首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Shin WH  Park SJ  Kim EJ 《Life sciences》2006,79(2):130-137
Ischemic stroke results from a transient or permanent reduction in cerebral blood flow that is restricted to the territory of a major brain artery. The major pathobiological mechanisms of ischemia/reperfusion injury include excitotoxicity, oxidative stress, inflammation, and apoptosis. In the present report, we first investigated the protective effects of anthocyanins against focal cerebral ischemic injury in rats. The pretreatment of anthocyanins (300 mg/kg, p.o.) significantly reduced the brain infarct volume and a number of TUNEL positive cells caused by middle cerebral artery occlusion and reperfusion. In the immunohistochemical observation, anthocyanins remarkably reduced a number of phospho-c-Jun N-terminal kinase (p-JNK) and p53 immunopositive cells in the infarct area. Moreover, Western blotting analysis indicated that anthocyanins suppressed the activation of JNK and up-regulation of p53. Thus, our data suggested that anthocyanins reduced neuronal damage induced by focal cerebral ischemia through blocking the JNK and p53 signaling pathway. These findings suggest that the consumption of anthocyanins may have the possibility of protective effect against neurological disorders such as brain ischemia.  相似文献   

2.

Background

Animal models are essential to study the pathophysiological changes associated with focal occlusive stroke and to investigate novel therapies. Currently used rodent models have yielded little clinical success, however large animal models may provide a more suitable alternative to improve clinical translation. We sought to develop a model of acute proximal middle cerebral artery (MCA) ischemic stroke in sheep, including both permanent occlusion and transient occlusion with reperfusion.

Materials and Methods

18 adult male and female Merino sheep were randomly allocated to one of three groups (n = 6/gp): 1) sham surgery; 2) permanent proximal MCA occlusion (MCAO); or 3) temporary MCAO with aneurysm clip. All animals had invasive arterial blood pressure, intracranial pressure and brain tissue oxygen monitoring. At 4 h following vessel occlusion or sham surgery animals were killed by perfusion fixation. Brains were processed for histopathological examination and infarct area determination. 6 further animals were randomized to either permanent (n = 3) or temporary MCAO (n = 3) and then had magnetic resonance imaging (MRI) at 4 h after MCAO.

Results

Evidence of ischemic injury in an MCA distribution was seen in all stroke animals. The ischemic lesion area was significantly larger after permanent (28.8%) compared with temporary MCAO (14.6%). Sham animals demonstrated no evidence of ischemic injury. There was a significant reduction in brain tissue oxygen partial pressure after permanent vessel occlusion between 30 and 210 mins after MCAO. MRI at 4 h demonstrated complete proximal MCA occlusion in the permanent MCAO animals with a diffusion deficit involving the whole right MCA territory, whereas temporary MCAO animals demonstrated MRA evidence of flow within the right MCA and smaller predominantly cortical diffusion deficits.

Conclusions

Proximal MCAO can be achieved in an ovine model of stroke via a surgical approach. Permanent occlusion creates larger infarct volumes, however aneurysm clip application allows for reperfusion.  相似文献   

3.
A mild cerebral ischemic insult, also known as ischemic preconditioning (IPC), confers transient tolerance to a subsequent ischemic challenge in the brain. This study was conducted to investigate whether bone morphogenetic protein-7 (BMP-7) is involved in neuroprotection elicited by IPC in a rat model of ischemia. Ischemic tolerance was induced in rats by IPC (15 min middle cerebral artery occlusion, MCAO) at 48 h before lethal ischemia (2 h MCAO). The present data showed that IPC increased BMP-7 mRNA and protein expression after 24 h reperfusion following ischemia in the brain. In rats of ischemia, IPC-induced reduction of cerebral infarct volume and improvement of neuronal morphology were attenuated when BMP-7 was inhibited either by antagonist noggin or short interfering RNA (siRNA) pre-treatment. Besides, cerebral IPC-induced up-regulation of B-cell lymphoma 2 (Bcl-2) and down-regulation of cleaved caspase-3 at 24 h after ischemia/reperfusion (I/R) injury were reversed via inhibition of BMP-7. These findings indicate that BMP-7 mediates IPC-induced tolerance to cerebral I/R, probably through inhibition of apoptosis.  相似文献   

