首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Coenzyme Q10 is an endogenous lipid soluble antioxidant. Because oxidant stress may exacerbate some complications of diabetes mellitus, this study investigated the effects of subacute treatment with exogenous coenzyme Q10 (10 mg/kg/day, i.p. for 14 days) on tissue antioxidant defenses in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione contents, and activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited increased oxidative stress and disturbances in antioxidant defense when compared with normal controls. Treatment with the lipophilic compound coenzyme Q10 reversed diabetic effects on hepatic glutathione peroxidase activity, on renal superoxide dismutase activity, on cardiac lipid peroxidation, and on oxidized glutathione concentration in brain. However, treatment with coenzyme Q10 also exacerbated the increase in cardiac catalase activity, which was already elevated by diabetes, further decreased hepatic glutathione reductase activity, augmented the increase in hepatic lipid peroxidation, and further increased glutathione peroxidase activity in the heart and brain of diabetic animals. Subacute dosing with coenzyme Q10 ameliorated some of the diabetes-induced changes in oxidative stress. However, exacerbation of several diabetes-related effects was also observed.  相似文献   

2.
Because some complications of diabetes mellitus may result from oxidative damage, we investigated the effects of subacute treatment (10mg/kg/day, intraperitoneal [ip], for 14 days) with the antioxidant isoeugenol on the oxidant defense system in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free radical-detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with isoeugenol reversed diabetic effects on hepatic glutathione peroxidase activity and on oxidized glutathione concentration in brain. Treatment with the lipophilic compound isoeugenol also decreased lipid peroxidation in both liver and heart of normal animals and decreased hepatic oxidized glutathione content in both normal and diabetic rats. Some effects of isoeugenol treatment, such as decreased activity of hepatic superoxide dismutase and glutathione reductase in diabetic rats, were unrelated to the oxidative effects of diabetes. In heart of diabetic animals, isoeugenol treatment resulted in an exacerbation of already elevated activities of catalase. These results indicate that isoeugenol therapy may not reverse diabetic oxidative stress in an overall sense.  相似文献   

3.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

4.
Diabetes mellitus and its complications are associated with elevated oxidative stress, leading to much interest in antioxidant compounds as possible therapeutic agents. Two new classes of antioxidant compounds, the pyrrolopyrimidines and the 21-aminosteroids, are known to inhibit lipid peroxidation and other biomolecular oxidation. We hypothesized that in the presence of excess oxidants or the impaired antioxidant defense seen in diabetes mellitus, administration of antioxidants such as these may reverse the effects of diabetes on antioxidant parameters. This study measured the effects of subchronic (14 day) treatment with a pyrrolopyrimidine (PNU-104067F) or a 21-aminosteroid (PNU-74389G) in normal and diabetic Sprague-Dawley rats. Activity levels of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, concentrations of oxidized and reduced glutathione, and lipid peroxidation were used as measures of antioxidant defense in liver, kidney, heart, and brain tissue. In normal rats, the only effect was a 43% increase in cardiac lipid peroxidation after treatment with PNU-104067F. In diabetic rats, the only reversals of the effects of diabetes were a 30% decrease in hepatic glutathione peroxidase activity after PNU-74389G treatment and a 33% increase in cardiac glutathione disulfide concentration after PNU-104067F treatment. In contrast to these effects, increased cardiac glutathione peroxidase and catalase activities, increased brain glutathione peroxidase activity, increased hepatic lipid peroxidation, decreased hepatic glutathione content, and decreased hepatic catalase activity were seen in diabetic rats, reflecting an exacerbation of the effects of diabetes.  相似文献   

