首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Leishmania promastigotes express an abundant cell surface glycoconjugate, lipophosphoglycan (LPG). LPG contains a polymer of the disaccharide-phosphate repeat unit Galbeta1,4Manalpha1-PO4, shared by other developmentally regulated molecules implicated in parasite virulence. Functional complementation of a Leishmania donovani LPG-defective mutant (OB1) accumulating a truncated LPG containing only the Manalpha1-PO4 residue of the first repeat unit identified LPG3, the Leishmania homolog of the mammalian endoplasmic reticulum (ER) chaperone GRP94. LPG3 resembles GRP94, as it localizes to the parasite ER, and lpg3(-) mutants show defects including down-regulation of surface GPI-anchored proteins and mild effects on other glycoconjugates. LPG3 binds cellular proteins and its Leishmania infantum GRP94 ortholog is highly immunogenic, suggesting a potential role in directing the immune response. However, null lpg3(-) mutants grow normally, are completely defective in the synthesis of phosphoglycans, and the LPG3 mRNA is regulated developmentally but not by stress or heat. Thus the role of LPG3/GRP94 in Leishmania metabolism differs significantly from other eukaryotes. Like the other glycoconjugate synthetic pathways in this parasite, its activity is focused on molecules implicated in virulence rather than viability.  相似文献   

2.
Phosphomannose isomerase (PMI) catalyzes the reversible interconversion of fructose 6-phosphate and mannose 6-phosphate, which is the first step in the biosynthesis of activated mannose donors required for the biosynthesis of various glycoconjugates. Leishmania species synthesize copious amounts of mannose-containing glycolipids and glycoproteins, which are involved in virulence of these parasitic protozoa. To investigate the role of PMI for parasite glycoconjugate synthesis, we have cloned the PMI gene (lmexpmi) from Leishmania mexicana, generated gene deletion mutants (Delta lmexpmi), and analyzed their phenotype. Delta lmexpmi mutants lack completely the high PMI activity found in wild type parasites, but are, in contrast to fungi, able to grow in media deficient for free mannose. The mutants are unable to synthesize phosphoglycan repeats [-6-Gal beta 1-4Man alpha 1-PO(4)-] and mannose-containing glycoinositolphospholipids, and the surface expression of the glycosylphosphatidylinositol-anchored dominant surface glycoprotein leishmanolysin is strongly decreased, unless the parasite growth medium is supplemented with mannose. The Delta lmexpmi mutant is attenuated in infections of macrophages in vitro and of mice, suggesting that PMI may be a target for anti-Leishmania drug development. L. mexicana Delta lmexpmi provides the first conditional mannose-controlled system for parasite glycoconjugate assembly with potential applications for the investigation of their biosynthesis, intracellular sorting, and function.  相似文献   

3.
Leishmania express lipophosphoglycans and proteophosphoglycans that contain Galbeta1-4Manalpha1-P phosphosaccharide repeat structures assembled by the sequential addition of Manalpha1-P and betaGal. The synthetic acceptor substrate Galbeta1-4Manalpha1-P-decenyl and a series of analogues were used to probe Leishmania alpha-D-mannosyl phosphate transferase activity. We show that the activity detected with Galbeta1-4Manalpha1-P-decenyl is the elongating alpha-D-mannosyl phosphate transferase associated with lipophosphoglycan biosynthesis (eMPT(LPG)). Differences in the apparent K(m) values for the donor and acceptor substrates were found using L. major, L. mexicana, and L. donovani promastigote membranes, but total activity correlated with the number of lipophosphoglycan repeats. Further comparisons showed that lesion-derived L. mexicana amastigotes, that do not express lipophosphoglycan, lack eMPT(LPG) and that nondividing L. major metacyclic promastigotes contain 5-fold less eMPT(LPG) activity than dividing procyclic promastigotes. The fine specificity of promastigote eMPT(LPG) activity was determined using 24 synthetic analogues of Galbeta1-4Manalpha1-P-decenyl. The three species gave similar results: the negative charge of the phosphodiester and the C-6 hydroxyl of the alphaMan residue are essential for substrate recognition, the latter most likely acting as a hydrogen bond acceptor. The C-6' hydroxyl of the betaGal residue is required for substrate recognition as well as for catalysis. The rate of Manalpha1-P transfer declines with increasing acceptor substrate chain length. The presence of a monosaccharide substituent at the C-3 position of the terminal betaGal residue abrogates Man-P transfer, showing that chain elongation must precede side chain modification during lipophosphoglycan biosynthesis. In contrast, substitution of the penultimate phosphosaccharide repeat does not abrogate transfer but is slightly stimulatory in L. mexicana and inhibitory in L. major.  相似文献   

