首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen is the male gametophyte of seed plants and its tube growth is essential for successful fertilization. Mounting evidence has demonstrated that actin organization and regulation plays a central role in the process of its germination and polarized growth. The native structures and dynamics of actin are subtly modulated by many factors among which numerous actin binding proteins (ABPs) are the most direct and significant regulators. Upstream signals such as Ca2+, PIP2 (phosphatidylinositol-4,5-bis-phosphate) and GTPases can also indirectly act on actin organization through several ABPs. Under such elaborate regulation, actin structures show dynamically continuous modulation to adapt to the in vivo biologic functions to mediate secretory vesicle transportation and fusion, which lead to normal growth of the pollen tube. Many encouraging progress has been made in the connection between actin regulation and pollen tube growth in recent years. In this review, we summarize different factors that affect actin organization in pollen tube growth and highlight relative research progress.  相似文献   

2.
Phosphoinositide plays a critical role not only in generating second messengers, such as inositol 1,4,5-trisphosphate and diacylglycerol, but also in modulating a variety of cellular functions including cytoskeletal organization and membrane trafficking. Many inositol lipid kinases and phosphatases appear to regulate the concentration of a variety of phosphoinositides in a specific area, thereby inducing spatial and temporal changes in their availability. For example, local concentration changes in phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to extracellular stimuli cause the reorganization of actin filaments and a change in cell shape. PI(4,5)P(2) uncaps the barbed end of actin filaments and increases actin nucleation by modulating a variety of actin regulatory proteins, leading to de novo actin polymerization. PI(4,5)P(2) also plays a key role in membrane trafficking processes. In endocytosis, PI(4,5)P(2) targets clathrin-associated proteins to endocytic vesicles, leading to clathrin-coated pit formation. On the contrary, PI(4,5)P(2) must be dephosphorylated when they shed clathrin coats to fuse endosome. Thus, through regulating actin cytoskeleton organization and membrane trafficking, phosphoinositides play crucial roles in a variety of cell functions such as growth, polarity, movement, and pattern formation.  相似文献   

3.
BACKGROUND INFORMATION: The actin cytoskeleton forms distinct actin arrays which fulfil their functions during cell cycle progression. Reorganization of the actin cytoskeleton occurs during transition from one actin array to another. Although actin arrays have been well described during cell cycle progression, the dynamic organization of the actin cytoskeleton during actin array transition remains to be dissected. RESULTS: In the present study, a GFP (green fluorescent protein)-mTalin (mouse talin) fusion gene was introduced into suspension-cultured tobacco BY-2 (Nicotiana tabacum L. cv Bright Yellow) cells by a calli-cocultivation transformation method to visualize the reorganization of the actin cytoskeleton in vivo during the progression of the cell cycle. Typical actin structures were indicated by GFP-mTalin, such as the pre-prophase actin band, mitotic spindle actin filament cage and phragmoplast actin arrays. In addition, dynamic organization of actin filaments was observed during the progression of the cell from metaphase to anaphase. In late metaphase, spindle actin filaments gradually shrank to the equatorial plane along both the long and short axes. Soon after the separation of sister chromosomes, actin filaments aligned in parallel at the cell division plane, forming a cylinder-like structure. During the formation of the cell plate, one cylinder-like structure changed into two cylinder-like structures: the typical actin arrays of the phragmoplast. However, the two actin arrays remained overlapping at the margin of the centrally growing cell plate, forming an actin wreath. When the cell plate matured further, an actin filament network attached to the cell plate was formed. CONCLUSIONS: Our results clearly describe the dynamic organization of the actin cytoskeleton during mitosis and cytokinesis of a plant cell. This demonstrates that GFP-mTalin-transformed tobacco BY-2 cells are a valuable tool to study actin cytoskeleton functions in the plant cell cycle.  相似文献   

