首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
SYNOPSIS. The occurrence and levels of activity of various enzymes of carbohydrate catabolism in culture forms (promastigotes) of 4 human species of Leishmania (L. brasiliensis, L. donovani, L. mexicana, and L. tropica) were compared. These organisms possess enzymes of the Embden-Meyerhof pathway but lack lactate dehydrogenase. No evidence could be found for the production of lactic acid by growing cultures and lactic acid could not be detected either in cell-free preparations or after incubation of cell-free extracts with pyruvate and NADH under appropriate conditions. All 4 species possess α-glycerophosphate dehydrogenase and α-glycerophosphate phosphatase which together could regenerate NAD, thus compensating for the absence of lactate dehydrogenase. The oxidative and nonoxidative reactions of the hexose monophosphate pathway are present in all 4 species. Cell-free extracts have pyruvate dehydrogenase activity which allows the entry of pyruvate into and its subsequent oxidation through the tricarboxylic acid cycle. All enzymes of this cycle, including a thiamine pyrophosphate dependent α-ketoglutarate dehydrogenase are present. Both NAD and NADP-linked malate dehydrogenase activities are present. The isocitrate dehydrogenase is NADP specific. There is an active glutamate dehydrogenase which could compete with α-ketoglutarate dehydrogenase for the common substrate (α-ketoglutarate). Replenishment of C4 acids is accomplished by heterotrophic CO2 fixation catalyzed by pyruvate carboxylase. All 4 species have high levels of NADH oxidase activity. Several enzymes thus far not found in any species of Leishmania have been demonstrated. These are: phosphoglucose isomerase, triose phosphate isomerase, fructose-1, 6-diphosphatase, 3-phosphoglycerate kinase, enolase, α-glycerophosphate dehydrogenase, α-glycerophosphate phosphatase, pyruvate dehydrogenase complex, citrate synthase, aconitase, α-ketoglutarate dehydrogenase, glutamate dehydrogenase, and NADH oxidase.  相似文献   

3.
Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by 'resting' macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the activity of glutaminase.  相似文献   

4.
5.
Embryos of the brine shrimp, Artemia franciscana, either develop directly into swimming larvae or are released from females as encysted gastrulae (cysts) which enter diapause, a reversible state of dormancy. Metabolic activity in diapause cysts is very low and these embryos are remarkably resistant to physiological stresses. Encysting embryos, but not those undergoing uninterrupted development, synthesize large amounts of two proteins, namely p26 and artemin. Cloning and sequencing demonstrated p26 is a small heat shock/alpha-crystallin protein while artemin has structural similarity to ferritin. p26 exhibits molecular chaperone activity in vitro, moves reversibly into nuclei during stress and confers thermotolerance on transformed organisms, suggesting critical roles in cyst development. The function of artemin is unknown. Encysted Artemia also contain an abundance of trehalose, a disaccharide capable of protecting embryos. Artemia represent a novel experimental system where the developmental functions of small heat shock/alpha-crystallin proteins and other stress response elements can be explored.  相似文献   

6.
Summary Recent reports have revealed that certain neurons do not survive in vitro in the presence of glucose, which is the primary substrate and exclusive source of energy in the brain. But these neurons can survive in the presence of low-molecular-weight agents such as pyruvate, which are supplied by glial cells (Selak et al. 1984). To test whether this result also holds true in vivo, we investigated the distribution of hexokinase, lipoic dehydrogenase, -hydroxybutyrate dehydrogenase, and glucose-6-phosphate dehydrogenase activities in the developing rat cerebellum. Hexokinase activity was relatively higher in glial cells than in neurons. After postnatal day 8, the activity of hexokinase could hardly be detected in Purkinje cells, whereas it was highest in Bergmann glial cells. Purkinje cells were the only type of neuron with high levels of lipoic dehydrogenase at all ages tested. -Hydroxybutylate dehydrogenase activity was also high in Purkinje cells, especially in those from young rats. Relatively high glucose-6-phosphate dehydrogenase activity was demonstrated in basket and stellate cells from adult brain. Thus, it appears that, in vivo, certain neurons utilize relatively little glucose, and it is indeed possible that glial cells may supply some substance(s) other than glucose, for example pyruvate, as the primary source of energy.  相似文献   