5.
Treatment with antioxidants may act more effectively to alter markers of free radical damage in combinations than singly. This study has determined whether treatment with combinations of pycnogenol, beta-carotene, and alpha-lipoic acid was more effective at reducing oxidative stress in diabetic rats than treatment with these antioxidants alone. It is not feasible, based on this study, to assume that there are interactive effects that make combinations of these antioxidants more effective than any one alone to combat oxidative stress. Female Sprague-Dawley rats, normal and streptozotocin-induced diabetic, were treated (10 mg/kg/day ip for 14 days) with pycnogenol, beta-carotene, pycnogenol + beta-carotene, or pycnogenol + beta-carotene + alpha-lipoic acid; controls were untreated. Concentrations of thiobarbituric acid reactive substances, glutathione and glutathione disulfide, and activities of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase were measured in liver, kidney, and heart. Four types of effects were observed: (1) treatment with beta-carotene alone either reversed (cardiac glutathione disulfide) or elevated (cardiac glutathione, hepatic glutathione peroxidase activity) levels seen in diabetic animals; (2) beta-carotene alone produced no effect, but pycnogenol both alone and in combinations elevated (renal glutathione peroxidase and glutathione reductase activities, hepatic glutathione reductase activity and glutathione disulfide) or depressed (cardiac glutathione disulfide) levels seen in untreated diabetic animals; (3) all treatments with antioxidants, either alone or in combination, either normalized (lipid peroxidation in all tissues), elevated (hepatic GSH, cardiac glutathione peroxidase activity), or had no effect on (activities of hepatic catalase and superoxide dismutase in all tissues) levels seen in diabetic animals; (4) in only one case (cardiac glutathione reductase activity) levels in diabetic animals treated with combinations of antioxidants were normal, but elevated in animals treated with either antioxidant alone. Antioxidant effects seem to be dependent on the nature of the antioxidant used and not on combination effects.  相似文献   

6.
Effect of lead on lipid peroxidation in liver of rats   总被引:1,自引:0,他引:1  
The present study was undertaken to understand the biochemical mechanisms of lead toxicity in liver. We observed a significant accumulation of lead in liver following lead treatment, resulting in accentuation of lipid peroxidation. Concomitant to the increase in lipid peroxidation, the activities of antioxidant enzymes, viz., superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, were significantly inhibited. A decrease in reduced glutathione with a simultaneous increase in oxidized glutathione was observed following lead exposure, resulting in a reduced GSH/GSSG ratio. These results indicate that lead exerts its toxic effects by enhancing peroxidative damage to the membranes, thus compromising cellular functions.  相似文献   

7.
Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose- fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.  相似文献   

8.
Free radicals are involved in aging and cyclosporin A-induced toxicity. The age-related changes in the liver oxidative status of glutathione, lipid peroxidation, and the activity of the enzymatic antioxidant defense system, as well as the influence of aging on the susceptibility to the hepatotoxic effects of cyclosporin (CyA) were investigated in rats of different ages (1, 2, 4, and 24 months). The hepatic content of reduced glutathione (GSH) increased with aging, peaked at 4 months, and decreased in senescent rats. By contrast, glutathione disulfide (GSSG) and thiobarbituric acid-reactive substances (TBARS) concentrations and superoxide dismutase, catalase, and glutathione peroxidase activities were higher in the oldest than in the youngest rats. CyA treatment, besides inducing the well-known cholestatic syndrome, increased liver GSSG and TBARS contents and the GSSG/GSH molar ratio, and altered the nonenzymatic and enzymatic antioxidant defense systems. The CyA-induced cholestasis and hepatic depletion of GSH, and the increases in the GSSG/GSH ratio, and in GSSG and TBARS concentrations were higher in the older than the mature rats. Moreover, superoxide dismutase and catalase activities were found to be significantly decreased only in treated senescent rats. The higher CyA-induced oxidative stress, lipoperoxidation, and decreases in the antioxidant defense systems in the aged animals render them more susceptible to the hepatotoxic effects of cyclosporin.  相似文献   

9.
The therapeutic potential of taurine was investigated under diabetic conditions. Alloxan diabetic rabbits were treated daily for three weeks with 1% taurine in drinking water. The following parameters were measured: 1) serum glucose, urea, creatinine and hydroxyl free radical (HFR) levels; 2) blood glutathione redox state; 3) urine albumin concentration; 4) hepatic and renal HFR levels, GSH/GSSG ratios and the activities of catalase, superoxide dismutase and the enzymes of glutathione metabolism; 5) renal NADPH oxidase activity; 6) the rates of renal and hepatic gluconeogenesis. Histological studies of kidneys were also performed. Taurine administration to diabetic rabbits resulted in 30% decrease in serum glucose level and the normalisation of diabetes-elevated rate of renal gluconeogenesis. It also decreased serum urea and creatinine concentrations, attenuated diabetes-evoked decline in GSH/GSSG ratio and abolished hydroxyl free radicals accumulation in serum, liver and kidney cortex. Animals treated with taurine exhibited elevated activities of hepatic gamma-glutamylcysteine syntetase and renal glutathione reductase and catalase. Moreover, taurine treatment evoked the normalisation of diabetes-stimulated activity of renal NADPH oxidase and attenuated both albuminuria and glomerulopathy characteristic of diabetes. In view of these data, it is concluded that: 1) diminished rate of renal gluconeogenesis seems to contribute to hypoglycaemic effect of taurine; 2) taurine-induced increase in the activities of catalase and the enzymes of glutathione metabolism is of importance for antioxidative action of this amino acid and 3) taurine nephroprotective properties might result from diminished renal NADPH oxidase activity. Thus, taurine seems to be beneficial for the therapy of both diabetes and diabetic nephropathy.  相似文献   