4.
We have determined the structural organization and dynamic behavior of actin filaments in entire primary locomoting heart fibroblasts by S1 decoration, serial section EM, and photoactivation of fluorescence. As expected, actin filaments in the lamellipodium of these cells have uniform polarity with barbed ends facing forward. In the lamella, cell body, and tail there are two observable types of actin filament organization. A less abundant type is located on the inner surface of the plasma membrane and is composed of short, overlapping actin bundles (0.25–2.5 μm) that repeatedly alternate in polarity from uniform barbed ends forward to uniform pointed ends forward. This type of organization is similar to the organization we show for actin filament bundles (stress fibers) in nonlocomoting cells (PtK2 cells) and to the known organization of muscle sarcomeres. The more abundant type of actin filament organization in locomoting heart fibroblasts is mostly ventrally located and is composed of long, overlapping bundles (average 13 μm, but can reach up to about 30 μm) which span the length of the cell. This more abundant type has a novel graded polarity organization. In each actin bundle, polarity gradually changes along the length of the bundle. Actual actin filament polarity at any given point in the bundle is determined by position in the cell; the closer to the front of the cell the more barbed ends of actin filaments face forward.

By photoactivation marking in locomoting heart fibroblasts, as expected in the lamellipodium, actin filaments flow rearward with respect to substrate. In the lamella, all marked and observed actin filaments remain stationary with respect to substrate as the fibroblast locomotes. In the cell body of locomoting fibroblasts there are two dynamic populations of actin filaments: one remains stationary and the other moves forward with respect to substrate at the rate of the cell body.

This is the first time that the structural organization and dynamics of actin filaments have been determined in an entire locomoting cell. The organization, dynamics, and relative abundance of graded polarity actin filament bundles have important implications for the generation of motile force during primary heart fibroblast locomotion.

  相似文献   

5.
The actin cytoskeleton is the key cellular machinery responsible for cellular movement. Changes in the organization and distribution of actin and actin binding protein are necessary for several cellular processes such as focal adhesion formation, cell motility and cell invasion. Here we examined differences in cytoskeletal protein distribution, cell morphometry and cell motility of metastatic and non-metastatic cells. Correlations were found between metastatic potential phenotypic properties such as cell motility, cell spreading and cytoskeletal organization in prostate cancer. As a cell progresses from a normal state to a malignant state, it loses its ability to function normally and also become poorly differentiated. Differentiation therapy is concerned with the redirection of malignant cells toward a terminal, non-dividing state using non-cytotoxic agents. Two well acknowledged differentiation agents, retinoic acid (RA) and diflouromethylomithine (DFMO) were examined for their ability to alter cellular phenotypes associated with metastatic potential in rat prostate cancer cell lines. The results of these studies indicate that there are sub-cellular differences between non-metastatic and highly metastatic cells relative to cytoskeletal organization. We also show that treatment of highly metastatic cells with either RA or DFMO significantly alters cell morphology, cell morphometry and motility to states similar to non-metastatic cells.  相似文献   

6.
The association between intermediate filaments (IF) and microtubules (MT) has been demonstrated by several experiments using MT inhibitors and by microinjecting specific antibodies. The actin cytoskeleton has recently been assigned a role in this process of drug induced IF collapse. However, this was not found to be true in large cells with irregular morphology. For instance, in early passage diploid fibroblasts of human origin and in armadillo cell lines, where the cells are large, irregular in shape and exhibit prominent stress fibers ( SF ), depolymerization of MT with nocodazole did not lead to collapse of IF . Instead, the IF formed bundles of coils that seemed to associate with the SF . Disintegration of the SF with cytochalasin B led to the collapse of the IF . It appears that the actin organization in such large cells with extensive SF , is not as contractile as in typical spindle shaped fibroblasts which have relatively less stable actin organization. The stable SF may actually prevent IF collapse.  相似文献   