7.
When grown in the presence of bile acids, two strains of Clostridium limosum were found to contain significant amounts of NADP-dependent 7 alpha/7 beta-hydroxysteroid dehydrogenase and NAD-dependent 7 alpha-hydroxysteroid dehydrogenase which were active against conjugated and unconjugated bile acids. No measurable activity could be found when deoxycholic acid (3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid) was used as substrate. No 7 beta-hydroxysteroid dehydrogenase activity and only a trace of 7 alpha-hydroxysteroid dehydrogenase activity could be demonstrated when bile acid was deleted from the growth medium. If bile acid was added after the time of inoculation, the amounts of 7 alpha/7 beta-hydroxysteroid dehydrogenase were greatly reduced. Enzyme enhancement was blocked by addition of rifampicin. The 7 alpha/7 beta-hydroxysteroid dehydrogenase components had pH optima of approximately 10.5. Both the 7 alpha/7 beta-hydroxysteroid dehydrogenase activities were heat-labile, with the 7 beta-component being the more stable of the two. When ranked according to the level of enzymes induced, the order in increasing bile acid induction power on an equimolar scale (0.4 mM) was: 7-ketodeoxycholic acid, cholic acid, chenodeoxycholic acid, and deoxycholic acid. Both 7-ketolithocholic acid and ursodeoxycholic acid were ineffective as enzyme inducers. Optimal induction was achieved with high concentrations of cholic acid (5 mM) and a harvest time of 24 hr. Addition of ursodeoxycholic acid to medium containing optimal concentrations of deoxycholic acid suppressed enzyme induction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
alpha-Ketoisocaproate (ketoleucine) is shown to be metabolized to ketone bodies rapidly by isolated rat liver cells. Acetoacetate is the major end product and maximum rates were observed with 2 mM substrate. Studies with 2-tetradecylglycidic acid (an inhibitor of long chain fatty acid oxidation) showed that ketogenesis from alpha-ketoisocaproate and from endogenous fatty acids were additive. With alpha-ketoisocaproate present as soole substrate at 2 mM, leucine production was less than 10% of alpha-ketoisocaproate uptake and only 30% of the acetyl coenzyme A generated was oxidized in the citric acid cycle. Metabolism of alpha-ketoisocaproate was inhibited by fatty acids, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, and pyruvate. Oxidation of acetyl-CoA generated from alpha-ketoisocaproate was suppressed by oleate and by pyruvate, but was enhanced by lactate. Metabolism between the different branched chain alpha-ketoacids was mutually competitive. When alpha-ketoisocaproate (2 mM) was added in the presence of high pyruvate concentrations (4.4 mM), flux through pyruvate dehydrogenase was decreased, and the proportion of total pyruvate dehydrogenase in the active form (PDHa) also fell. With lactate as substrate, PDHa was only 25% of total activity and was little affected by addition of alpha-ketoisocaproate. These data suggest that enhanced oxidation of acetyl-CoA from alpha-ketoisocaproate by lactate addition is caused by a low activity of pyruvate dehydrogenase combined with increased flux through the citric acid cycle in response to the energy requirements for gluconeogenesis. However, acetyl-CoA generation from pyruvate is apparently insufficiently inhibited by alpha-ketoisocaproate to cause a diversion of acetyl-CoA formed during alpha-ketoisocaproate metabolism from ketone body formation to oxidation in the citric acid cycle. Measurements of the cell contents of CoASH, acetyl-CoA, acid-soluble acyl-CoA, and acid-insoluble fatty acyl-CoA indicated that when the branched chain alpha-ketoacids were added as sole substrate, their oxidation was limited at a step distal to the branched chain alpha-ketoacid dehydrogenase. Acid-soluble acyl-CoA derivatives were depleted after oleate addition in the presence of alpha-ketoisocaproate, suggesting an inhibition of the branched chain alpha-ketoacid dehydrogenase by the elevation of the mitochondrial NADH/NAD+ ratio observed during fatty acid oxidation. This effect was not observed in the presence of oleate and 2-tetradecylglycidic acid.  相似文献   

