction between HIV gp 120 and cell membrane CD4, monocytic cells of the U937 line were transiently treated with phorbol 12, 13-dibutyrate (PDB) so that they temporarily presented a CD4FcR+ phenotype at the time of HIV infection. HIV production was not abolished, but only significantly delayed after infection of these cells with free virus. Leu3a monoclonal antibody or soluble recombinant CD4 completely blocked this delayed infection. This indicates that enough CD4 still remained at the membrane to allow infection of a reduced cell number. Infection of PDB-treated cells with virus preincubated with high anti-HIV IgG concentrations was inhibited, contrasting with what was observed with control cells infected under the same conditions. Inhibition of infection was also observed when HIV became attached to untreated U937 cells through the binding of CD4-IgG hybrid molecules to FcR. Thus, the binding of IgG-coated virus to FcR is not sufficient in itself to elicit productive infection of monocytic cells, which still requires the interaction of viral gp120 and membrane CD4.  相似文献   

5.
The major pathway for HIV internalization in CD4+ T cells has been thought to be the direct fusion of virus and cell membranes, because the cell surface is the point of entry of infectious particles. However, the exact contribution of endocytic pathways to the infection of CD4+ T lymphocytes is unknown, and the mechanisms involved in endocytosis of HIV particles are unclear. Recent evidence suggests that endocytosis of cell-free and cell-associated virus particles could lead to effective virus entry and productive infections. Such observations have, in turn, spurred a debate on the relevance of endosomal entry as a mechanism of escape from the immune system and HIV entry inhibitors. In this paper, we review the endocytosis of HIV and discuss its role in HIV infection and pathogenesis.  相似文献   

6.
CD4 molecules on human cells function as a major receptor for human immunodeficiency virus (HIV); however, certain CD4-negative cell types may also be susceptible to infection. Therefore, we attempted to quantitate the relationship between HIV infection and CD4 expression on human cell lines before and after introduction of the CD4 gene by using a retrovirus vector. Prior to introduction of the CD4 expression vector, low levels of HIV infection were detected by a sensitive focal immunoassay on all three cell types studied. With several HIV strains in clones of human cervical carcinoma (HeLa) cells expressing different levels of CD4, HIV titer increased with increasing CD4 expression. In contrast, in squamous cell carcinoma cells (SCL1) and astroglial cells (U87MG), even high levels of CD4 expression failed to augment HIV infection. The CD4 protein expressed in these two cell lines had the expected molecular weight and was capable of binding HIV virions. However, in contrast to CD4-positive HeLa cells, CD4-positive U87MG and SCL1 cells were unable to form syncytia when cultured with cells expressing HIV envelope protein. Thus, the inability of HIV to infect these cells appeared to be due to lack of fusion between HIV virion envelope proteins and CD4-positive cell membranes. This block is infectivity was overcome when cells were infected with HIV which was pseudotyped with the envelope protein of amphotropic murine leukemia virus. Thus, in addition to CD4, other cell surface molecules appear to be required for successful HIV entry into and infection of these two human cell lines.  相似文献   

7.
DC-SIGN, a lectin expressed on dendritic cell and macrophage subsets, binds to human immunodeficiency virus Env glycoproteins, allowing capture of viral particles. Captured virions either infect target cells or are efficiently transmitted to lymphocytes. Cellular mechanisms underlying the effects of DC-SIGN remain poorly understood. Here we have analyzed the effects of DC-SIGN on viral entry and on syncytium formation induced by Env glycoproteins. The lectin enhanced susceptibility to viral infection and dramatically increased virion internalization. Captured virions accumulated in the vesicular pathway, and their access to the cytosol was altered. Strikingly, the presence of DC-SIGN on target cells inhibited their ability to form syncytia with Env-expressing cells. However, increasing CD4 surface levels on target cells alleviated this inhibitory effect of DC-SIGN. Moreover, the potency of the viral fusion inhibitor T-20 was not affected in DC-SIGN-expressing cells. Altogether, our results indicate that DC-SIGN exerts subtle and complex effects during early steps of HIV type 1 replication. DC-SIGN facilitates capture and accumulation of viral particles in a vesicular compartment and inhibits viral fusion. Competition between CD4 and DC-SIGN for Env binding likely affects virus access to the cytosol and syncytium formation.  相似文献   