4.
Protozoan parasites of the genus Leishmania secrete a number of glycoproteins and mucin-like proteoglycans that appear to be important parasite virulence factors. We have previously proposed that the polypeptide backbones of these molecules are extensively modified with a complex array of phosphoglycan chains that are linked to Ser/Thr-rich domains via a common Manalpha1-PO4-Ser linkage (Ilg, T., Overath, P., Ferguson, M. A. J., Rutherford, T., Campbell, D. G., and McConville, M. J. (1994) J. Biol. Chem. 269, 24073-24081). In this study, we show that Leishmania mexicana promastigotes contain a peptide-specific mannose-1-phosphotransferase (pep-MPT) activity that adds Manalpha1-P to serine residues in a range of defined peptides. The presence and location of the Manalpha1-PO4-Ser linkage in these peptides were determined by electrospray ionization mass spectrometry and chemical and enzymatic treatments. The pep-MPT activity was solubilized in non-ionic detergents, was dependent on Mn2+, utilized GDP-Man as the mannose donor, and was expressed in all developmental stages of the parasite. The pep-MPT activity was maximal against peptides containing Ser/Thr-rich domains of the endogenous acceptors and, based on competition assays with oligosaccharide acceptors, was distinct from other leishmanial MPTs involved in the initiation and elongation of lipid-linked phosphoglycan chains. In subcellular fractionation experiments, pep-MPT was resolved from the endoplasmic reticulum marker BiP, but had an overlapping distribution with the cis-Golgi marker Rab1. Although Man-PO4 residues in the mature secreted glycoproteins are extensively modified with mannose oligosaccharides and phosphoglycan chains, similar modifications were not added to peptide-linked Man-PO4 residues in the in vitro assays. Similarly, Man-PO4 residues on endogenous polypeptide acceptors were also poorly extended, although the elongating enzymes were still active, suggesting that the pep-MPT activity and elongating enzymes may be present in separate subcellular compartments.  相似文献   

5.
Ilg T 《The EMBO journal》2000,19(9):1953-1962
Cell surface lipophosphoglycan (LPG) is commonly regarded as a multifunctional Leishmania virulence factor required for survival and development of these parasites in mammals. In this study, the LPG biosynthesis gene lpg1 was deleted in Leishmania mexicana by targeted gene replacement. The resulting mutants are deficient in LPG synthesis but still display on their surface and secrete phosphoglycan-modified molecules, most likely in the form of proteophosphoglycans, whose expression appears to be up-regulated. LPG-deficient L.mexicana promastigotes show no significant differences to LPG-expressing parasites with respect to attachment to, uptake into and multiplication inside macrophages. Moreover, in Balb/c and C57/BL6 mice, LPG-deficient L.mexicana clones are at least as virulent as the parental wild-type strain and lead to lethal disseminated disease. The results demonstrate that at least L. mexicana does not require LPG for experimental infections of macrophages or mice. Leishmania mexicana LPG is therefore not a virulence factor in the mammalian host.  相似文献   