9.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

10.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

11.
Despite increasing concerns of direct pathogenicity and/or their role as hosts for other microorganisms there are currently no standard methods for the inactivation of amoebae that belong to the genus Acanthamoeba. Methods used to grow amoebae and produce cysts for these tests may be important as they can dramatically modify cyst susceptibility. We compared resistance of cysts produced from trophozoites grown in peptone-yeast extract-glucose broth or by feeding on HEp-2 cells and then encysted in Neff's medium. We observed that trophozoites grown using HEp-2 cells as a nutrient source produce cysts that are significantly more resistant to SDS and to most biocides tested, including heat. Increased resistance is likely due to a higher proportion of mature cysts presenting thicker cell walls as demonstrated using transmission electron microscopy. This was confirmed by calcofluor white staining demonstrating higher cellulose content in cysts produced from trophozoites grown using HEp-2 cells as a feeding source. These results demonstrate that not only methods used to produce cysts from trophozoites are critical, but that methods used to grow trophozoites before encystment should also be chosen carefully. This should be taken into account for the development of protocols to evaluate biocides and antimicrobials against amoebal cysts.  相似文献   

12.
Three electron-transferring flavoproteins were purified to homogeneity from anaerobic, amino acid-utilizing bacteria (bacterium W6, Clostridium sporogenes, and Clostridium sticklandii), characterized, and compared with the dihydrolipoamide dehydrogenase of Eubacterium acidaminophilum. All the proteins were found to be dimers consisting of two identical subunits with a subunit Mr of about 35,000 and to contain about 1 mol of flavin adenine dinucleotide per subunit. Spectra of the oxidized proteins exhibited characteristic absorption of flavoproteins, and the reduced proteins showed an A580 indicating a neutral semiquinone. Many artificial electron acceptors, including methyl viologen, could be used with NADPH as the electron donor but not with NADH. Unlike the enzyme of E. acidaminophilum, which exhibited by itself a dihydrolipoamide dehydrogenase activity (W. Freudenberg, D. Dietrichs, H. Lebertz, and J. R. Andreesen, J. Bacteriol. 171:1346-1354, 1989), the electron-transferring flavoprotein purified from bacterium W6 reacted with lipoamide only under certain assay conditions, whereas the proteins of C. sporogenes and C. sticklandii exhibited no dihydrolipoamide dehydrogenase activity. The three homogeneous electron-transferring flavoproteins were very similar in their structural and biochemical properties to the dihydrolipoamide dehydrogenase of E. acidaminophilum and exhibited cross-reaction with antibodies raised against the latter enzyme. N-terminal sequence analysis demonstrated a high degree of homology between the dihydrolipoamide dehydrogenase of E. acidaminophilum and the electron-transferring flavoprotein of C. sporogenes to the thioredoxin reductase of Escherichia coli. Unlike these proteins, the dihydrolipoamide dehydrogenases purified from the anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and C. sporogenes exhibited a high homology to dihydrolipoamide dehydrogenases known from other organisms.  相似文献   

13.
1. The effect of bile acids on the activity of liver alcohol dehydrogenase (L-ADH, EC 1.1.1.1) from different mammalian organisms is species dependent. 2. The kinetic behaviour of purified L-ADH from rat and rabbit liver in presence of deoxycholic acid and with ethanol as substrate shows two rather different patterns: for rabbit enzyme deoxycholic acid acts as a full competitive inhibitor, while for rat enzyme an activation effect is observed, with an increase of both Km and Vmax. Similar patterns are obtained with the steroid substrate 3 beta-hydroxy-5 beta-androstane-17one. 3. These results show that in some species, including man, L-ADH activity can be regulated by bile acids, that could control both ethanol oxidation and their own biosynthesis since L-ADH is involved in both metabolic pathways in liver cell.  相似文献   