8.
Binding of recombinant HIV coat protein gp120 to human monocytes   总被引:2,自引:0,他引:2  
Inasmuch as the exact level of CD4 Ag expression on macrophages is controversial and because HIV may interact with macrophages in a manner different from that on T cells, we analyzed the binding of gp120 to freshly isolated and cultured monocytes. rgp120 was iodinated using the lactoperoxidase method to a sp. act. of 600 Ci/mmol. Highly purified monocytes (greater than 90%) were isolated from the leukapheresed blood of normal volunteers by Ficoll-Hypaque sedimentation followed by countercurrent centrifugal elutriation and cultured 7 days in DMEM supplemented with 1000 U/ml macrophage CSF in 10% human serum. Whereas MOLT/4 cells consistently bound freshly prepared 125I-rgp120 at 80% specificity with 5100 +/- 700 mol/cell, MCSF cultured monocytes bound rgp120 at only 0 to 20% specificity and 420 +/- 200 mol/cell. Most of the radioactivity bound by these cells could not be blocked by the addition of unlabeled rgp120. In contrast, the U937 myeloid cell line bound rgp120 with 50% specificity and about 2500 mol/cell. Whereas the antibody OKT4a (anti-CD4) blocked 80% of the binding on MOLT/4 cells and 50% on U937 cells, binding was only inhibited on the average of 6% on cultured monocytes. When soluble rCD4 was used as an inhibitor, binding to MOLT/4 cells was blocked by 80%. In contrast, binding to cultured monocytes was inhibited by 28%. HIV infectivity was blocked by similar concentrations of OKT4a. These observations suggest that although most binding of gp120 to cultured monocytes is not to the CD4 determinant, several hundred molecules do bind to a CD4-like molecule which promotes virus entry and replication.  相似文献   

9.
CD4 functions as the cell-surface receptor for human immunodeficiency virus (HIV); however, the mechanism of virus entry into susceptible cells is unknown. To explore this question we used a human T lymphoblastic cell line (VB) expressing high levels of surface CD4. Neutralization of endosomal compartments (pH greater than 6.4) with lysosomotropic agents did not effectively inhibit HIV nucleocapsid entry into the cytoplasm, and virus treated at low pH (5.5) failed to induce rapid cell-to-cell fusion in uninfected cells. Electron microscopy of VB cells acutely exposed to HIV at neutral pH revealed direct fusion of the virus envelope with the plasma membrane within minutes at 4 degrees C. No endocytosed virions were visualized upon rewarming the HIV-exposed cells to 37 degrees C for as long as 60 min. These results indicate that HIV penetrates CD4-positive T cells via pH-independent membrane fusion.  相似文献   

10.
The CD4 molecule is an essential receptor for human immunodeficiency virus type 1 (HIV-1) through high-affinity interactions with the viral external envelope glycoprotein gp120. Previously, neutralizing monoclonal antibodies (MAbs) specific to the third hypervariable domain of gp120 (the V3 loop) have been thought to block HIV infection without affecting the binding of HIV particles to CD4-expressing human cells. However, here we demonstrate that this conclusion was not correct and was due to the use of soluble gp120 instead of HIV particles. Indeed, neutralizing anti-V3 loop MAbs inhibited completely the binding and entry of HIV particles into CD4+ human cells. In contrast, the binding of virus was only partially inhibited by neutralizing anti-CD4 MAbs against the gp120 binding site in CD4, which, like the anti-V3 loop MAbs, completely inhibited HIV entry and infection. Nonneutralizing control MAbs against either the V3 loop or the N or C terminus of gp120 had no significant effect on HIV binding and entry. HIV-1 particles were also found to bind human and murine cells expressing or not expressing the human CD4 molecule. Interestingly, the binding of HIV to CD4+ murine cells was inhibited by both anti-V3 and anti-CD4 MAbs, whereas the binding to human and murine CD4- cells was affected only by anti-V3 loop MAbs. The effect of anti-V3 loop neutralizing MAbs on the HIV binding to cells appears not to be the direct consequence of gp120 shedding from HIV particles or of a decreased affinity of CD4 or gp120 for binding to its surface counterpart. Taken together, our results suggest the existence of CD4-dependent and -independent binding events involved in the attachment of HIV particles to cells; in both of these events, the V3 loop plays a critical role. As murine cells lack the specific cofactor CXCR4 for HIV-1 entry, other cell surface molecules besides CD4 might be implicated in stable binding of HIV particles to cells.  相似文献   