4.
Reversibility of Nimodipine Binding to Brain in Transient Cerebral Ischemia   总被引:2,自引:0,他引:2  
Using autoradiography, we have measured the in vivo binding of [3H]nimodipine to brain in a rat model of reversible cerebral ischemia. Ischemia was induced by simultaneous occlusion of the middle cerebral artery (MCA) and ipsilateral common carotid artery by microaneurysm clips. Rats were studied after 15 min of ischemia (ischemic group) or after 45 min of reperfusion following 15 min of ischemia (reperfused group). Regional cerebral blood flow (CBF) was determined autoradiographically using [14C]iodoantipyrine in both ischemic (n = 6) and reperfused (n = 6) groups. During ischemia blood flow in the territory of the MCA was depressed and recovered to normal only in the distal territory of the MCA following reperfusion. [3H]Nimodipine binding in the ischemic group (n = 12) was elevated in ischemic brain regions and declined significantly (p < 0.01) in these regions in the reperfused group (n = 11). The ratio of the volume of cortex showing increased binding to the total volume of the forebrain was 0.113 +/- 0.025 (mean +/- SD) in the ischemic group and declined to 0.080 +/- 0.027 following reperfusion (p < 0.005). In general, infarct was only observed in regions showing persistent elevation of nimodipine binding following reperfusion as determined by histology performed in a separate group of rats (n = 8) after 24 h of reperfusion. We conclude that increased nimodipine binding to ischemic tissue is initially reversible with prompt reestablishment of CBF and is a sensitive indicator of early and reversible ischemia-induced cerebral dysfunction.  相似文献   

5.
Stroke is among the most frequent causes of death and adult disability, especially in highly developed countries. However, treatment options to date are very limited. To meet the need for novel therapeutic approaches, experimental stroke research frequently employs rodent models of focal cerebral ischaemia. Most researchers use permanent or transient occlusion of the middle cerebral artery (MCA) in mice or rats.Proximal occlusion of the middle cerebral artery (MCA) via the intraluminal suture technique (so called filament or suture model) is probably the most frequently used model in experimental stroke research. The intraluminal MCAO model offers the advantage of inducing reproducible transient or permanent ischaemia of the MCA territory in a relatively non-invasive manner. Intraluminal approaches interrupt the blood flow of the entire territory of this artery. Filament occlusion thus arrests flow proximal to the lenticulo-striate arteries, which supply the basal ganglia. Filament occlusion of the MCA results in reproducible lesions in the cortex and striatum and can be either permanent or transient. In contrast, models inducing distal (to the branching of the lenticulo-striate arteries) MCA occlusion typically spare the striatum and primarily involve the neocortex. In addition these models do require craniectomy. In the model demonstrated in this article, a silicon coated filament is introduced into the common carotid artery and advanced along the internal carotid artery into the Circle of Willis, where it blocks the origin of the middle cerebral artery. In patients, occlusions of the middle cerebral artery are among the most common causes of ischaemic stroke. Since varying ischemic intervals can be chosen freely in this model depending on the time point of reperfusion, ischaemic lesions with varying degrees of severity can be produced. Reperfusion by removal of the occluding filament at least partially models the restoration of blood flow after spontaneous or therapeutic (tPA) lysis of a thromboembolic clot in humans.In this video we will present the basic technique as well as the major pitfalls and confounders which may limit the predictive value of this model.  相似文献   