14.
Summary The levels of succinate, lactate, glutamate, glycerophosphate and glucose-6-phosphate dehydrogenases within the linings of keratinizing and non-keratinizing odontogenic cysts were investigated using static end-point and continuously monitored Nitroblue Tetrazolium-based histochemical methods. The use of TV image analysis for quantification of formazan final reaction products was validated by demonstrating significant relationships between the integrated absorbance at 585 nm and the amount of formazan in, and thickness of, gelatin films containing reduced tetrazolium salt (r=1.0,p<0.001). Absorbance readings of stained sections gave mean coefficients of variation of 1.8±0.9% between day of measurement, and of 5.65±1.32% between serial sections. End-point assays indicated that the linings of odontogenic keratocysts contained higher levels of glucose-6-phosphate dehydrogenases (p<0.0002) and lower levels of lactate dehydrogenase (p<0.002) than those of radicular cysts. Succinate, glutamate and glycerophosphate dehydrogenase activities were similar in both cyst types. Results from continously monitored assays, performed for glucose-6-phosphate and succinate dehydrogenases, demonstrated linear reaction rates over the first 2.75 min of reaction. The calculated enzyme activities from continuous assays were between 1.49 and 3.49 times higher than those determined from end-point assays and confirmed that levels of glucose-6-phosphate dehydrogenase were significantly higher in the linings of odontogenic keratocysts than those of radicular cysts (p<0.004). By contrast, succinate dehydrogenase activity was significantly higher in radicular cyst linings (p<0.03). These results highlight the benefits of an approach toin situ determination of enzyme activity using image analysis and continous monitoring methodologies. Overall, the high level of glucose-6-phosphate dehydrogenase found in keratocyst linings is consistent with their clinical behaviour and higher level of proliferation and synthetic activity whereas the level of lactate dehydrogenase in radicular cysts probably reflects the presence of local tissue damage within these inflammatory lesions.  相似文献   

15.
A lecithinase-lipase-negative Clostridium sp. 25.11.c., not fitting in any of the species of Clostridia described so far as judged by morphological, physiological, and biochemical data, was shown to contain NADP-dependent 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenases. The three hydroxysteroid dehydrogenases could be demonstrated in the supernatant and in the membrane fraction after solubilization with Triton X-100, suggesting enzymes which were originally membrane bound. The 3 beta-hydroxysteroid dehydrogenase was synthesized constitutively, and the specific enzyme activity was significantly reduced by growth medium supplementation with 3-keto bile acids and trisubstituted bile acids. A pH optimum of 7.5 and a molecular weight of approx. 104,000 were estimated by molecular sieve chromatography. The enzyme reduced the 3-keto group of bile acids; an oxidation of a 3 beta-hydroxyl function could not be demonstrated. The lowest Km values were found for disubstituted bile acids, trisubstituted and conjugated bile acids having higher Km values. 7 alpha-Hydroxysteroid dehydrogenase, but not 7 beta-hydroxysteroid dehydrogenase, was already present in uninduced cells. The specific activities, however, were greatly enhanced when cells were grown in the presence of chenodeoxycholic acid or 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid. Ursodeoxycholic acid with its 7 beta-hydroxyl group was ineffective as an inducer. Molecular weights of approx. 82,000 and 115,000 were found for the 7 alpha-hydroxysteroid dehydrogenase and the 7 beta-hydroxysteroid dehydrogenase, respectively. In contrast to the in vivo situation, the reaction could only be demonstrated in the reductive direction in vitro. Here, the pH optimum for the overall reaction was 8.5-8.7. 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities were readily demonstrated for at least 48 h when preparations were stored at 4 degrees C, but were found to be heat-sensitive.  相似文献   