7.
8.
Root architecture is developmentally plastic and affected by many intrinsic factors (e.g. plant hormones) and extrinsic factors (e.g. touch, gravity) in order to maximize nutrient and water acquisition. We have recently shown that asymmetrical exposure of cytokinin (CK) at the root tip causes root growth directional changes that is dependent on ethylene signaling and is potentiated by glucose signaling. Auxin homeostasis as maintained by auxin signaling and transport is also involved in CK-induced root cell elongation and differential growth. The signaling pathways eventually converge at actin filament organization since actin filament organization inhibitor latrunculin B (Lat B) can also induce similar growth. We, show that CK can actually alter actin filament organization as seen in actin binding protein 35S::GFP-ABD2-GFP transgenic lines as is also altered by auxin polar transport inhibitor 1-N-naphthylphthalamic acid (NPA) and Lat B in different manners.  相似文献   

9.
Dynamic subcellular distributions of signaling system components are critical regulators of cellular signal transduction through their control of molecular interactions. Understanding how signaling activity depends on such distributions and the cellular structures driving them is required for comprehensive insight into signal transduction. In the activation of primary murine T cells by antigen presenting cells (APC) signaling intermediates associate with various subcellular structures, prominently a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell. While actin dynamics are well established as general regulators of cellular organization, their role in controlling signaling organization in primary T cell:APC couples and the specific cellular structures driving it is unresolved. Using modest interference with actin dynamics with a low concentration of Jasplakinolide as corroborated by costimulation blockade we show that T cell actin preferentially controls lamellal signaling localization and activity leading downstream to calcium signaling. Lamellal localization repeatedly related to efficient T cell function. This suggests that the transient lamellal actin matrix regulates T cell signaling associations that facilitate T cell activation.  相似文献   

10.
Dynamic assembly and disassembly of actin proteins play a key role in the cytoskeleton, but the cellular functions of actin are not only restricted to the cytoplasmic compartment. Recent studies have shown that actin spatiotemporally changes its polymerized state in the nucleus as well and such dynamic nature of actin is relevant to key nuclear events including gene expression, DNA damage response and chromatin organization. In this review, we highlight emerging roles of actin in the nuclear compartment especially in the context of embryonic development and cellular differentiation. We first explain how the actin nucleoskeleton can be formed and function in cells. Notably, nuclear actin dynamics are greatly altered when cell fates change, such as after fertilization and T cell differentiation. We discuss how the dynamic actin nucleoskeleton contributes to accomplishing developmental programs.  相似文献   

11.
Dynamic exchange of actin monomers at filament ends is crucial for the functional architecture of many cytoskeletal-dependent processes. Recent evidence indicates that tropomodulins (Tmods), a conserved family of actin-capping proteins that bind to the pointed (slow-growing) end of actin filaments, regulate a variety of actin structures, including dynamic actin networks found in some motile cells. Actin structures that are more stable, such as sarcomeric thin filaments, require capping by Tmods to specify filament lengths and to provide filament stability. Here, we discuss the functional differences between the capping of pointed and barbed ends within the context of these actin-filament systems, and how Tmods uniquely contribute to their regulation and organization.  相似文献   

12.
In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in differentiating primary neurons. These effects largely depend on the capability of TTC3 to promote actin polymerization through signaling pathways involving RhoA, ROCK, CIT-N and PIIa. However, the functional relationships between these molecules differ significantly if considering the TTC3 activity on neurite extension or on Golgi organization. Finally, our results reveal an unexpected stage-dependent requirement for F-actin in Golgi organization at different stages of neuronal differentiation.  相似文献   

