首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Neurotrophins play an essential role in sensory development by providing trophic support to neurons that innervate peripheral targets. Nerve growth factor (NGF), neurotrophin-3, neurotrophin-4, and brain-derived neurotrophin exert their survival effect by binding to two transmembrane receptor types: trk receptors, which exhibit binding specificity, and the p75NTR receptor, which binds all neurotrophins. To determine how target-derived neurotrophins affect sensory neuron development and function, we used transgenic mice that overexpress NGF in the skin to examine the impact of NGF overexpression on receptor expression. Previous studies of trk expression in trigeminal ganglia of adult NGF transgenics showed that the percentage of trkA neurons doubled and their number increased fivefold. The present study focused on the p75 receptor and shows that the percentage of neurons expressing p75NTR also increase in NGF ganglia, but only by 10%. This increase did not encompass the small, BS-IB-4 isolectin-positive cells as they remained p75 negative in transgenic ganglia. Interestingly, levels of trkA protein were not increased on a per-cell level, whereas levels of p75NTR increased nearly threefold. These results show that in sensory systems, target-derived NGF modulates the level of p75NTR receptor expression, and in so doing, may act to regulate the formation of functional receptor complexes and subsequent trophic action. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 258–270, 1998  相似文献   

2.
Developmental sympathetic neuron death is determined by functional interactions between the TrkA/NGF receptor and the p75 neurotrophin receptor (p75NTR). A key question is whether p75NTR promotes apoptosis by directly inhibiting or modulating TrkA activity, or by stimulating cell death independently of TrkA. Here we provide evidence for the latter model. Specifically, experiments presented here demonstrate that the presence or absence of p75NTR does not alter Trk activity or NGF- and NT-3-mediated downstream survival signaling in primary neurons. Crosses of p75NTR-/- and TrkA-/- mice indicate that the coincident absence of p75NTR substantially rescues TrkA-/- sympathetic neurons from developmental death in vivo. Thus, p75NTR induces death regardless of the presence or absence of TrkA expression. These data therefore support a model where developing sympathetic neurons are "destined to die" by an ongoing p75NTR-mediated apoptotic signal, and one of the major ways that TrkA promotes neuronal survival is by silencing this ongoing death signal.  相似文献   

3.
4.
The neurotrophin receptor tropomyosin-related kinase A (TrkA) and its ligand nerve growth factor (NGF) are expressed in astrocytomas, and an inverse association of TrkA expression with malignancy grade was described. We hypothesized that TrkA expression might confer a growth disadvantage to glioblastoma cells. To analyze TrkA function and signaling, we transfected human TrkA cDNA into the human glioblastoma cell line G55. We obtained three stable clones, all of which responded with striking cytoplasmic vacuolation and subsequent cell death to NGF. Analyzing the mechanism of cell death, we could exclude apoptosis and cellular senescence. Instead, we identified several indications of autophagy: electron microscopy showed typical autophagic vacuoles; acridine orange staining revealed acidic vesicular organelles; acidification of acidic vesicular organelles was prevented using bafilomycin A1; cells displayed arrest in G2/M; increased processing of LC3 occurred; vacuolation was prevented by the autophagy inhibitor 3-methyladenine; no caspase activation was detected. We further found that both activation of ERK and c-Jun N-terminal kinase but not p38 were involved in autophagic vacuolation. To conclude, we identified autophagy as a novel mechanism of NGF-induced cell death. Our findings suggest that TrkA activation in human glioblastomas might be beneficial therapeutically, especially as several of the currently used chemotherapeutics also induce autophagic cell death.  相似文献   