16.
Cell-free extracts of Rhizobium meliloti contain a soluble lactate dehydrogenase (LDH-EC 1.1.1.27.). This was purified 250-fold by ammonium sulfate precipitation and filtration on different Sephadex gels. This enzyme catalyses the reduction of pyruvate to lactate in the presence of NADH and for the first time we report its ability to reduce indole-3-pyruvic acid (IPyA) to indole-3-lactic acid (ILA). Optimal conditions for activity and Km values for both substrates were determined. In the presence of NAD the reverse reaction could be demonstrated with the aliphatic substrate (lactate), but under our conditions it was not possible to achieve the oxidation of ILA to IPyA. The role of this LDH in the indole metabolism is discussed and a general reaction scheme is suggested.  相似文献   

17.
Summary The free-living planarianPolycelis nigra has a complete sequence of glycolytic and tricarboxylic acid cycle enzymes together with an active betaoxidation sequence. Neither octopine dehydrogenase nor any other of the pyruvate: amino acid-linked dehydrogenases was present inP. nigra. The lactate dehydrogenase of this planarian was, however, unusual in being activated by fructose-1,6-bisphosphate.The steady state contents of the glycolytic and tricarboxylic acid cycle intermediates were measured in quick frozenP. nigra. A comparison of the mass action ratios with the equilibrium constants for the glycolytic reactions showed that phosphoglucomutase, glucosephosphate isomerase, aldolase, triosephosphate isomerase, phosphoglyceromutase and phosphopyruvate hydratase reactions are all near equilibrium, whilst phosphofructokinase and pyruvate kinase reactions are displaced from equilibrium. No phosphagen or phosphagen phosphotransferase activity could be detected inP. nigra but it is possible that the high levels of 3-phosphoglycerate could function as an alternative store of high energy phosphate.Under anaerobic conditionsP. nigra produces lactic acid; there is no evidence for the production of succinate, acetate or propionate, acids characteristically produced by parasitic platyhelminths.  相似文献   

18.
1. The reaction of the pyruvate dehydrogenase multienzyme complex of Escherichia coli with maleimides was examined. In the absence of substrates, the complex showed little or no reaction with N-ethylmaleimide. However, in the presence of pyruvate and N-ethylmaleimide, inhibition of the pyruvate dehydrogenase complex was rapid. Modification of the enzyme was restricted to the transacetylase component and the inactivation was proportional to the extent of modification. The lipoamide dehydrogenase activity of the complex was unaffected by the treatment. The simplest explanation is that the lipoyl groups on the transacetylase are reductively acetylated by following the initial stages of the normal catalytic cycle, but are thereby made susceptible to modification. Attempts to characterize the reaction product strongly support this conclusion. 2. Similarly, in the presence of N-ethylmaleimide and NADH, much of the pyruvate dehydrogenase activity was lost within seconds, whereas the lipoamide dehydrogenase activity of the complex disappeared more slowly: the initial site of the reaction with the complex was found to be in the lipoyl transacetylase component. The simplest interpretation of these experiments is that NADH reduces the covalently bound lipoyl groups on the transacetylase by means of the associated lipoamide dehydrogenase component, thereby rendering them susceptible to modification. However, the dependence of the rate and extent of inactivation on NADH concentration was complex and it proved impossible to inhibit the pyruvate dehydrogenase activity completely without unacceptable modification of the other component enzymes. 3. The catalytic reduction of 5,5'-dithiobis-(2-nitrobenzoic acid) by NADH in the presence of the pyruvate dehydrogenase complex was demonstrated. A new mechanism for this reaction is proposed in which NADH causes reduction of the enzyme-bound lipoic acid by means of the associated lipoamide dehydrogenase component and the dihydrolipoamide is then oxidized back to the disulphide form by reaction with 5,5'-dithiobis-(2-nitrobenzoic acid). 4. A maleimide with a relatively bulky N-substituent, N-(4-diemthylamino-3,5-dinitrophenyl)maleimide, was an effective replacement for N-ethylmaleimide in these reactions with the pyruvate dehydrogenase complex. 5. The 2-oxoglutarate dehydrogenase complex of E. coli behaved very similarly to the pyruvate dehydrogenase complex, in accord with the generally accepted mechanisms of the two enzymes. 6. The treatment of the 2-oxo acid dehydrogenase complexes with maleimides in the presence of the appropriate 2-oxo acid substrate provides a simple method for selectively inhibiting the transacylase components and for introducing reporter groups on to the lipoyl groups covalently bound to those components.  相似文献   

