首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
Beta adrenergic agonists, tetradecanoylphorbol acetate, and the ionophore A23187 all stimulate surfactant secretion in type II cells isolated from rats. We found that combinations of these agonists cause augmented secretion, suggesting that the agonists may effect different steps in the secretory process. Previous studies have shown that cAMP is likely to be an intracellular 'second messenger' in type II cells. A23187, which has been reported to increase cAMP in some cell systems, did not increase the cAMP content of type II cells. We investigated the possible role of Ca2+ as another 'second messenger' by studying cellular 45Ca fluxes and the effect of extracellular calcium depletion on secretion. Depletion of extracellular calcium for as long as 3 h did not alter stimulated secretion, although basal secretion was increased. Secretagogues did not stimulate 45Ca influx from extracellular sources. A23187 and, to a lesser extent, terbutaline caused an acceleration of 45Ca efflux from type II cells. The addition of terbutaline or tetradecanoylphorbol acetate to A23187 further accelerated 45Ca efflux, suggesting that these agonists may act on separate calcium pools or by different mechanisms on the same calcium pool. Although secretion from type II cells is not inhibited by extracellular calcium depletion, the studies on 45Ca efflux suggest that Ca2+ plays a role in the regulation of surfactant secretion from isolated type II cells.  相似文献   

2.
E J Choi  Z Xia  D R Storm 《Biochemistry》1992,31(28):6492-6498
Characterization of adenylyl cyclases has been facilitated by the isolation of cDNA clones for distinct adenylyl cyclases including the type I and type III enzymes. Expression of type I adenylyl cyclase activity in animal cells has established that this enzyme is stimulated by calmodulin and Ca2+. Type III adenylyl cyclase is enriched in olfactory neurons and is regulated by stimulatory G proteins. The sensitivity of the type III adenylyl cyclase to Ca2+ and calmodulin has not been reported. In this study, type III adenylyl cyclase was expressed in human kidney 293 cells to determine if the enzyme is stimulated by Ca2+ and calmodulin. The type III enzyme was not stimulated by Ca2+ and calmodulin in the absence of other effectors. It was, however, stimulated by Ca2+ through calmodulin when the enzyme was concomitantly activated by either GppNHp or forskolin. The concentrations of free Ca2+ for half-maximal stimulation of type I and type III adenylyl cyclases were 0.05 and 5.0 microM Ca2+, respectively. These data suggest that the type III adenylyl cyclase is stimulated by Ca2+ when the enzyme is activated by G-protein-coupled receptors and that increases in free Ca2+ accompanying receptor activation may amplify the primary cyclic AMP signal.  相似文献   

3.
Both cAMP and Ca2+ play important roles in the steroidogenic action of LH in hen granulosa cells. However, the interaction of these intracellular messengers is not fully understood. In the present study we used two calcium ionophores (ionomycin and A23187), as well as trifluoperazine (TFP), an inhibitor of calmodulin, to investigate LH- and forskolin-induced cAMP production in granulosa cells isolated from the largest (F1) preovulatory follicle of White Leghorn laying hens. Between 0.1 and 1.0 microM, both ionophores significantly potentiated cAMP responses to LH in the presence of 0.1 mM extracellular Ca2+. When calcium was omitted from the medium, ionophores had no effect. When either calcium was raised above 1 mM, or the concentration of ionophores was increased above 1 microM, LH-induced cAMP production was drastically inhibited. In the presence of 0.5-2.0 mM calcium, A23187 inhibited forskolin-promoted cAMP synthesis. TFP, while having no effect on basal cAMP, suppressed LH-induced responses and the potentiating effect of ionomycin. It is concluded that for full activation of the adenylate cyclase/cAMP system by LH, Ca-calmodulin is required at a site upstream from the catalytic component of the enzyme. However, high intracellular Ca2+ and/or other effects of ionophores (such as uncoupling of oxidative phosphorylation) inhibit LH-induced cAMP production.  相似文献   