6.
The Leishmania lipophosphoglycan conveys the ability for the parasites to avoid destruction in diverse host environments. During its life cycle within the sand fly vector, the parasite differentiates from a dividing procyclic promastigote stage that avoids expulsion from the midgut by attaching to the gut wall, to a nondividing metacyclic promastigote stage that is unable to attach to the midgut and migrates to the mouth parts for reinfection of a mammalian host. Lipophosphoglycan plays an integral role during this transition. Structurally, lipophosphoglycan is a multidomain glycoconjugate whose polymorphisms among species lie in the backbone Gal(beta 1,4)Man(alpha 1)-PO(4) repeating units and the oligosaccharide cap. We have characterized the lipophosphoglycan from an Indian L. donovani isolate. Unlike East African isolates, which express unsubstituted repeats and a galactose- and mannose-terminating cap, procyclic lipophosphoglycan from the Indian isolate consists of beta1,3-linked glucose residues that branch off the backbone repeats (n approximately 17) and also terminate the cap. Of biological significance, metacyclic lipophosphoglycan lacks the glucose residues while doubling the number of repeats. The importance of these developmental modifications in lipophosphoglycan structure was determined using binding experiments to Phlebotomus argentipes midguts. Procyclic promastigotes and procyclic LPG were able to bind to sand fly midguts in vitro whereas metacyclic parasites and LPG lost this capacity. These results demonstrate that the Leishmania adapts the synthesis of terminally exposed sugars of its LPG to manipulate parasite-sand fly interactions.  相似文献   

7.
Ethidium bromide, pentamidine isethionate, and MGBG [methylglyoxal-bis (guanylhydrazone)] inhibited the uptake of radioactive putrescine by leishmanial (Leishmania spp.; Leishmania tropica major; Leishmania mexicana; Leishmania donovani) promastigotes and interfered with their polyamine synthesis. Inhibition was apparent as early as 1 hr after adding these drugs to the parasites at growth-inhibiting concentrations. Ethidium bromide also inhibited the incorporation of radioactive uracil into leishmanial RNA at growth-inhibiting concentrations, while DNA synthesis was inhibited by ethidium bromide at high concentrations after a lag period. MGBG inhibited the synthesis of leishmanial DNA and RNA at growth-inhibiting concentrations.  相似文献   

8.
Lipophosphoglycan (LPG) was isolated from the culture supernatant of Leishmania mexicana promastigotes and its structure elucidated by a combination of 1H NMR, fast atom bombardment mass spectrometry, methylation analysis, and chemical and enzymatic modifications. It consists of the repeating phosphorylated oligosaccharides PO4-6Gal beta 1-4Man alpha 1- and PO4-6[Glc beta 1-3]Gal beta 1-4Man alpha 1-, which are linked together in linear chains by phosphodiester linkages. Each chain of repeat units is linked to a phosphosaccharide core with the structure PO4-6Gal alpha 1-6Gal alpha 1-3Galf beta 1- 3[Glc alpha 1-PO4-6]Man alpha 1-3Man alpha 1-4GlcNH2 alpha 1-6 myo-inositol, where the myo-inositol residue forms the head group of a lyso-alkylphosphatidylinositol moiety. The nonreducing terminus of the repeat chains appear to be capped with the neutral oligosaccharides Man alpha 1-2Man, Man alpha 1-2Man alpha 1-2Man, or Man alpha 1-2[Gal beta 1-4]Man. Cellular LPG, isolated from promastigotes, has a very similar structure to the culture supernatant LPG. However, it differs from culture supernatant LPG in the average number of phosphorylated oligosaccharide repeat units (20 versus 28) and in alkyl chain composition. Although culture supernatant LPG contained predominantly C24:0 alkyl chains, cellular LPG contained approximately equal amounts of C24:0 and C26:0 alkyl chains. It is suggested that culture supernatant LPG is passively shed from promastigotes and that it may contribute significantly, but not exclusively, to the "excreted factor" used for serotyping Leishmania spp. Comparison of L. mexicana LPG with the LPGs of Leishmania major and Leishmania donovani indicate that these molecules are highly conserved but that species-specific differences occur in the phosphorylated oligosaccharide repeat branches and in the relative abundance of the neutral cap structures.  相似文献   