6.
Free radicals have been suggested to be largely involved in the genesis of ischemic brain damage, as shown in the protective effects of alpha-phenyl-N-tert-butyl nitrone (PBN), a spin trapping agent, against ischemic cerebral injury. In the present study, the effects of PBN as well as MCI-186, a newly-developed free radical scavenger, and oxypurinol, an inhibitor of xanthine oxidase, were evaluated in a rat transient middle cerebral aretery (MCA) occlusion model to clarify the possible role of free radicals in the reperfusion injury of brain. The volume of cerebral infarction, induced by 2-h occlusion and subsequent 2-h reperfusion of MCA in Fisher-344 rats, was evaluated. The administration of PBN (100 mg/kg) and MCI-186 (100 mg/kg) just before reperfusion of MCA significantly reduced the infarction volume. In contrast, oxypurinol (100 mg/kg) failed to show any preventive effect on the infarction. These results suggest that free radical formation is involved in the cerebral damage induced by ischemia-reperfusion of MCA, and that hydroxyl radical is responsible for the reperfusion injury after transient focal brain ischemia. It is also suggested that xanthine oxidase is not a major source of free radicals.  相似文献   

7.
In the present study, we examined the temporal and spatial expression profiles of GFAP mRNA and protein in a focal cerebral ischemia model with ischemic injury confined to the cerebral cortex in the right middle cerebral artery (MCA) territory. Northern blot analysis showed a respective 5.5-fold and 7.2-fold increase in the GFAP mRNA in the ischemic right MCA cortex in rats subjected to 30-min (mild) or 60-min (severe) ischemia followed by 72-hr reperfusion. The GFAP mRNA signal remained elevated up to 2-week reperfusion. Interestingly, increased GFAP mRNA signal was clearly demonstrated for the first time in the left MCA cortex. A significant 1.5-fold and 5-fold increase was observed after 72-hr reperfusion following mild and severe ischemia, respectively. However, unlike the ischemic right MCA cortex, this induction was transient in the non-ischemic left MCA counterpart. In situ hybridization studies further revealed characteristic spatial induction profile following mild vs. severe ischemia. In mild ischemia, following 24-hr reperfusion, increase in GFAP mRNA was observed mainly within the ischemic right MCA cortex. Following 72-hr reperfusion, GFAP mRNA signal was observed in virtually the entire ischemic cortex, particularly the amygdala region, then gradually reduced and restricted to right MCA territory and subcortical thalamic nucleus following 2-week reperfusion. On the other hand, in severe ischemia, following 24-hr reperfusion increased GFAP mRNA signal was observed in area surrounding right MCA territory (infarct region) and outer cortical layers within the right MCA territory. Following 72-hr reperfusion, no signal was detected within right MCA cortex; however, increased GFAP signal was detected throughout the remaining ipsilateral cortex and subcortical region, as well as the contralateral cerebral cortex. GFAP mRNA signals then gradually reduced its intensity and was restricted to area surrounding necrosis and ipsilateral thalamic nucleus following 2-week reperfusion. GFAP-like immunoreactivity was also detected in area expressing GFAP mRNA. It is very likely that de novo synthesis was responsible for this increase. In summary, increased GFAP signal was noted in both ipsilateral and contralateral cerebral following mild and severe ischemia. Although the temporal induction profile for mild vs. severe ischemia was similar, the spatial induction profile was different. The mechanism leading to this differential induction and their physiological and functional significance are not clear at present. It is very likely that some local factors may involve, nevertheless, the detailed mechanisms remain to be fully explored.  相似文献   

8.
Wen Y  Yang S  Liu R  Simpkins JW 《FEBS letters》2005,579(21):4591-4599
Recent evidence indicates that cell-cycle regulating proteins are involved in apoptotic process in post-mitotic neurons. In this study, we examined cell-cycle regulators for G1/S cell-cycle progression after a transient focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion. In the cerebral frontoparietal cortex, we observed a marked induction of Cyclin D1 (a coactivator of Cdks), and proliferating cell nuclear antigen (PCNA), together with upregulated Cdk kinase activities. This process is accompanied with multiple phosphorylation of retinoblastoma (Rb) protein at Cdk phosphorylation sites in neurons from the ischemic cortex. We further examined DNA synthesis by the incorporation of BrdU, a nucleotide analog that incorporates into newly synthesized DNA. Within 24-h of reperfusion after 60-min occlusion, substantial BrdU-positive neurons were observed in the ischemic cortex. Inhibition of Cdk4 activity during this ischemia/reperfusion is highly neuroprotective. These results suggest that ischemia/reperfusion cerebral damage induces signalings at the G1/S cell-cycle transition, and may constitute a critical step in the neuronal apoptotic pathway in ischemia/reperfusion induced neuronal damage.  相似文献   