4.
The relaxant effects of the synthetic fish neuropeptide urotensin I were examined in helical strips of rat aorta. In K+-depolarized aorta strips, urotensin I and verapamil competitively inhibited Ca2+-induced contractions. Urotensin I relaxed, in a concentration-dependent manner, the contraction produced by the Ca2+ ionophore A23187, whereas verapamil had no effect on this contraction, even at a concentration of 10(-5) M. In the absence and presence of extracellular Ca2+, urotensin I inhibited both components of the contractions elicited by norepinephrine or urotensin II, another fish neuropeptide. Verapamil reduced only the norepinephrine or urotensin II induced contraction in the presence of extracellular Ca2+, with little or no change in the contraction in Ca2+-free buffer. The urotensin I induced relaxation response in aortic strips contracted by 40 mM KCl was enhanced by pretreatment with papaverine or forskolin. Pretreatment with dibutyryl cAMP did not significantly alter the action of urotensin I. The presence or absence of endothelial cells did not change the response to urotensin I. These results suggest that urotensin I antagonizes the action and (or) mobilization of extracellular and intracellular Ca2+.  相似文献   

5.
The effect of cAMP on ATP-induced intracellular Ca+ mobilization in cultured rat aortic smooth muscle cells was investigated. Treatment of cells for 3 min at 37 degrees C with dibutyryl cAMP, a membrane-permeable analogue of cAMP, at concentration up to 500 microM resulted in 1.5- to 1.7-fold increase in the peak cytosolic Ca2+ concentration when cells were stimulated with 3 to 200 microM ATP either in the presence or absence of extracellular Ca2+. Similar results were obtained when 0.5 mM 8-Br-cAMP or 10 microM forskolin was used instead of dibutyryl cAMP. In contrast to the Ca2+ response, dibutyryl cAMP did not affect ATP-induced formation of inositol trisphosphate (IP3). Furthermore, the dibutyryl cAMP treatment did not affect the size of the Ca2+ response elicited by 10 microM ionomycin. These results suggest that intracellular cAMP potentiates the ATP-induced Ca2+ response by enhancing Ca2+ release from the intracellular Ca2+ store(s), rather than by increasing the ATP-induced production of IP3 or by increasing the size of the intracellular Ca2+ store. Using saponin-permeabilized cells, we have shown directly that cAMP enhances Ca2+ mobilization by potentiating the Ca2+-releasing effect of IP3 from the intracellular Ca2+ store.  相似文献   

6.
Biphasic responses of amino[14C]pyrine accumulation and oxygen consumption were registered by gastrin stimulation in dispersed parietal cells from guinea pig gastric mucosa, and this was mimicked with the calcium ionophore A23187. The characteristics of these phases (first phase and second phase) were distinguished by the differences in the requirements of extracellular Ca2+. The first phase evoked by gastrin or ionophore A23187 was independent of extracellular Ca2+, whereas the second phase was not. In the first phase, fluorescence of a cytosolic Ca2+ indicator (quin2-AM) increased with the stimulation of ionophore A23187 and carbamylcholine chloride in the presence of extracellular Ca2+. In addition, an increase in cytosolic Ca2+ induced by ionophore A23187, but not by carbamylcholine chloride was also observed in the absence of extracellular Ca2+, suggesting that Ca2+ pool(s) in parietal cells might be present in the intracellular organelle. Cytochalasin B and colchicine, but not oligomycin, could eliminate this cytosolic Ca2+ increase induced by A23187 in a Ca2+-free medium. On the other hand, in a Ca2+-free medium, addition of ATP after pretreatment with digitonin could diminish the cytosolic Ca2+ increase brought about by A23187. This was also observed with oligomycin-treated cells, but not with cytochalasin B-treated cells. Similarly, subcellular fractionation of a parietal cell which had been pretreated with cytochalasin B or colchicine in an intact cell system reduced the rate of ATP-dependent Ca2+ uptake. These observations indicate that intracellular Ca2+ transport in dispersed parietal cells may be regulated by the microtubular-microfilamentous system. In conclusion, this study demonstrates the possibility of the existence of intracellular Ca2+ transport mediated by gastrin or ionophore A23187 and regulated by the microtubular-microfilamentous system in parietal cells.  相似文献   

7.
The effect of ionophore A23187 on cellular Ca2+ fluxes, glycogenolysis and respiration was examined in perfused liver. At low extracellular Ca2+ concentrations (less than 4 microM), A23187 induced the mobilization of intracellular Ca2+ and stimulated the rate of glycogenolysis and respiration. As the extracellular Ca2+ concentration was elevated, biphasic cellular Ca2+ fluxes were observed, with Ca2+ uptake preceding Ca2+ efflux. Under these conditions, both the glycogenolytic response and the respiratory response also became biphasic, allowing the differentiation between the effects of extracellular and intracellular Ca2+. Under all conditions examined the rate of Ca2+ efflux induced by A23187 was much slower than the rate of phenylephrine-induced Ca2+ efflux, although the net amounts of Ca2+ effluxed were similar for both agents. The effect of A23187 on phenylephrine-induced Ca2+ fluxes, glycogenolysis and respiration is dependent on the extracellular Ca2+ concentration. At concentrations of less than 50 microM-Ca2+, A23187 only partially inhibited alpha-agonist action, whereas at 1.3 mM-Ca2+ almost total inhibition was observed. The action of A23187 at the cellular level is complex, dependent on the experimental conditions used, and shows both differences from and similarities to the hepatic action of alpha-adrenergic agonists.  相似文献   