5.
神经生长因子低亲和力受体(p75NTR)的模拟配基的筛选   总被引:1,自引:0,他引:1  
人神经生长因子低亲和力受体 (p75NTR)转染R2细胞而建立的R2L1细胞 ,在去血清培养时发生凋亡 ,该作用可被神经生长因子 (NGF)所抑制 .用R2L1和R2两种细胞差式筛选噬菌体随机 7肽库和 1 2肽库 ,获得和p75NTR特异结合的噬菌体 .测定DNA序列后得到有关多肽的氨基酸序列 .7肽库共有序列为C (H D)LP(K M)HPM C ;1 2肽库优势序列为TLPSPLALLTVH .化学合成相应的 2个短肽 .用细胞结合法和ELISA方法证实阳性噬菌体和合成短肽能与p75NTR结合 ,并证实了它们对R2L1细胞去血清培养后的凋亡有抑制作用  相似文献   

6.
The initial event in the neuronal differentiation of PC12 cells is the binding of the neurotrophin nerve growth factor (NGF) to the Trk receptor. This interaction stimulates the intrinsic tyrosine kinase activity of TRk, initiating a signalling cascade involving the phosphorylation of intracellular proteins on tyrosine, serine, and threonine residues. These signals are then in turn propagated to other messengers, ultimately leading to differentiation, neurotrophin-dependent survival and the loss of proliferative capacity. To transmit NGF signals, NGF-activated Trk rapidly associated with the cytoplasmic proteins, SHC, PI-3 kinase, and PLC-γ1. These proteins are involved in stimulating the formation of various second messenger molecules and activating the Ras signal transduction pathway. Studies with Trk mutants indicate that the acivation of the Ras pathway is necessary for complete differentiation of PC12-derived cells and for the maintenance of the differentiated phenotype. Trk also induces the tyrosine phosphorylation of SNT, a specific target of neurotrophic factor activity in neuronal cells. This review will discuss the potential roles of Trk and the proteins of the Trk signalling pathways in NGF function, and summarize our attempts to understand the mechanisms used by Trk to generate dthe many phenotypic responses of PC12 cells to NGF. 1994 John Wiley & Sons, Inc.  相似文献   

7.
8.
Neurotrophin signaling is essential for normal nervous system development and adult function. Neurotrophins are secreted proteins that signal via interacting with two neurotrophin receptor types: the multifaceted p75 neurotrophin receptor and the tropomyosin receptor kinase receptors. In vivo, neurons compete for the limited quantities of neurotrophins, a process that underpins neural plasticity, axonal targeting, and ultimately survival of the neuron. Thirty years ago, it was discovered that p75 neurotrophin receptor and tropomyosin receptor kinase A form a complex and mediate high-affinity ligand binding and survival signaling; however, despite decades of functional and structural research, the mechanism of modulation that yields this high-affinity complex remains unclear. Understanding the structure and mechanism of high-affinity receptor generation will allow development of pharmaceuticals to modulate this function for treatment of the many nervous system disorders in which altered neurotrophin expression or signaling plays a causative or contributory role. Here we re-examine the key older literature and integrate it with more recent studies on the topic of how these two receptors interact. We also identify key outstanding questions and propose a model of inside-out allosteric modulation to assist in resolving the elusive high-affinity mechanism and complex.  相似文献   

9.
The anti-nerve growth factor (NGF) monoclonal antibody αD11 is a potent antagonist that neutralizes the biological functions of its antigen in vivo. NGF antagonism is expected to be a highly effective and safe therapeutic approach in many pain states. A comprehensive functional and structural analysis of αD11 monoclonal antibody was carried out, showing its ability to neutralize NGF binding to either tropomyosine receptor kinase A (TrkA) or p75 receptors. The 3-D structure of the αD11 Fab fragment was solved at 1.7 Å resolution. A computational docking model of the αD11 Fab-NGF complex, based on epitope mapping using a pool of 44 NGF mutants and experimentally validated by small-angle X-ray scattering, provided the structural basis for identifying the residues involved in αD11 Fab binding. The present study pinpoints loop II of NGF to be an important structural determinant for NGF biological activity mediated by TrkA receptor.  相似文献   