11.
Site-specific mutagenesis was used to introduce amino acid substitutions at the asparagine codons of four conserved potential N-linked glycosylation sites within the gp120 envelope protein of human immunodeficiency virus (HIV). One of these alterations resulted in the production of noninfectious virus particles. The amino acid substitution did not interfere with the synthesis, processing, and stability of the env gene polypeptides gp120 and gp41 or the binding of gp120 to its cellular receptor, the CD4 (T4) molecule. Vaccinia virus recombinants containing wild-type or mutant HIV env genes readily induced syncytia in CD4+ HeLa cells. These results suggest that alterations involving the second conserved domain of the HIV gp120 may interfere with an essential early step in the virus replication cycle other than binding to the CD4 receptor. In long-term cocultures of a T4+ lymphocyte cell line and colon carcinoma cells producing the mutant virus, revertant infectious virions were detected. Molecular characterization of two revertant proviral clones revealed the presence of the original mutation as well as a compensatory amino acid change in another region of HIV gp120.  相似文献   

12.
13.
Highly fluorescent virions of T- and M-tropic HIV-1 strains were obtained by incorporation of the viral accessory protein Vpr, fused to the green fluorescent protein, in trans. The fluorescent virions displayed normal morphology, were infectious, and could be used for direct visualization of HIV-1 attachment and trafficking in various cell lines. More than 90% of the viral particles were found to enter the cells by direct membrane fusion in T-cells, CD4+ HeLa cells, and macrophages. Visualizing HIV-1 attachment and entry in the absence or presence of CD4 and/or the appropriate coreceptors indicated that CD4 is the major receptor for virus attachment in the case of JR-CSF and NL-4-3 HIV-1 isolates; however, the coreceptors are required for membrane fusion. Internalization of the coreceptor CXCR4 inhibited entry, but did not prevent virus binding suggesting that transient downregulation of the coreceptor(s) may not be the most efficient way of blocking HIV infection in vivo.  相似文献   

14.
Infection with several DNA or RNA viruses induces a state of increased sensitivity to cell lysis mediated by tumor necrosis factor (TNF), particularly in the presence of gamma interferon (IFN-gamma). Infection of human cells with the human immunodeficiency virus (HIV) may induce a similar phenomenon. However, TNF and IFN-gamma are known upregulators of HIV replication, raising the question of the potential role of these cytokines in the selective elimination of cells infected with this virus. The present study demonstrates that chronically infected U1 cells were killed with much greater efficiency by costimulation with TNF-alpha and IFN-gamma than their uninfected parental cell line U937. However, synergistic induction of viral expression also occurred in U1 cells as a consequence of treatment with the two cytokines. Cell death in U1 cells was not caused by the massive production of virions, in that costimulation with glucocorticoid hormones and TNF-alpha or IFN-gamma resulted in high levels of virion production without cytopathicity. To investigate the nature of the selective cytotoxic effect observed in U1 cells costimulated with TNF-alpha plus IFN-gamma, a panel of uninfected cell clones was generated by limiting dilution of U937 cells and tested for response to TNF-alpha and/or IFN-gamma. In contrast to the uncloned bulk parental U937 cell line, most uninfected cell clones showed a very high susceptibility to being killed by TNF-alpha and IFN-gamma. Similar findings were obtained when both infected U1 cells and several uninfected U937 cell clones were costimulated with an anti-Fas monoclonal antibody in the presence of IFN-gamma, although, unlike cells stimulated with TNF-alpha, cells treated with anti-Fas antibody did not express virus. Therefore, the increased susceptibility to cytokine-mediated lysis observed in cell lines infected with HIV is likely due to the selection of preexisting cell clones rather than viral infection.  相似文献   