8.
Cl- efflux from normal human fibroblasts is stimulated by elevation of cAMP and by elevation of intracellular free Ca2+. In both cases the stimulated Cl- transport occurs via electrically conductive pathways. In six lines of normal human fibroblasts, dibutyryl cAMP increased total Cl- efflux by an average of 13%. In six lines of fibroblasts from patients with cystic fibrosis, dibutyryl cAMP was without effect. The electrically conductive component of Cl- transport was increased an average of 30% by dibutyryl cAMP in normal cells and was unaffected by dibutyryl cAMP in cystic fibrosis cells. Stimulation of the Ca2+-sensitive Cl- channel by addition of A23187 increased Cl- efflux by an average of 30% in normal and 30% in cystic fibrosis fibroblasts. The data indicate that there is a defect in a cAMP-activated Cl- channel in cystic fibrosis fibroblasts.  相似文献   

9.
The aim of the present study was to investigate the relationship between agonist-induced changes in intracellular free Ca2+ ([Ca2+]i) and the refilling of intracellular Ca2+ stores in Fura 2-loaded thyroid FRTL-5 cells. Stimulating the cells with ATP induced a dose-dependent increase in ([Ca2+]i). The ATP-induced increase in [Ca2+]i was dependent on both release of sequestered intracellular Ca2+ as well as influx of extracellular Ca2+. Addition of Ni2+ prior to ATP blunted the component of the ATP-induced increase in [Ca2+]i dependent on influx of Ca2+. In cells stimulated with ATP in a Ca(2+)-free buffer, readdition of Ca2+ induced a rapid increase in [Ca2+]i; this increase was inhibited by Ni2+. In addition, the ATP-induced influx of 45Ca2+ was blocked by Ni2+. Stimulating the cells with noradrenaline (NA) also induced release of sequestered Ca2+ and an influx of extracellular Ca2+. When cells were stimulated first with NA, a subsequent addition of ATP induced a blunted increase in [Ca2+]i. If the action of NA was terminated by addition of prazosin, and ATP was then added, the increase in [Ca2+]i was restored to control levels. Addition of Ni2+ prior to prazosin inhibited the restoration of the ATP response. In the presence of extracellular Mn2+, ATP stimulated quenching of Fura 2 fluorescence. The quenching was probably due to influx of Mn2+, as it was blocked by Ni2+. The results thus suggested that stimulating release of sequestered Ca2+ in FRTL-5 cells was followed by influx of extracellular Ca2+ and rapid refilling of intracellular Ca2+ stores.  相似文献   

10.
Previous studies demonstrated that Ca2+ ionophores augment the pancreatic enzyme secretion caused by phorbol esters. The present study was performed to determine the nature of the cellular Ca2+ effects responsible for the augmentation. Relatively low concentrations (0.3-1.0 microM) of the nonfluorescent Ca2+ ionophore, 4-bromo-A23187 (Br-A23187), did not measurably increase free cytosolic Ca2+ ([Ca2+]i) and caused little or no enzyme release from guinea pig pancreatic acini. However, these concentrations of Br-A23187 augmented the amylase release caused by the phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA). This augmentation occurred in the absence of extracellular Ca2+ as long as the intracellular agonist-sensitive pool contained Ca2+. Greater concentrations of Br-A23187 (3-10 microM) alone caused transient increases in [Ca2+]i and transient increases in amylase release. Although not resulting in an increase in [Ca2+]i, the low concentrations of Br-A23187 caused release of Ca2+ from the intracellular agonist-sensitive pool. These results suggest that Ca2+ mediates enzyme release by two distinct mechanisms in the pancreatic acinar cell. First, an increase in [Ca2+]i alone mediates enzyme release. Second, Ca2+ release from the agonist-sensitive pool not resulting in a measurable increase in [Ca2+]i augments enzyme release stimulated by a phorbol ester. The second effect of Ca2+ may be due to a small localized change in cell Ca2+ or an induction of cytosolic Ca2+ oscillations.  相似文献   