9.
We investigated the neuroprotective action of nicotinamide in focal ischemia. Male spontaneously hypertensive rats (5–7 months old) were subjected to photothrombotic occlusion of the right distal middle cerebral artery (MCA). Either nicotinamide (125 or 250 mg/kg) or vehicle was injected IV before MCA occlusion. Changes in the cerebral blood flow (CBF) were monitored using laser-Doppler flowmetry, and infarct volumes were determined with TTC staining 3 days after MCA occlusion. In another set of experiments, the brain nicotinamide and nicotinamide adenine dinucleotide (NAD+) levels were analyzed by HPLC using the frozen samples dissected from the regions corresponding to the ischemic core and penumbra. In the 250-mg/kg nicotinamide group, the ischemic CBF was significantly increased compared to that the untreated group, and the infarct volumes were substantially attenuated (–36%). On the other hand, the ischemic CBF in the 125 mg/kg nicotinamide group was not significantly different from the untreated CBF, however, the infarct volumes were substantially attenuated (–38%). Cerebral ischemia per se did not affect the concentrations of nicotinamide and NAD+ both in the penumbra and ischemic core. In the nicotinamide groups, the brain nicotinamide levels increased significantly in all areas examined, and brain NAD+ levels increased in the penumbra but not in the ischemic core. Increased brain levels of nicotinamide are considered to be primarily important for neuroprotection against ischemia, and the protective action may be partly mediated through the increased NAD+ in the penumbra.  相似文献   

10.
Xu XH  Zhang SM  Yan WM  Li XR  Zhang HY  Zheng XX 《Life sciences》2006,78(7):704-712
The aim of this study was to investigate the role of apoptosis or necrosis in the development of delayed infarct, and the relationship between the level of XIAP gene, caspase-3 activation and ischemic cell death following transient focal cerebral ischemia. Adult male Sprague-Dawley rats underwent right middle cerebral artery occlusion (MCAo) for 50 min and reperfusion for 0.5, 4, 8, 24 h, 3, 7, 14 days. On TTC-stained coronal sections, delayed infarct was observed to develop in the whole MCA territory, especially in frontoparietal cortex after ischemia. Near total infarct was shown in striatum 24 h after MCAo, while delayed infarct was evident in the cortex. By day 3, the infarct had progressively expanded to the nearly whole area of the frontoparietal cortex. Flow cytometric analysis of Annexin-V (marks apoptosis) and PI (propidium iodide, marks necrosis) labeling cells showed that MCAo dominantly induced necrosis in ischemic core, striatum. Apoptosis contributed to delayed infarct and cell death in the border zone, dorsolateral cortex and hippocampus. The time-course of caspase-3 activation was consistent with the changes of apoptosis and infarct following MCAo. Further RT-PCR experiments indicated that there was a biphasic regulation of XIAP in time- and region-dependent manner after ischemia. In the infarct core (striatum), following a transient and slight increase during 0.5 h to 4 h post-MCAo, expression of XIAP mRNA markedly decreased. On the other hand, a longer and larger upregulation of XIAP was observed at early time points in border zone (0.5 to 8 h, in dorsolateral cortex; 0.5 to 24 h in hippocampus), then the level of XIAP reduced. A negative correlation was observed between apoptosis and regulation of XIAP gene in these regions. Our findings suggest a possible association between expression of XIAP gene, apoptosis and delayed infarct following ischemia.  相似文献   