10.
11.
Nerve growth factor (NGF) promotes neuronal survival and differentiation and stimulates neurite outgrowth. NGF is synthesized as a precursor, proNGF, which undergoes post-translational processing to generate mature beta-NGF. It has been assumed that, in vivo, NGF is largely processed into the mature form and that mature NGF accounts for the biological activity. However, we recently showed that proNGF is abundant in CNS tissues whereas mature NGF is undetectable, suggesting that proNGF has biological functions beyond its role as a precursor. To determine whether proNGF exhibits biological activity, we mutagenized the precursor-processing site and expressed unprocessed, cleavage-resistant proNGF protein in insect cells. Survival and neurite outgrowth assays on murine superior cervical ganglion neurons and PC12 cells indicated that proNGF exhibits neurotrophic activity similar to mature 2.5S NGF, but is approximately fivefold less active. ProNGF binds to the high-affinity receptor, TrkA, as determined by cross-linking to PC12 cells, and is also slightly less active than mature NGF in promoting phosphorylation of TrkA and its downstream signaling effectors, Erk1/2, in PC12 and NIH3T3-TrkA cells. These data, coupled with our previous report that proNGF is the major form of NGF in the CNS, suggest that proNGF could be responsible for much of the biological activity normally attributed to mature NGF in vivo.  相似文献   

12.
Nerve growth factor (NGF) serves a critical survival-promoting function for developing sympathetic neurons. Following removal of NGF, sympathetic neurons undergo apoptosis characterized by the activation of c-Jun N-terminal kinases (JNKs), up-regulation of BH3-only proteins including BcL-2-interacting mediator of cell death (BIM)EL, release of cytochrome c from mitochondria, and activation of caspases. Here we show that two small-molecule prolyl hydroxylase inhibitors frequently used to activate hypoxia-inducible factor (HIF) – ethyl 3,4-dihydroxybenzoic acid (DHB) and dimethyloxalylglycine (DMOG) – can inhibit apoptosis caused by trophic factor deprivation. Both DHB and DMOG blocked the release of cytochrome c from mitochondria after NGF withdrawal, whereas only DHB blocked c-Jun up-regulation and phosphorylation. DHB, but not DMOG, also attenuated the induction of BIMEL in NGF-deprived neurons, suggesting a possible mechanism whereby DHB could inhibit cytochrome c release. DMOG, on the other hand, was substantially more effective at stabilizing HIF-2α and inducing expression of the HIF target gene hexokinase 2 than was DHB. Thus, while HIF prolyl hydroxylase inhibitors can delay cell death in NGF-deprived neurons, they do so through distinct mechanisms that, at least in the case of DHB, are partly independent of HIF stabilization.  相似文献   

13.
14.
Naturally occurring sympathetic neuron death is the result of two apoptotic signaling events: one normally suppressed by NGF/TrkA survival signals, and a second activated by the p75 neurotrophin receptor. Here we demonstrate that the p53 tumor suppressor protein, likely as induced by the MEKK-JNK pathway, is an essential component of both of these apoptotic signaling cascades. In cultured neonatal sympathetic neurons, p53 protein levels are elevated in response to both NGF withdrawal and p75NTR activation. NGF withdrawal also results in elevation of a known p53 target, the apoptotic protein Bax. Functional ablation of p53 using the adenovirus E1B55K protein inhibits neuronal apoptosis as induced by either NGF withdrawal or p75 activation. Direct stimulation of the MEKK-JNK pathway using activated MEKK1 has similar effects; p53 and Bax are increased and the subsequent neuronal apoptosis can be rescued by E1B55K. Expression of p53 in sympathetic neurons indicates that p53 functions downstream of JNK and upstream of Bax. Finally, when p53 levels are reduced or absent in p53+/− or p53−/− mice, naturally occurring sympathetic neuron death is inhibited. Thus, p53 is an essential common component of two receptor-mediated signal transduction cascades that converge on the MEKK-JNK pathway to regulate the developmental death of sympathetic neurons.  相似文献   