9.
Members of the mitogen-activated protein (MAP) kinase cascade are important for the establishment of a Leishmania mexicana infection and are involved in flagellar length control, although the underlying molecular mechanisms remain to be elucidated. This study reports the cloning and characterization of LmxPK4, a MAP kinase kinase homologue of L. mexicana displaying putative plant-like regulatory phosphorylation sites. The recombinant protein has autophosphorylating activity and phosphorylates myelin basic protein. An LmxPK4 gene deletion mutant showed a proliferation defect after infection of macrophages and no or delayed lesion development in mice. Irrespective of the onset of lesion development parasites showed an early and homogeneous lesion development in re-infection experiments. This is indicative for a compensation of the null mutant phenotype. Additionally, this phenotype could be reverted by reintroduction of the wild-type gene into the deletion background. Mutants expressing loss-of-function or N-terminally truncated versions of LmxPK4 retained the null mutant phenotype. LmxPK4 is stage-specifically expressed in promastigotes and during differentiation to amastigotes, but is not detectable in amastigotes isolated from the mammalian host. Moreover, its in vitro kinase activity increases with temperature rise up to 40 degrees C. Our results suggest that LmxPK4 is involved in the differentiation process and affects virulence of Leishmania mexicana.  相似文献   

10.
MCD4 and GPI7 are important for the addition of glycosylphosphatidylinositol (GPI) anchors to proteins in the yeast Saccharomyces cerevisiae. Mutations in these genes lead to a reduction of GPI anchoring and cell wall fragility. Gpi7 mutants accumulate a GPI lipid intermediate of the structure Manalpha1-2[NH(2)-(CH(2))(2)-PO(4)-->]Manalpha1-2Manalpha 1-6[NH(2)-(C H(2))(2)-PO(4)-->]Manalpha1-4GlcNalpha1-6[acyl-->]inositol-P O(4)-lipi d, which, in comparison with the complete GPI precursor lipid CP2, lacks an HF-sensitive side chain on the alpha1-6-linked mannose. In contrast, mcd4-174 accumulates only minor amounts of abnormal GPI intermediates. Here we investigate whether YLL031c, an open reading frame predicting a further homologue of GPI7 and MCD4, plays any role in GPI anchoring. YLL031c is an essential gene. Its depletion results in a reduction of GPI anchor addition to GPI proteins as well as to cell wall fragility. YLL031c-depleted cells accumulate GPI intermediates with the structures Manalpha1-2Manalpha1-2Manalpha1-6[NH(2)-(CH(2))(2)-PO( 4)-->]Manalpha1 -4GlcNalpha1-6[acyl-->]inositol-PO(4)-lipid and Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4G lcNalpha1-6[acyl-->]inos itol-PO(4)-lipid. Subcellular localization studies of a tagged version of YLL031c suggest that this protein is mainly in the ER, in contrast to Gpi7p, which is found at the cell surface. The data are compatible with the idea that YLL031c transfers the ethanolaminephosphate to the inner alpha1-2-linked mannose, i.e. the group that links the GPI lipid anchor to proteins, whereas Mcd4p and Gpi7p transfer ethanolaminephosphate onto the alpha1-4- and alpha1-6-linked mannoses of the GPI anchor, respectively.  相似文献   

11.
Leishmania parasites are responsible for a diverse collection of diseases of humans and other animals. Cysteine proteases are putative virulence factors of leishmania parasites. There are differences in the susceptibility of specific stages in different Leishmania species to cysteine protease inhibitors. Here, we establish a key role of cysteine proteases in growth, viability, and pathogenicity of Leishmania tropica by using a specific cysteine protease inhibitor (N-Pip-F-hF-VS Phenyl). Reduction or arrest of promastigote growth occurred at inhibitor concentration of 5 and 100 microM, respectively. This shows an essential role for cysteine proteases in viability and growth of L. tropica promastigotes. It confirms that the promastigote stage of L. tropica more closely resembles that of Leishmania major than that of Leishmania mexicana, which is refractory to this inhibitor. Pathogenicity of L. tropica amastigotes in mice, as assessed by footpad swelling, was also reduced by treatment with the cysteine protease inhibitor. This suggests that cysteine proteases are essential for pathogenicity of L. tropica amastigote in mammalian host, similar to both L. major and L. mexicana.  相似文献   