13.
14.
Syndapin I (SdpI) interacts with proteins involved in endocytosis and actin dynamics and was therefore proposed to be a molecular link between the machineries for synaptic vesicle recycling and cytoskeletal organization. We here report the identification and characterization of SdpII, a ubiquitously expressed isoform of the brain-specific SdpI. Certain splice variants of rat SdpII in other species were named FAP52 and PACSIN 2. SdpII binds dynamin I, synaptojanin, synapsin I, and the neural Wiskott-Aldrich syndrome protein (N-WASP), a stimulator of Arp2/3 induced actin filament nucleation. In neuroendocrine cells, SdpII colocalizes with dynamin, consistent with a role for syndapin in dynamin-mediated endocytic processes. The src homology 3 (SH3) domain of SdpI and -II inhibited receptor-mediated internalization of transferrin, demonstrating syndapin involvement in endocytosis in vivo. Overexpression of full-length syndapins, but not the NH(2)-terminal part or the SH3 domains alone, had a strong effect on cortical actin organization and induced filopodia. This syndapin overexpression phenotype appears to be mediated by the Arp2/3 complex at the cell periphery because it was completely suppressed by coexpression of a cytosolic COOH-terminal fragment of N-WASP. Consistent with a role in actin dynamics, syndapins localized to sites of high actin turnover, such as filopodia tips and lamellipodia. Our results strongly suggest that syndapins link endocytosis and actin dynamics.  相似文献   

15.
Liu AP  Fletcher DA 《Biophysical journal》2006,91(11):4064-4070
The ability of cells to mount localized responses to external or internal stimuli is critically dependent on organization of lipids and proteins in the plasma membrane. Involvement of the actin cytoskeleton in membrane organization has been documented, but an active role for actin networks that directly links internal organization of the cytoskeleton with membrane organization has not yet been identified. Here we show that branched actin networks formed on model lipid membranes enriched with the lipid second messenger PIP(2) trigger both temporal and spatial rearrangement of membrane components. Using giant unilamellar vesicles able to separate into two coexisting liquid phases, we demonstrate that polymerization of dendritic actin networks on the membrane induces phase separation of initially homogenous vesicles. This switch-like behavior depends only on the PIP(2)-N-WASP link between the membrane and actin network, and we find that the presence of a preexisting actin network spatially biases the location of phase separation. These results show that dynamic, membrane-bound actin networks alone can control when and where membrane domains form and may actively contribute to membrane organization during cell signaling.  相似文献   

16.
Summary We investigated alterations of actin organization due to heat shock and recovery from the collapse in human epidermal keratinocytes. Exposure of keratinocytes to elevated temperature caused the rapid disintegration of actin filaments. With a heat-shock treatment at 45° C for 10 min, actin filaments disappeared and granular actin was distributed diffusely in the cytoplasm. After return to 37° C, recovery of actin organization was observed. Completely disintegrated granular actin assembled to form actin dots, which tended to group. The grouping actin dots often took a circular, semicircular or arched form. Filamentous actin then extended out from the actin dots. Fine short bundles of actin filaments had a rippled appearance or were polygonal in structure, with actin filaments converged at many points. On the seventh day after heat-shock treatment, actin organization had almost returned to the pre-heat-shock condition, with diffusely distributed actin filaments. In previous studies, we observed such aberrant structures in human malignant keratinocytes and human epidermal keratinocytes treated with 12-O-tetradecanoylphorbol-13-acetate. The observations presented here indicate that those structures are not specific to malignancy or to the process of malignant transformation, but represent less mature and aberrant organizations of actin.  相似文献   