15.
Aleutian mink disease parvovirus (ADV) mRNAs are found in macrophages in lymph nodes and peritoneal exudate cells from ADV-infected mink. Therefore, we developed an in vitro infection system for ADV by using primary cultures of mink macrophages or macrophage cell lines. In peritoneal macrophage cultures from adult mink, virulent ADV-Utah I strain showed nuclear expression of viral antigens with fluorescein isothiocyanate-labeled ADV-infected mink serum, but delineation of specific viral proteins could not be confirmed by immunoblot analysis. Amplification of ADV DNA and production of replicative-form DNA were observed in mink macrophages by Southern blot analysis; however, virus could not be serially propagated. The human macrophage cell line U937 exhibited clear nuclear expression of viral antigens after infection with ADV-Utah I but not with tissue culture-adapted ADV-G. In U937 cells, ADV-Utah I produced mRNA, replicative-form DNA, virion DNA, and structural and nonstructural proteins; however, virus could not be serially passaged nor could [3H]thymidine-labeled virions be observed by density gradient analysis. These findings indicated that ADV-Utah I infection in U937 cells was not fully permissive and that there is another restricted step between gene amplification and/or viral protein expression and production of infectious virions. Treatment with the macrophage activator phorbol 12-myristate 13-acetate after adsorption of virus reduced the frequency of ADV-positive U937 cells but clearly increased that of human macrophage line THP-1 cells. These results suggested that ADV replication may depend on conditions influenced by the differentiation state of macrophages. U937 cells may be useful as an in vitro model system for the analysis of the immune disorder caused by ADV infection of macrophages.  相似文献   

16.
Tardif MR  Tremblay MJ 《Journal of virology》2003,77(22):12299-12309
Although there is now convincing evidence that the infectivity of human immunodeficiency virus type 1 (HIV-1) is increased by incorporation of host intercellular adhesion molecule 1 (ICAM-1) in budding virions, the exact mechanism(s) through which ICAM-1 can so significantly affect HIV-1 biology remains obscure. To address this question, we focused our attention on the most proximal events in the virus life cycle. We made comparative analyses to estimate attachment and internalization of isogenic HIV-1 particles either lacking or bearing host-derived ICAM-1. Using attachment-and-entry assays and confocal fluorescence microscopy, we found that virus binding and uptake were both markedly enhanced by insertion of ICAM-1 within the virus envelope when PM1 lymphoid cells and primary human cells (i.e., peripheral blood lymphocytes and purified CD4(+) T cells) were used as targets. Moreover, ICAM-1-bearing virions entered cells with faster uptake kinetics than viruses devoid of ICAM-1. Experiments conducted with fully competent viruses further confirmed the positive effect of virion-anchored host ICAM-1 on HIV-1 replication. Interestingly, subcellular-fractionation assays revealed that ICAM-1 incorporation modifies the HIV-1 entry route by increasing the level of viral material released in the cytosol, a process of internalization known to be mediated mainly by pH-independent membrane fusion and to result in productive infection. A virion-based fusion assay confirmed that the acquisition of ICAM-1 increases the efficiency of productive HIV-1 entry in primary CD4(+) T lymphocytes. These observations provide new insights into how interactions other than those with gp120 and CD4-coreceptor complex can modulate the process of productive HIV-1 infection in CD4(+) T lymphocytes, a cell target highly relevant to HIV-1 pathogenesis.  相似文献   