19.
A histochemical analysis of reaction rates of a series of enzymes was performed in electromotor neurons of the weakly electric fish Apteronotus leptorhynchus. These neurons were selected because of their functional homogeneity. The high metabolic activity of these cells as well as their large size facilitate cytophotometric analysis in cryostat sections. Sections were incubated for the activity of hexokinase, glucose-6-phosphate dehydrogenase, succinate dehydrogenase, NADPH dehydrogenase, NADPH ferrihaemoprotein reductase and beta-hydroxybutyrate dehydrogenase. All media contained polyvinyl alcohol as tissue stabilizer and Nitro BT as final electron acceptor. Measurements were performed with a Vickers M85a cytophotometer. Linear relationships between the specific formation of formazan (test minus control reaction) and incubation time were obtained for all enzymes although some reactions showed an initial lag phase or an intercept with the ordinate. The relatively high activities of hexokinase, succinate dehydrogenase and the extremely low activity of hydroxybutyrate dehydrogenase indicate that energy is mainly supplied by glycolysis. Glucose-6-phosphate dehydrogenase showed a high activity whereas NADPH reductase and dehydrogenase activity were low in electromotor neurons, indicating that the NADPH generated is largely used for biosynthesis. Despite their synchronous firing pattern activity, electromotor neurons showed a considerable heterogeneity with respect to their metabolic activity.  相似文献   

20.
Dimethylglycine dehydrogenase (EC 1.5.99.2) and sarcosine dehydrogenase (EC 1.5.99.1) are flavoproteins which catalyze the oxidative demethylation of dimethylglycine to sarcosine and sarcosine to glycine, respectively. During these reactions tightly bound tetrahydropteroylpentaglutamate (H4PteGlu5) is converted to 5,10-methylene tetrahydropteroylpentaglutamate (5,10-CH2-H4PteGlu5), although in the absence of H4PteGlu5, formaldehyde is produced. Single turnover studies using substrate levels of the enzyme (2.3 microM) showed pseudo-first-order kinetics, with apparent first-order rate constants of 0.084 and 0.14 s-1 at 23 and 48.3 microM dimethylglycine, respectively, for dimethylglycine dehydrogenase and 0.065 s-1 at 47.3 microM sarcosine for sarcosine dehydrogenase. The rates were identical in the absence or presence of bound tetrahydropteroylglutamate (H4PteGlu). Titration of the enzymes with substrate under anaerobic conditions did not disclose the presence of an intermediate semiquinone. The effect of dimethylglycine concentration upon the rate of the dimethylglycine dehydrogenase reaction under aerobic conditions showed nonsaturable kinetics suggesting a second low-affinity site for the substrate which increases the enzymatic rate. The Km for the high-affinity active site was 0.05 mM while direct binding for the low-affinity site could not be measured. Sarcosine and dimethylthetin are poor substrates for dimethylglycine dehydrogenase and methoxyacetic acid is a competitive inhibitor at low substrate concentrations. At high dimethylglycine concentrations, increasing the concentration of methoxyacetic acid produces an initial activation and then inhibition of dimethylglycine dehydrogenase activity. When these compounds were added in varying concentrations to the enzyme in the presence of dimethylglycine, their effects upon the rate of the reaction were consistent with the presence of a second low-affinity binding site on the enzyme which enhances the reaction rate. When sarcosine is used as the substrate for sarcosine dehydrogenase the kinetics are Michaelis-Menten with a Km of 0.5 mM for sarcosine. Also, methoxyacetic acid is a competitive inhibitor of sarcosine dehydrogenase with a Ki of 0.26 mM. In the absence of folate, substrate and product determinations indicated that 1 mol of formaldehyde and of sarcosine or glycine were produced for each mole of dimethylglycine or sarcosine consumed with the concomitant reduction of 1 mol of bound FAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号