11.
目的:rt-PA溶栓为缺血性卒中最有效的治疗方法,脑血流再通后挽救濒临死亡的神经细胞同时,也可能发生更为严重而持久的脑缺血再灌注损伤。本研究探讨联合应用局部亚低温(32-35℃)及硫酸镁对局灶性脑缺血再灌注大鼠的保护作用及其可能机制。方法:通过线栓法建立大鼠大脑中动脉阻塞(MCAO)及再通模型,将50只雄性Wistar大鼠随机分为假手术组、常温组、亚低温组、硫酸镁组、亚低温+硫酸镁组,每组10例,采用Longa神经功能评分、TTC染色、干湿重法、TUNEL技术,检测和比较各组脑缺血再灌注后大鼠的神经功能、脑梗死体积、脑组织含水量及凋亡细胞数。结果:与常温组相比,亚低温组与亚低温+硫酸镁组的梗死体积、神经功能评分、脑组织含水量、凋亡细胞数均明显降低,差异有显著意义(P0.05);而与亚低温组相比,亚低温+硫酸镁组局灶脑缺血大鼠的脑梗死体积、神经功能评分、脑组织含水量、凋亡细胞数均显著减少,差异有显著意义(P0.05)。结论:与单独应用亚低温相比,局部亚低温与硫酸镁联合应用,对局灶性脑缺血再灌注大鼠可发挥更有效的脑保护作用。其机制可能与抑制脑缺血再灌注后凋亡及减轻脑水肿有关。二者联用可能为缺血性卒中患者提供一种减轻溶栓后再灌注损伤的有效脑保护方法。  相似文献   

12.
Our present study was performed to investigate whether hydroxyethylpuerarin (HEP) has a neuroprotective effect on brain injury after focal cerebral ischemia/reperfusion by middle cerebral artery occlusion (MCAO) in adult male Wistar rats. Animals were subjected to one hour of middle cerebral artery occlusion and 48 hours of reperfusion with the pretreatment of drugs (HEP 15, 30, 60 mg/ kg or nimodipine 0.4 mg/kg i.v.) or vehicle. The behavioral tests were used to evaluate the damage to central nervous system. The percentage of brain infarct area was assessed in the brain slices stained with 2% solution of 2, 3, 5-triphenyl tetrazolium chloride (TTC). The pathologic histological changes were observed by H&E staining and the occurrence of apoptosis was determined by flow cytometry. The results showed that pretreatment with HEP at doses of 15, 30, 60 mg/kg exhibited significant neuroprotective effects on rats against focal cerebral ischemia-reperfusion injury by markedly decreasing neurological deficit scores and the percentage of infarct area, reducing necrosis and apoptosis of neurons. All these findings suggest that HEP might provide neuroprotection against focal cerebral ischemia/reperfusion injury probably through its antioxidant and anti-inflammatory property.  相似文献   

13.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA.Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.  相似文献   

14.
The present study demonstrates the benefits of combinatorial antioxidant therapy in the treatment of ischemic stroke. Male Sprague-Dawley rats were anaesthetised and the middle cerebral artery (MCA) was occluded for 30 minutes followed by 5.5 hours of reperfusion. Pretreatment with resveratrol 30 minutes prior to MCA occlusion resulted in a significant, dose-dependent decrease in infarct volume (p<0.05) compared to vehicle-treated animals. Neuroprotection was also observed when resveratrol (2×10−3 mg/kg; iv) was administered within 60 minutes following the return of blood flow (reperfusion). Pretreatment with non-neuroprotective doses of resveratrol (2×10−6 mg/kg) and lipoic acid (LA; 0.005 mg/kg) in combination produced significant neuroprotection as well. This neuroprotection was also observed when resveratrol and LA were administered 15 minutes following the onset of MCA occlusion. Subsequently, we synthetically combined resveratrol and LA in both a 1∶3 (UPEI-200) and 1∶1 (UPEI-201) ratio, and screened these new chemical entities in both permanent and transient ischemia models. UPEI-200 was ineffective, while UPEI-201 demonstrated significant, dose-dependent neuroprotection. These results demonstrate that combining subthreshold doses of resveratrol and LA prior to ischemia-reperfusion can provide significant neuroprotection likely resulting from concurrent effects on multiple pathways. The additional protection observed in the novel compound UPEI 201 may present opportunities for addressing ischemia-induced damage in patients presenting with transient ischemic episodes.  相似文献   