17.
We previously demonstrated that gpl20/160 (Env) of HIV-1 interactin a carbohydrate-specific manner with mannosyI/N-acetylglucosaminylderivatives and that HTV-1LAI infection of monocytic U937 andlymphoid CEM cells was inhibited by CD4-free Concanavalin A-reactiveglyco-peptides from U937 cells. We report here that the naturalglycoproteins bovine fetuin and asialofetuin, human oroso-mucoidand a-fetoprotein, and mannan, which all specifically interactwith Env, inhibited infection of primary mac-rophages by macrophage-tropicHIV-1 strains, whereas dextran had no such effect This activitywas conserved if fetuin, asialofetuin, or orosomucoid were heat-treated,which rules out the role of their three-dimensional structure.Orosomucoid and mannan partially inhibited Env binding to macrophagesbut not to U937 or CEM cells. This indicates that Env does notbind in the same manner to primary macrophages and to immortalizedCD4+ cells, and that orosomucoid and mannan act at CD4-independentstages of virus binding to macrophages. Mannan also inhibitedEnv binding to surface glycopeptides obtained after trypsintreatment of macrophages. Furthermore, orosomucoid and fetuininteracted with, and they inhibited the binding of a V3 loopB clade consensus peptide to several macrophage membrane proteins,including two 36 and 42 kDa proteins. These data indicate thatthese glycoproteins interfere with post-binding events duringHIV-1 infection of primary macrophages. In contrast, the compoundsdid not affect infection of U937 or CEM cells by T-cell tropicHIV-1LAI nor infection of peripheral blood lymphocytes by HIV-1LAIor HIV-1BA-L. Thus, carbohydrate-specific inhibition of HIVinfection depends on the cell type more than on the viral strain,and differences in the glycan structure of cell-type-specificcofactors may be important for HIV entry into cells. HIV macrophage lymphocyte inhibition glycoprotein  相似文献   

18.
Factors affecting cellular tropism of human immunodeficiency virus.   总被引:16,自引:10,他引:6       下载免费PDF全文
S Kim  K Ikeuchi  J Groopman    D Baltimore 《Journal of virology》1990,64(11):5600-5604
  相似文献   

19.
SPC3, a synthetic multibranched peptide including the GPGRAF consensus motif of the human immunodeficiency virus type 1 (HIV-1) gp120 V3-loop is a potent inhibitor of HIV infection of human CD4+ lymphocytes, macrophages and CD4-/galactosylceramide+ human colon epithelial cells and is currently tested in phase II clinical trials (FDA protocol 257 A). The antiviral property of SPC3 was further investigated for its ability to inhibit LAV-2/B, an HIV-2 clone with a CD4-independent tropism. SPC3 inhibited the LAV-2/B-mediated infection of B-cell line which does not express the CD4 and the galactosylceramide molecules on their cell surface, suggesting an SPC3-sensitive CD4/galactosylceramide-independent pathway of viral infection in HIV susceptible cells. The molecular mechanism of the peptide inhibition was also investigated. The data suggested that the SPC3-mediated inhibition does not result from a direct competition between SPC3 and gp120 binding to the cell surface of the target cell.  相似文献   

20.

Background

Infectious entry of human papillomaviruses into their host cells is an important step in the viral life cycle. For cell binding these viruses use proteoglycans as initial attachment sites. Subsequent transfer to a secondary receptor molecule seems to be involved in virus uptake. Depending on the papillomavirus subtype, it has been reported that entry occurs by clathrin- or caveolin-mediated mechanisms. Regarding human papillomavirus type 16 (HPV16), the primary etiologic agent for development of cervical cancer, clathrin-mediated endocytosis was described as infectious entry pathway.

Methodology/Principal Findings

Using immunofluorescence and infection studies we show in contrast to published data that infectious entry of HPV16 occurs in a clathrin- and caveolin-independent manner. Inhibition of clathrin- and caveolin/raft-dependent endocytic pathways by dominant-negative mutants and siRNA-mediated knockdown, as well as inhibition of dynamin function, did not impair infection. Rather, we provide evidence for involvement of tetraspanin-enriched microdomains (TEMs) in HPV16 endocytosis. Following cell attachment, HPV16 particles colocalized with the tetraspanins CD63 and CD151 on the cell surface. Notably, tetraspanin-specific antibodies and siRNA inhibited HPV16 cell entry and infection, confirming the importance of TEMs for infectious endocytosis of HPV16.

Conclusions/Significance

Tetraspanins fulfill various roles in the life cycle of a number of important viral pathogens, including human immunodeficiency virus (HIV) and hepatitis C virus (HCV). However, their involvement in endocytosis of viral particles has not been proven. Our data indicate TEMs as a novel clathrin- and caveolin-independent invasion route for viral pathogens and especially HPV16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号