10.
Andrographis paniculata (AP) treatment prevents BHC induced increase in the activities of enzymes y-Glutamyl transpeptidase, glutathione-S-transferase and lipid peroxidation. The activities of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and the levels of glutathione were decreased following BHC effect. Administration of AP showed protective effects in the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase as well the level of glutathione. The activity of lipid peroxidase was also decreased. The result indicate antioxidant and hepatoprotective action of A. paniculata.  相似文献   

11.
Effects of flooding on the activities of some enzymes of activated oxygen metabolism, the levels of antioxidants, and lipid peroxidation in senescing leaves of tobacco were investigated. As judged by the decrease in chlorophyll and protein levels, flooding accelerated the senescence of tobacco leaves. Total peroxide and the lipid peroxidation product, malondialdehyde, increased in both control and flooding-treated leaves with increasing duration of the experiment. Throughout the duration of the experiment, flooded leaves had higher levels of total peroxide and malondialdehyde than did control leaves. Flooding resulted in an increase in peroxidase and ascorbate peroxidase activities and a reduction of superoxide dismutase activity in the senescing leaves. Glycolate oxidase, catalase, and glutathione reductase activities were not affected by flooding. Flooding increased the levels of total ascorbate and dehydroascorbate. Total glutathione, reduced form glutathione, or oxidized glutathione levels in flooded leaves were lower than in control leaves during the first two days of the experiment, but were higher than in control leaves at the later stage of the experiment. Our work suggests that senescence of tobacco induced by flooding may be a consequence of lipid peroxidation possibly controlled by superoxide dismutase activity. Our results also suggest that increased rates of hydrogen peroxide in leaves of flooded plants could lead to increased capacities of the scavenging system of hydrogen peroxide.Abbreviations GSH reduced form glutathione - GSSG oxidized form glutathione - GSSG reductase glutathione reductase - MDA malondialdehyde - SOD superoxide dismutase  相似文献   

12.
Increasing interest in the role of oxidative stress and beta-carotene in disease and prevention led us to examine the results of beta-carotene's administration in diabetic rats, a model for high-oxidative stress. In this experiment, amounts of lipid peroxidation, glutathione, and glutathione disulfide, and activity levels of catalase, glutathione peroxidase, glutathione reductase, superoxide dismutase, and gamma-glutamyl transpeptidase were measured in the liver, kidney, and heart of Sprague-Dawley rats with streptozotocin-induced diabetes, and after treatment with 10 mg/kg/day of beta-carotene for 14 days. Beta-carotene treatment resulted in the reversal of the diabetes-induced increase in hepatic and cardiac catalase activity, the decreased levels of glutathione disulfide in the heart, and the increased cardiac and renal levels of lipid peroxidation. Treatment with beta-carotene exacerbated the increased glutathione peroxidase activity in the heart and the decreased catalase activity in the kidneys. In contrast to reduced hepatic glutathione levels in untreated diabetic rats, beta-carotene treatment increased glutathione levels in diabetic rats. Increased hepatic gamma-glutamyl transpeptidase activity in diabetic rats was not reduced by treatment. Thus, beta-carotene therapy for 14 days prevented/reversed some, but not all, diabetes-induced changes in oxidative stress parameters.  相似文献   

13.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

14.
Both Cinnamomi cassiae and Rhodiola rosea extracts are used as anti-diabetic folk medicines. Recently, increased oxidative stress was shown to play an important role in the etiology and pathogenesis of diabetes mellitus and its complications. This study was designed to examine the effects of Cinnamomi cassiae and Rhodiola rosea extracts on blood glucose, lipid peroxidation, the level of reduced glutathione and its related enzymes (glutathione reductase, glutathione S-transferase), and the activity of the antioxidant enzymes (catalase, superoxide dismutase and glutathione peroxidase) in the liver of db/db mice. Diabetic C57BL/Ks db/db mice were used as experimental models. Mice were divided into control (n=10), Cinnamomi cassiae (200 mg/kg/day, n=10), and Rhodiola rosea (200 mg/kg/day, n=10) treated groups for 12 weeks of treatment. These type II diabetic mice were used to investigate the effects of Cinnamomi cassiae and Rhodiola rosea on blood glucose, reduced glutathione, glutathione reductase, glutathione S-transferase, glutathione peroxidase, lipid peroxidation, catalase and superoxide dismutase. Cinnamomi cassiae and Rhodiola rosea extracts significantly decreased on blood glucose, increased levels of reduced glutathione and the activities of glutathione reductase, glutathione S-transferase, glutathione peroxidase, catalase and superoxide dismutase in the liver. Extract treatment also significantly decreased lipid peroxidation. Cinnamomi cassiae and Rhodiola rosea extracts may be effective for correcting hyperglycemia and preventing diabetic complications.  相似文献   