17.
Insulin's trans-endothelial transport (TET) is critical for its metabolic action on muscle and involves trafficking of insulin bound to its receptor (or at high insulin concentrations, the IGF-I receptor) via caveolae. However, whether caveolae-mediated insulin TET involves actin cytoskeleton organization is unknown. Here we address whether insulin regulates actin filament organization in bovine aortic endothelial cells (bAEC) and whether this affects insulin uptake and TET. We found that insulin induced extensive cortical actin filament remodeling within 5 min. This remodeling was inhibited not only by disruption of actin microfilament organization but also by inhibition of phosphatidylinositol 3-kinase (PI3K) or by disruption of lipid rafts using respective specific inhibitors. Knockdown of either caveolin-1 or Akt using specific small interfering RNA also eliminated the insulin-induced cortical actin filament remodeling. Blocking either actin microfilament organization or PI3K pathway signaling inhibited both insulin uptake and TET. Disruption of actin microfilament organization also reduced the caveolin-1, insulin receptor, and IGF-I receptor located at the plasma membrane. Exposing bAEC for 6 h to either TNFα or IL-6 blocked insulin-induced cortical actin remodeling. Extended exposure (24 h) also inhibited actin expression at both mRNA and protein levels. We conclude that insulin-induced cortical actin filament remodeling in bAEC is required for insulin's TET in a PI3K/Akt and plasma membrane lipid rafts/caveolae-dependent fashion, and proinflammatory cytokines TNFα and IL-6 block this process.  相似文献   

18.
It is clear that the polymerization and organization of actin filament networks plays a critical role in numerous cellular processes. Inhibition of actin polymerization by pharmacological agents will completely prevent chemotactic motility, macropinocytosis, endocytosis, and phagocytosis. Recently there has been great progress in understanding the mechanisms that control the assembly and structure of the actin cytoskeleton. Members of the Rho family of GTPases have been identified as major players in the signal transduction pathway leading from a cell surface signal to actin polymerization. The Arp2/3 complex has been added to the list of means by which new actin filaments can be nucleated. However, it is clear that actin polymerization by Arp2/3 complex is not the whole story. In principle, the final structures formed by actin filaments will depend on factors such as: the length of actin filaments, the degree of branching, how they are cross-linked and the tensions imparted on them. In addition, the means by which actin polymerization generates protrusion of membranes is still controversial. A phagosome, filopodium and a lamellipodium all require polymerization of new actin filaments, but each has a characteristic morphology and cytoskeletal structure. In the following chapter, we will discuss actin polymerization and filament organization, especially as it relates to the machinery of phagocytosis in Dictyostelium.  相似文献   

19.
Dynamic actin remodeling is fundamental to processes such as cell motility, vesicle trafficking, and cytokinesis. Protein kinase D (PKD) is a serine–threonine kinase known to be involved in diverse biological functions ranging from vesicle fission at the Golgi complex to regulation of cell motility and invasion. This review addresses the role of PKD in the organization of the actin cytoskeleton with a particular emphasis on the substrates associated with this function. We further highlight the multi-level control of actin dynamics by PKD and suggest that the tight spatio-temporal control of PKD activity is critical for the coordination of directed cell migration.  相似文献   

20.
To further elucidate the functions of actin in budding yeast and to relate actin structure to specific roles and interactions in vivo, we determined the phenotypes caused by 13 charged-to-alanine mutations isolated previously in the single Saccharomyces cerevisiae actin gene. Defects in actin organization, morphogenesis, budding pattern, chitin deposition, septation, nuclear segregation, and mitochondrial organization were observed. In wild-type cells, mitochondria were found to be aligned along actin cables. Many of the amino acid substitutions that had the most severe effects on mitochondrial organization are located under the myosin "footprint" on the actin monomer, suggesting that actin-myosin interactions might underlie mitochondrial organization in yeast. In addition, one mutant (act1-129; R177A, D179A) produced an actin that assembled into cables and patches that could be visualized by anti-actin immunofluorescence in situ and that assembled into microfilaments of normal appearance in vitro as judged by electron microscopy but which could not be labeled by rhodamine-phalloidin in situ or in vitro. Rhodamine-phalloidin could label actin filaments assembled from all of the other mutant actins, including one (act1-119; R116A, E117A, K118A) that is altered at a residue (E117) that can be chemically cross-linked to phalloidin. The implication of residues R177 and/or D179 in phalloidin binding is in close agreement with a recently reported molecular model in which the phalloidin-binding site is proposed to be at the junction of two or three actin monomers in the filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号