15.
The recombinant human nerve growth factor (hNGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin 4/5 (NT4/5), and murine NGF (mNGF) dimers all undergo rapid unfolding and dissociation to monomer in GdnHCl. Fluorescence spectroscopy, reversed-phase high-performance liquid chromatography, and size-exclusion chromatography were used to show that this monomer M1 converts slowly to a more fully unfolded monomer, M2, by a first order process with half-lives of 22, 2.5, 1.6, and 0.73 h for hNGF, mNGF, NT-3, and BDNF, respectively, at 25 degrees C. Linear Arrhenius plots for the conversion of M1 to M2 yielded activation energies of 27, 22, 24, and 24 kcal/mol for hNGF, mNGF, NT-3, and BDNF, respectively. The refolding of these neurotrophins from 5 M GdnHCl was also first order with NT-3 the slowest to refold and BDNF the fastest. Threading of the N-terminus out through the cystine-knot loop present in each of these proteins is proposed as the slow step in unfolding. The number of amino acids in the cystine-knot loop (14 for hNGF, mNGF, NT-3, and BDNF; 21 for NT4/5), and the number and position of the proline residues in this loop (2 for hNGF; 1 for mNGF, NT-3, BDNF, and NT4/5) correlate with the relative rates of unfolding. The smaller the loop and the greater the number of prolines, the more hindered and slower the unfolding.  相似文献   

16.
Glaucoma is a major cause of vision impairment, which arises from the sustained and progressive apoptosis of retinal ganglion cells (RGC), with ocular hypertension being a major risk or co-morbidity factor. Because RGC death often continues after normalization of ocular hypertension, growth factor-mediated protection of compromised neurons may be useful. However, the therapeutic use of nerve growth factor (NGF) has not proven effective at delaying RGC death in glaucoma. We postulated that one cause for the failure of NGF may be related to its binding to two receptors, TrkA and p75. These receptors have distinct cellular distribution in the retina and in neurons they induce complex and sometimes opposing activities. Here, we show in an in vivo therapeutic model of glaucoma that a selective agonist of the pro-survival TrkA receptor was effective at preventing RGC death. RGC loss was fully prevented by combining the selective agonist of TrkA with intraocular pressure-lowering drugs. In contrast, neither NGF nor an antagonist of the pro-apoptotic p75 receptor protected RGCs. These results further a neurotrophic rationale for glaucoma.  相似文献   

17.
18.
Nerve growth factor (NGF) is an important neuronal survival factor, especially during development. Optimal sensitivity of the survival response to NGF requires the presence of TrkA and the p75 neurotrophin receptor, p75(NTR). Signalling pathways used by TrkA are well established, but the mechanisms by which p75(NTR) enhances NGF signalling remain far from clear. A prevalent view is that p75(NTR) and TrkA combine to form a high-affinity receptor, but definitive evidence for this is still lacking. We therefore investigated the possibility that p75(NTR) and TrkA interact via their signal transduction pathways. Using antisense techniques to down-regulate p75(NTR) and TrkA, we found that p75(NTR) specifically enhanced phosphorylation of the 46- and 52-kDa isoforms of Shc during nerve growth factor-induced TrkA activation. p75(NTR) did not enhance tyrosine phosphorylation of other TrkA substrates. Serine phosphorylation of Akt, downstream of Shc activation, was also p75(NTR)-dependent. We consistently detected co-immunoprecipitation of p75(NTR) and Shc. These data indicate that p75(NTR) interacts with Shc physically, via a binding interaction, and functionally, by assisting its phosphorylation. Whilst providing evidence that p75(NTR) augments TrkA signal transduction, these results do not preclude the presence of a p75(NTR)-TrkA high-affinity NGF receptor.  相似文献   

19.
20.
We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号