12.
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitous in eukaryotes. The minimum conserved GPI core structure of all GPI-anchored glycans has been determined as EtN-PO4-6Manalpha1-2Manalpha1-6Manalpha1-4GlcN-myo-inositol-PO3H. Human placental alkaline phosphatase (AP) has been reported to be a GPI-anchored membrane protein. AP carries one N-glycan, (NeuAcalpha2-->3)2Gal2GlcNAc2Man3GlcNAc(+/-Fuc)GlcNAc, and a GPI anchor, which contains an ethanolamine phosphate diester group, as a side chain. However, we found that both sialidase-treated soluble AP (sAP) and its GPI-anchored glycan bound to a Psathyrella velutina lectin (PVL)-Sepharose column, which binds beta-GlcNAc residues. PVL binding of asialo-sAP and its GPI-anchored glycan was diminished by digestion with diplococcal beta-N-acetylhexosaminidase or by mild acid treatment. After sequential digestion of asialo-sAP with beta-N-acetylhexosaminidase and acid phosphatase, the elution patterns on chromatofocusing gels were changed in accordance with the negative charges of phosphate residues. Trypsin-digested sAP was analyzed by liquid chromatography/electrospray ionization mass spectrometry, and the structures of two glycopeptides with GPI-anchored glycans were confirmed as peptide-EtN-PO4-6Manalpha1-->2(GlcNAcbeta1-PO4-->6)Manalpha1-6(+/-EtN-PO4-->)Manalpha1-->4GlcN, which may be produced by endo-alpha-glucosaminidase. In addition to AP, GPI-anchored carcinoembryonic antigen, cholinesterase, and Tamm-Horsfall glycoprotein also bound to a PVL-Sepharose column, suggesting that the beta-N-acetylglucosaminyl phosphate diester residue is widely distributed in human GPI-anchored glycans. Furthermore, we found that the beta-N-acetylglucosaminyl phosphate diester residue is important for GPI anchor recognition of aerolysin, a channel-forming toxin derived from Aeromonas hydrophila.  相似文献   

13.
Hausmann S  Schwer B  Shuman S 《Biochemistry》2004,43(22):7111-7120
Fcp1 is an essential protein serine phosphatase that dephosphorylates Ser2 or Ser5 of the RNA polymerase II carboxyl-terminal domain (CTD) heptad repeat Y(1)S(2)P(3)T(4)S(5)P(6)S(7). The CTD of the microsporidian parasite Encephalitozoon cuniculi consists of 15 heptad repeats, which approximates the minimal CTD length requirement for cell viability in yeast. Here we show that E. cuniculi encodes a minimized 411-aa Fcp1-like protein (EcFcp1), which consists of a DxDx(T/V) phosphatase domain and a BRCA1 carboxyl terminus (BRCT) domain but lacks the large N- and C-terminal domains found in fungal and metazoan Fcp1 enzymes. Nonetheless, EcFcp1 can function in lieu of Saccharomyces cerevisiae Fcp1 to sustain yeast cell growth. Recombinant EcFcp1 is a monomeric enzyme with intrinsic phosphatase activity against nonspecific (p-nitrophenyl phosphate) and specific (CTD-PO(4)) substrates. EcFcp1 dephosphorylates CTD positions Ser2 and Ser5 with similar efficacy in vitro. We exploit synthetic CTD Ser2-PO(4) and Ser5-PO(4) peptides to define minimized substrates for EcFcp1 and to illuminate the importance of CTD primary structure in Ser2 and Ser5 phosphatase activity.  相似文献   

14.
Despite major advances in the understanding of pathogenesis of the human protozoan parasite Leishmania major, little is known about the enzymes and the primary precursors involved in the initial steps of synthesis of its major glycerolipids including those involved in virulence. We have previously demonstrated that the initial step of acylation of the precursor glycerol 3-phosphate is not essential for the synthesis of ester and ether phospholipids in this parasite. Here we show that Leishmania expresses a single acyltransferase with high specificity for the precursor dihydroxyacetone phosphate and shows the best activity in the presence of palmitoyl-CoA. We have identified and characterized the LmDAT gene encoding this activity. LmDAT complements the lethality resulting from the loss of both dihydroxyacetone phosphate and glycerol-3-phosphate acyltransferase activities in yeast. Recombinant LmDAT exhibits biochemical properties similar to those of the native enzyme of the promastigote stage parasites. We show that LmDAT is a glycosomal enzyme and its loss in a delta lmdat/delta lmdat null mutant results in complete abrogation of the parasite dihydroxyacetone phosphate acyltransferase activity. Furthermore, lack of LmDAT causes a major alteration in parasite division during the logarithmic phase of growth, an accelerated cell death during stationary phase, and loss of virulence. Together, our results demonstrate that LmDAT is the only dihydroxyacetone phosphate acyltransferase of the L. major localized in the peroxisome, important for growth and survival and essential for virulence.  相似文献   