15.
Stroke is the third cause of mortality and the leading cause of disability in the World. Ischemic stroke accounts for approximately 80% of all strokes. However, the thrombolytic tissue plasminogen activator (tPA) is the only treatment of acute ischemic stroke that exists. This led researchers to develop several ischemic stroke models in a variety of species. Two major types of rodent models have been developed: models of global cerebral ischemia or focal cerebral ischemia. To mimic ischemic stroke in patients, in whom approximately 80% thrombotic or embolic strokes occur in the territory of the middle cerebral artery (MCA), the intraluminal middle cerebral artery occlusion (MCAO) model is quite relevant for stroke studies. This model was first developed in rats by Koizumi et al. in 1986 1. Because of the ease of genetic manipulation in mice, these models have also been developed in this species 2-3.Herein, we present the transient MCA occlusion procedure in C57/Bl6 mice. Previous studies have reported that physical properties of the occluder such as tip diameter, length, shape, and flexibility are critical for the reproducibility of the infarct volume 4. Herein, a commercial silicon coated monofilaments (Doccol Corporation) have been used. Another great advantage is that this monofilament reduces the risk to induce subarachnoid hemorrhages. Using the Zeiss stereo-microscope Stemi 2000, the silicon coated monofilament was introduced into the internal carotid artery (ICA) via a cut in the external carotid artery (ECA) until the monofilament occludes the base of the MCA. Blood flow was restored 1 hour later by removal of the monofilament to mimic the restoration of blood flow after lysis of a thromboembolic clot in humans. The extent of cerebral infarct may be evaluated first by a neurologic score and by the measurement of the infarct volume. Ischemic mice were thus analyzed for their neurologic score at different post-reperfusion times. To evaluate the infarct volume, staining with 2,3,5-triphenyltetrazolium chloride (TTC) was usually performed. Herein, we used cresyl violet staining since it offers the opportunity to test many critical markers by immunohistochemistry. In this video, we report the MCAO procedure; neurological scores and the evaluation of the infarct volume by cresyl violet staining.  相似文献   

16.
Statins have recently been shown to exert neuronal protection in ischemic stroke. Reactive oxygen species, specifically superoxide formed during the early phase of reperfusion, augment neuronal injury. NADPH oxidase is a key enzyme for superoxide production. The present study tested the hypothesis that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia. Transient focal ischemia was created in halothane-anesthetized adult male Sprague-Dawley rats (250-300 g) by middle cerebral artery occlusion (MCAO). Atorvastatin (Lipitor, 10 mg/kg sc) was administered three times before MCAO. Infarct volume was measured by triphenyltetrazolium chloride staining. NADPH oxidase enzymatic activity and superoxide levels were quantified in the ischemic core and penumbral regions by lucigenin (5 microM)-enhanced chemiluminescence. Expression of NADPH oxidase membrane subunit gp91(phox) and membrane-translocated subunit p47(phox) and small GTPase Rac-1 was analyzed by Western blot. NADPH oxidase activity and superoxide levels increased after reperfusion and peaked within 2 h of reperfusion in the penumbra, but not in the ischemic core, in MCAO rats. Atorvastatin pretreatment prevented these increases, blunted expression of membrane subunit gp91(phox), and prevented translocation of cytoplasmic subunit p47(phox) to the membrane in the penumbra 2 h after reperfusion. Consequently, cerebral infarct volume was significantly reduced in atorvastatin-treated compared with nontreated MCAO rats 24 h after reperfusion. These results indicate that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia.  相似文献   