15.
Treatment with antioxidants may act more effectively to alter markers of free radical damage in combinations than singly. This study has determined whether treatment with combinations of pycnogenol, β‐carotene, and α‐lipoic acid was more effective at reducing oxidative stress in diabetic rats than treatment with these antioxidants alone. It is not feasible, based on this study, to assume that there are interactive effects that make combinations of these antioxidants more effective than any one alone to combat oxidative stress. Female Sprague‐Dawley rats, normal and streptozotocin‐induced diabetic, were treated (10 mg/kg/day ip for 14 days) with pycnogenol, β‐carotene, pycnogenol + β‐carotene, or pycnogenol + β‐carotene + α‐lipoic acid; controls were untreated. Concentrations of thiobarbituric acid reactive substances, glutathione and glutathione disulfide, and activities of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase were measured in liver, kidney, and heart. Four types of effects were observed: (1) treatment with β‐carotene alone either reversed (cardiac glutathione disulfide) or elevated (cardiac glutathione, hepatic glutathione peroxidase activity) levels seen in diabetic animals; (2) β‐carotene alone produced no effect, but pycnogenol both alone and in combinations elevated (renal glutathione peroxidase and glutathione reductase activities, hepatic glutathione reductase activity and glutathione disulfide) or depressed (cardiac glutathione disulfide) levels seen in untreated diabetic animals; (3) all treatments with antioxidants, either alone or in combination, either normalized (lipid peroxidation in all tissues), elevated (hepatic GSH, cardiac glutathione peroxidase activity), or had no effect on (activities of hepatic catalase and superoxide dismutase in all tissues) levels seen in diabetic animals; (4) in only one case (cardiac glutathione reductase activity) levels in diabetic animals treated with combinations of antioxidants were normal, but elevated in animals treated with either antioxidant alone. Antioxidant effects seem to be dependent on the nature of the antioxidant used and not on combination effects. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 18:345–352, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20046  相似文献   

16.
Piperine, an alkaloid present in the fruits of commonly used spice pepper, is known to impair reproductive functions. In the present study, piperine was administered to adult male rats at the dose levels of 1, 10, and 100 mg/kg body weight for 30 days to evaluate its effects on the testis. A significant decrease in the activities of antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the testis was observed at 10 and 100 mg of piperine administration when compared with the controls. A dose‐dependent increase in lipid peroxidation and hydrogen peroxide generation was also observed. Sialic acid levels in the testis were also found to be decreased when piperine was administered at 10 and 100 mg dose levels. Immunofluorescence studies demonstrated a dose‐dependent increase in caspase 3 and Fas protein in testicular germ cells after piperine treatment. These observations indicate that piperine induces oxidative stress and thereby triggers apoptosis in the testis, contributing to hampered reproductive functions. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:382–388, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20251  相似文献   

17.
Reactive oxygen species may be actively involved in the genesis of various pathological states such as ischemia-reperfusion injury, cancer, and diabetes. Our objective was to determine if subacute treatment with combined antioxidants quercetin and coenzyme Q(10) (10 mg/kg/day ip for 14 days) affects the activities of antioxidant enzymes in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Quercetin treatment raised blood glucose concentrations in normal and diabetic rats, whereas treatment with coenzyme Q(10) did not. Liver, kidney, heart, and brain tissues were excised and the activities of catalase, glutathione reductase, glutathione peroxidase, superoxide dismutase, and concentrations of oxidized and reduced glutathione were determined. In the liver of diabetic rats, superoxide dismutase, glutathione peroxidase, and levels of both oxidized and reduced glutathione were significantly decreased from the nondiabetic control, and these effects were not reversed when antioxidants were administered. In kidney, glutathione peroxidase activity was significantly elevated in the diabetic rats as compared to nondiabetic rats, and antioxidant treatment did not return the enzyme activity to nondiabetic levels. In heart, catalase activity was increased in diabetic animals and restored to normal levels after combined treatment with quercetin and coenzyme Q(10). Cardiac superoxide dismutase was lower than normal in quercetin- and quercetin + coenzyme Q(10)-treated diabetic rats. There were no adverse effects on oxidative stress markers after treatment with quercetin or coenzyme Q(10) singly or in combination. In spite of the elevation of glucose, quercetin may be effective in reversing some effects of diabetes, but the combination of quercetin + coenzyme Q(10) did not increase effectiveness in reversing effects of diabetes.  相似文献   