15.
Glucose-6-phosphate isomerase catalyzes the reversible aldose-ketose isomerization of D-glucose-6-phosphate to D-fructose-6-phosphate in glycolysis and gluconeogenesis, and in the recycling of hexose-6-phosphate in the pentose phosphate pathway. The unicellular protozoans, Trypanosoma brucei, T. cruzi and Leishmania spp., of the order Kinetoplastida are important human parasites responsible for African sleeping sickness, Chagas' disease and leishmaniases, respectively. In these parasites, glycolysis is an important (and in some cases the only) metabolic pathway for ATP supply. The first seven of the 10 enzymes that participate in glycolysis, as well as an important fraction of the enzymes of the pentose phosphate pathway, are compartmentalized in peroxisome-like organelles called glycosomes. The dependence of the parasites on glycolysis, the importance of the pentose phosphate pathway in defense against oxidative stress, and the unique compartmentalization of these pathways, point to the enzymes contained in the glycosome as potential targets for drug design. The present report describes the first crystallographic structure of a parasite (Leishmania mexicana) glucose-6-phosphate isomerase. A comparison of the atomic structure of L. mexicana, human and other mammalian PGIs, which highlights unique features of the parasite's enzyme, is presented.  相似文献   

16.
The primary structure of the major surface glycoconjugate of Leishmania donovani parasites, a lipophosphoglycan, has been further characterized. The repeating PO4-6Galp beta 1-4Man disaccharide units, which are a salient feature of the molecule, are shown to terminate with one of several neutral structures, the most abundant of which is the branched trisaccharide Galp beta 1-4(Manp alpha 1-2)Man. The phosphosaccharide core of lipophosphoglycan, which links the disaccharide repeats to a lipid anchor, contains 2 phosphate residues. One of the core phosphates has previously been localized on O-6 of the galactosyl residue distal to the lipid anchor; the second phosphate is now shown to be on O-6 of the mannosyl residue distal to the anchor and to bear an alpha-linked glucopyranosyl residue. Also, the anomeric configuration of the unusual 3-substituted Galf residue in the phosphosaccharide core is established as beta. The complete structure of the core is thus PO4-6Galp alpha 1-6Galp alpha 1-3Galf beta 1-3[Glcp alpha 1-PO4-6]Manp alpha 1-3Manp alpha 1-4GlcN alpha 1-. This further clarification of the structure of lipophosphoglycan may prove beneficial in determining the structure-function relationships of this highly unusual glycoconjugate.  相似文献   

17.
Lipophosphoglycan (LPG) is an abundant surface molecule that plays key roles in the infectious cycle of Leishmania major. The dominant feature of LPG is a polymer of phosphoglycan (PG) (6Galbeta1,4Manalpha1-PO(4)) repeating units. In L. major these are extensively substituted with Gal(beta1,3) side chains, which are required for binding to midgut lectins and survival. We utilized evolutionary polymorphisms in LPG structure and cross-species transfections to recover genes encoding the LPG side chain beta1,3-galactosyltransferases (betaGalTs). A dispersed family of six SCG genes was recovered, whose predicted proteins exhibited characteristics of eukaryotic GalTs. At least four of these proteins showed significant LPG side chain betaGalT activity; SCG3 exhibited initiating GalT activity whereas SCG2 showed both initiating and elongating GalT activity. However, the activity of SCG2 was context-dependent, being largely silent in its normal genomic milieu, and different strains show considerable variation in the extent of LPG galactosylation. Thus the L. major genome encodes a family of SCGs with varying specificity and activity, and we propose that strain-specific LPG galactosylation patterns reflect differences in their expression.  相似文献   