11.
Dual effects of manganese on prolactin secretion   总被引:1,自引:0,他引:1  
The effect of Mn2+ (a commonly used Ca2+ antagonist) on prolactin secretion from pituitary cells was investigated. In the presence of normal extracellular Ca2+ levels (2.5mM), Mn2+ inhibited basal, TRH- and K+- stimulated prolactin secretion. The Ca2+ ionophore, A23187, partially overcame the inhibitory effect of Mn2+. However, in the presence of low extracellular Ca2+ (less than 100 microM), which decreased basal prolactin secretion and abolished any stimulatory effects of TRH or K+, a paradoxical stimulatory effect was observed with Mn2+ in the presence of A23187. In the presence of Ca2+, Mn2+ appeared to be inhibitory due to its Ca2+ antagonistic effects, but at low Ca2+ levels, intracellular stimulatory effects of Mn2+ became apparent.  相似文献   

12.
Catecholamine (CA) release from adrenal medulla evoked by muscarinic receptor stimulation has been studied using isolated perfused adrenal gland and cultured chromaffin cells from dogs. Muscarine and oxotremorine (1-100 microM), and bethanechol (0.1-1 mM) dose-dependently stimulated CA release. Muscarine-evoked CA release was antagonized with M1-antagonist, pirenzepine and, to a lesser extent, with atropine; and was reduced either by removal of extracellular Ca2+ or treatment with Ca2+ channel blockers. Muscarine caused an increase of 45Ca uptake and 22Na uptake. Tetrodotoxin (TTX) did not affect muscarine-evoked increase of 22Na uptake and CA release. Under the absence of extracellular Ca2+, muscarine stimulated a 45Ca efflux. Muscarine-induced CA release was attenuated by treating the cells with 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate-HCl (TMB-8) which blocks Ca2+ release from the intracellular store. A phospholipase C inhibitor, neomycin, markedly reduced muscarine-induced CA release but not nicotine- and high K(+)-evoked release. Cinnarizine, a Ca2+ channel blocker, attenuated muscarine-evoked but not caffeine-induced CA release and 45Ca efflux in the absence of extracellular Ca2+. Muscarine caused an increase in intracellular free Ca2+ concentration ([Ca2+]i) in the presence of extracellular Ca2+. It caused a similar increase, but to a lesser extent, in the absence of extracellular Ca2+. The increase of [Ca2+]i induced by muscarine without extracellular Ca2+ was reduced by neomycin and cinnarizine. Polymixin B and retinal, which reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced CA release, had little effect on muscarine-induced CA release. Muscarine increased cellular Ins(1,4,5)P3 production, and atropine inhibited this increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The role of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-sensitive Ca2+ pools in secretion, induced by muscarinic agonists in porcine adrenal chromaffin cells, was studied. Activation of muscarinic receptors, as in other species, was found to increase inositol phosphate production including that of Ins(1,4,5)P3. Treatment of cells with thapsigargin, which is known to deplete Ins(1,4,5)P3-sensitive Ca2+ pools, eliminated the initial transient component of increases in the cytosolic free Ca2+ concentration ([Ca2+]in) induced by the muscarinic agonist, methacholine, in both the presence and the absence of extracellular Ca2+. Thapsigargin treatment also decreased methacholine-induced secretion by about 30% in the presence of extracellular Ca2+ and essentially eliminated secretion that occurred independently of extracellular Ca2+ (which was about 30% of the secretory response that occurred in the presence of extracellular Ca2+). Thapsigargin itself had no effect on inositol phosphate production. These results indicate that about 30% of muscarinic agonist-induced secretion is mediated by the release of Ca2+ from Ins(1,4,5)P3- and thapsigargin-sensitive intracellular Ca2+ pools. These results also suggest that Ca2+ influx activated by muscarinic agonists is not due to depletion of intracellular Ca2+ pools, as prior depletion of these pools had no effect on the portion of the methacholine-induced secretory response and [Ca2+]in signal that was dependent on extracellular Ca2+.  相似文献   