18.
Enhanced production of free radicals and oxidative stress induced by hyperglycemia play a central role in the pathogenesis of diabetes and its complications. This study assessed the attenuation by dietary caloric restriction on the oxidative and lipid peroxidative effects of diabetes in the liver through reduction in body and organ weights and concomitant metabolic changes. Three-month-old male Wistar rats were subjected to ad libitum feeding and 30% caloric restriction for 9 weeks before induction of diabetes by intraperitoneal injection of 35 mg/kg body weight streptozotocin. The animals were sacrificed 2 weeks after streptozotocin treatment depicting the onset of diabetes. Caloric restriction significantly reduced the organ weights (p<0.01), malondialdehyde (p<0.01) and catalase activity (p<0.01), but significantly increased glutathione reductase activity (p<0.01), and GSH/GSSG ratios (p<0.05). Caloric restriction also non-significantly reduced reactive oxygen species, superoxide dismutase and oxidized glutathione but increased glutathione peroxidase activity and reduced glutathione levels in the diabetic rats. Our data indicate a decrease in lipid peroxidation, improvement in the antioxidant defense systems and restoration of the redox status in the liver by caloric restriction. Therefore, this could provide a non-invasive antioxidant therapy early in diabetes to prevent the development of the complications associated with the disease.  相似文献   

19.
Hyperglycemia of diabetes has been implicated in increased tissue oxidative stress, with consequent development of secondary complications. Thus, stabilizing glucose levels near normal levels is of utmost importance. Because diet influences glycemic control, this study investigated whether a low-carbohydrate (5.5%) diet confers beneficial effects on the oxidative status of the heart, kidney, and liver in diabetes. Male and female normal and diabetic rats were fed standard chow (63% carbohydrates) or low-carbohydrate diet for 30 days. Elevated glucose, HbA(1c), and alanine and aspartate aminotransferases in diabetic animals were reduced or normalized by the low-carbohydrate diet. While diabetes increased cardiac activities of glutathione peroxidase and catalase, low-carbohydrate diet normalized cardiac glutathione peroxidase activity in diabetic animals, and reduced catalase activity in females. Diabetic rats fed low-carbohydrate diet had altered activities of renal glutathione reductase and superoxide dismutase, but increased renal glutathione peroxidase activity in diabetic animals was not corrected by the test diet. In the liver, diabetes was associated with a decrease in catalase activity and glutathione levels and an increase in glutathione peroxidase and gamma-glutamyltranspeptidase activities. Decreased hepatic glutathione peroxidase activity and lipid peroxidation were noted in diet-treated diabetic rats. Overall, the low-carbohydrate diet helped stabilize hyperglycemia and did not produce overtly negative effects in tissues of normal or diabetic rats.  相似文献   

20.
The status of lipid peroxidation, glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, superoxide dismutase, catalase, ascorbic acid, and alpha-tocopherol was studied in the urinary bladder of guinea pigs exposed to the carcinogenic fern Onychium contiguum. There was significant increase in the preformed lipid peroxides in the urinary bladders from fern exposed animals. The amount of lipid peroxides produced on incubation of urinary bladder homogenates with or without catalyst was significantly higher in the fern exposed animals. The concentrations of glutathione and alpha-tocopherol and the activities of glutathione reductase and catalase were elevated in the urinary bladders of the animals exposed to the fern. No effect was observed on the concentration of ascorbic acid and the activities of glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase. It is summarized that the fern toxins increased oxidative stress in the urinary bladder and antioxidant status was altered. However, the altered antioxidant status did not provide protection from the toxin induced injury. Histopathology of the urinary bladder in the fern exposed animals revealed oedema, haemorrhages, and congestion. This is the first study to show increase in lipid peroxidation along with altered antioxidant status in the urinary bladder of fern exposed animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号