17.
We have previously reported that the prolonged transient acidosis during early reperfusion mediates the cardioprotective effects in canine hearts. Recently, postconditioning has been shown to be one of the novel strategies to mediate cardioprotection. We tested the contribution of the prolonged transient acidosis to the cardioprotection of postconditioning. Open-chest anesthetized dogs subjected to 90-min occlusion of the left anterior descending coronary artery and 6-h reperfusion were divided into four groups: 1) control group; no intervention after reperfusion (n = 6); 2) postconditioning (Postcon) group; four cycles of 1-min reperfusion and 1-min reocclusion (n = 7); 3) Postcon + sodium bicarbonate (NaHCO(3)) group; four cycles of 1-min reperfusion and 1-min reocclusion with the administration of NaHCO(3) (n = 8); and 4) NaHCO(3) group; administration of NaHCO(3) without postconditioning (n = 6). Infarct size, the area at risk (AAR), collateral blood flow during ischemia, and pH in coronary venous blood were measured. The phosphorylation of Akt and extracellular signal-regulated kinase (ERK) in ischemic myocardium was assessed by Western blot analysis. Systemic hemodynamic parameters, AAR, and collateral blood flow were not different among the four groups. Postconditioning induced prolonged transient acidosis during the early reperfusion phase. Administration of NaHCO(3) completely abolished the infarct size-limiting effects of postconditioning. Furthermore, the phosphorylation of Akt and ERK in ischemic myocardium induced by postconditioning was also blunted by the cotreatment of NaHCO(3). In conclusion, postconditioning mediates its cardioprotective effects possibly via prolonged transient acidosis during the early reperfusion phase with the activation of Akt and ERK.  相似文献   

18.
Various reports in the literature have shown that hyperbaric oxygen (HBO) reduces cerebral infarction both in animals and humans. After the initial ischemic insult, however, initiating HBO treatment at different intervals has yielded conflicting results. The present study was undertaken to determine the optimal therapeutic window in which to start HBO treatment for cerebral infarction after transient focal ischemia. In this study, the operator occluded the middle cerebral artery (MCA) of anesthetized rats by introducing a blunted nylon filament into the proximal MCA from the dissected external carotid artery. When the operator removed the filament after 2 h, focal ischemia and reperfusion occurred. The operator then placed the rat in the HBO chamber and administered 3 atm absolute HBO for 1 h according to the protocol. The rat was killed 24 h after reperfusion, and the percentage of infarction (infarct ratio) was calculated by dividing the infarction area by the total area of the ipsilateral hemisphere. The results showed that the percentage of infarcted area decreased significantly (P < 0.05) both in the 3- (7.59%) and 6-h (5.35%) HBO-treatment groups compared with the control (no treatment) group (11.34%). However, the percentage of infarcted area increased significantly (P < 0.01 and P < 0.05, respectively) both in the 12- (23%) and 23-h (20%) treatment groups. The results of this study suggest that applying HBO within 6 h of ischemia-reperfusion injury could benefit the patient but that applying HBO 12 h or more after injury could harm the patient.  相似文献   

19.
The effects of a selective inducible nitric oxide synthase inhibitor aminoguanidine (AG) on neuronal cells survival in hippocampal CA1 region after middle cerebral artery occlusion (MCAO) were examined. Transient focal cerebral ischemia was induced in rats by 60 or 90 min of MCAO, followed by 7 days of reperfusion. AG treatment (150 mg/kg i.p.) significantly reduced total infarct volumes: by 70% after 90 min MCAO and by 95% after 60 min MCAO, compared with saline-treated ischemic group. The number of degenerating neurons in hippocampal CA1 region was also markedly lower in aminoguanidine-treated ischemic groups compared to ischemic groups without AG-treatment. The number of iNOS-positive cells significantly increased in the hippocampal CA1 region of ischemic animals, whereas it was reduced in AG-treated rats. Our findings demonstrate that aminoguanidine decreases ischemic brain damage and improves neurological recovery after transient focal ischemia induced by MCAO.  相似文献   

20.
Despite progress in reducing ischemic stroke damage, complete protection remains elusive. Here we demonstrate that, after permanent occlusion of a major cortical artery (middle cerebral artery; MCA), single whisker stimulation can induce complete protection of the adult rat cortex, but only if administered within a critical time window. Animals that receive early treatment are histologically and behaviorally equivalent to healthy controls and have normal neuronal function. Protection of the cortex clearly requires reperfusion to the ischemic area despite permanent occlusion. Using blood flow imaging and other techniques we found evidence of reversed blood flow into MCA branches from an alternate arterial source via collateral vessels (inter-arterial connections), a potential mechanism for reperfusion. These findings suggest that the cortex is capable of extensive blood flow reorganization and more importantly that mild sensory stimulation can provide complete protection from impending stroke given early intervention. Such non-invasive, non-pharmacological intervention has clear translational potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号