18.
A gene for a Ca2+-transporting ATPase (lmaa1) from the trypanosomatid parasite Leishmania (mexicana) amazonensis was overexpressed in two clones of L. amazonensis differing in their virulence. RNA and protein expression of the gene was increased in transfectants, as was the infectivity of transfectants versus parental types in both mouse and in vitro macrophage infection experiments. The virulence of the almost avirulent clone was enhanced such that it was more virulent than the parental 'virulent' clone. Growth of the parasites in culture as promastigotes, after isolation from mouse lesions, indicated that transfection led to improved survival of promastigotes during the stationary phase of culture. As it is in this culture phase that infective metacyclic forms develop, the key role of the Lmaa1 protein may be in metacyclogenesis. The protein may be important in the synthesis and trafficking of new proteins through the secretory pathway, as we demonstrate, using a green fluorescent protein hybrid and by immunofluorescence, that the Lmaa1 protein is located in the endoplasmic reticulum in promastigotes and amastigotes of L. amazonensis.  相似文献   

19.
Lipoarabinomannans are key molecules of the mycobacterial envelopes involved in many steps of tuberculosis immunopathogenesis. Several of the biological activities of lipoarabinomannans are mediated by their ability to bind human C-type lectins, such as the macrophage mannose receptor, the mannose-binding protein and the surfactant proteins A and D. The lipoarabinomannan mannooligosaccharide caps have been demonstrated to be involved in the binding to the lectin carbohydrate recognition domains. We report an original analytical approach, based on capillary electrophoresis monitored by laser-induced fluorescence, allowing the absolute quantification, in nanomole quantities of lipoarabinomannan, of the number of mannooligosaccharide units per lipoarabinomannan molecule. Moreover, this analytical approach was successful for the glycosidic linkage determination of the mannooligosaccharide motifs and has been applied to the comparative analysis of parietal and cellular lipoarabinomannans of Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv, H37Ra and Erdman strains. Significant differences were observed in the amounts of the various mannooligosaccharide units between lipoarabinomannans of different strains and between parietal and cellular lipoarabinomannans of the same strain. Nevertheless, no relationship was found between the number of mannooligosaccharide caps and the virulence of the corresponding strain. The results of the present study should help us to gain more understanding of the molecular basis of lipoarabinomannan discrimination in the process of binding to C-type lectins.  相似文献   

20.
Pathogenic bacteria rely on protein phosphorylation to adapt quickly to stress, including that imposed by the host during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are signal transduction systems that sense cell wall integrity and modulate multiple facets of bacterial physiology in response to cell envelope stress. The PASTA kinase in the cytosolic pathogen Listeria monocytogenes, PrkA, is required for cell wall stress responses, cytosolic survival, and virulence, yet its substrates and downstream signaling pathways remain incompletely defined. We combined orthogonal phosphoproteomic and genetic analyses in the presence of a β-lactam antibiotic to define PrkA phosphotargets and pathways modulated by PrkA. These analyses synergistically highlighted ReoM, which was recently identified as a PrkA target that influences peptidoglycan (PG) synthesis, as an important phosphosubstrate during cell wall stress. We find that deletion of reoM restores cell wall stress sensitivities and cytosolic survival defects of a ΔprkA mutant to nearly wild-type levels. While a ΔprkA mutant is defective for PG synthesis during cell wall stress, a double ΔreoM ΔprkA mutant synthesizes PG at rates similar to wild type. In a mouse model of systemic listeriosis, deletion of reoM in a ΔprkA background almost fully restored virulence to wild-type levels. However, loss of reoM alone also resulted in attenuated virulence, suggesting ReoM is critical at some points during pathogenesis. Finally, we demonstrate that the PASTA kinase/ReoM cell wall stress response pathway is conserved in a related pathogen, methicillin-resistant Staphylococcus aureus. Taken together, our phosphoproteomic analysis provides a comprehensive overview of the PASTA kinase targets of an important model pathogen and suggests that a critical role of PrkA in vivo is modulating PG synthesis through regulation of ReoM to facilitate cytosolic survival and virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号