14.
We have investigated the signaling pathways underlying muscarinic receptor-induced calcium oscillations in human embryonic kidney (HEK293) cells. Activation of muscarinic receptors with a maximal concentration of carbachol (100 microm) induced a biphasic rise in cytoplasmic calcium ([Ca2+]i) comprised of release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. A lower concentration of carbachol (5 microm) induced repetitive [Ca2+]i spikes or oscillations, the continuation of which was dependent on extracellular Ca2+. The entry of Ca2+ with 100 microm carbachol and with the sarcoplasmic-endoplasmic reticulum calcium ATPase inhibitor, thapsigargin, was completely blocked by 1 microm Gd3+, as well as 30-100 microm concentrations of the membrane-permeant inositol 1,4,5-trisphosphate receptor inhibitor, 2-aminoethyoxydiphenyl borane (2-APB). Sensitivity to these inhibitors is indicative of capacitative calcium entry. Arachidonic acid, a candidate signal for Ca2+ entry associated with [Ca2+]i oscillations in HEK293 cells, induced entry that was inhibited only by much higher concentrations of Gd3+ and was unaffected by 100 microm 2-APB. Like arachidonic acid-induced entry, the entry associated with [Ca2)]i oscillations was insensitive to inhibition by Gd3+ but was completely blocked by 100 microm 2-APB. These findings indicate that the signaling pathway responsible for the Ca2+) entry driving [Ca2+]i oscillations in HEK293 cells is more complex than originally thought, and may involve neither capacitative calcium entry nor a role for PLA2 and arachidonic acid.  相似文献   

15.
The chemoattractant cAMP elicits a transient efflux of K+ in cell suspensions of Dictyostelium discoideum. This cellular response displayed half-maximal activity at about 1 microM cAMP and saturated at 100 microM cAMP, cAMP-stimulated K+ efflux, measured with a K+-sensitive electrode, depended on the extracellular free Ca2+ concentration ([Ca2+]0) and was maximal in the presence of EGTA. Usually more than 90% of the K+ release could be inhibited by the addition of Ca2+. Half-maximal reduction occurred at about 2 microM [Ca2+]0. Inhibition was also observed in the presence of caffeine or A23187, drugs known to elevate the intracellular free Ca2+ concentration ([Ca2+]i). Under conditions where [Ca2+]0 was maintained at a low level, half-maximal inhibition was 1 mM for caffeine and 3 microM for A23187. These results indicate that Cai2+ is involved in the regulation of K+ efflux. Simultaneous measurements of Ca2+ uptake and K+ efflux induced by cAMP as well as free running oscillations of both ions revealed that initiation and termination of Ca2+ uptake slightly preceded those of K+ efflux.  相似文献   

16.
The effect of extracellular ATP on intracellular free Ca2+ was characterized in quin2-loaded parotid acinar cells. ATP specifically increased the intracellular Ca2+ concentration six-fold above a basal level of 180 nM. Of other purine nucleotides tested, only adenylylthiodiphosphate (ATP gamma S) had significant activity. ATP and the muscarinic agonist carbachol increased intracellular Ca2+ even in the absence of extracellular Ca2+. Both agonists stimulated K+ release, which was followed by reuptake of K+, even in the continued presence of agonist. In the absence of Mg2+, ATP was much more potent but no more efficacious in elevating intracellular Ca2+, suggesting that ATP4- is the active species. The effect of ATP was reversed by removal with hexokinase, arguing against a role for an active contaminant of ATP and against a non-specific permeabilizing effect of extracellular ATP. Lactate dehydrogenase release was unaffected by a maximally effective concentration of ATP. These observations are consistent with a possible neurotransmitter role for ATP in the rat parotid gland.  相似文献   

17.
The modulation of neuronal adenylylcyclase by Ca2+, acting via calmodulin, is a long-established example of a positive interaction between the Ca2(+)-mobilizing and cAMP-generating systems. In the present study, concentrations of Ca2+ that stimulate brain adenylylcyclase inhibit the adenylylcyclase of NCB-20 plasma membranes. These inhibitory effects of Ca2+ have been characterized and seem to be exerted at the catalytic unit of the enzyme; they are independent of calmodulin, Gi, and phosphodiesterase. To determine whether this inhibition of adenylylcyclase by Ca2+ could occur in the intact cell, cAMP accumulation was measured in response to bradykinin. Bradykinin, which mobilizes Ca2+ in NCB-20 cells, as a consequence of stimulating inositol phosphate production, causes a transient inhibition of prostaglandin E1 stimulation of cAMP accumulation. The inhibitory action of bradykinin is attenuated significantly by treatment of cells with the cell-permeant Ca2+ chelator, 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid. It seems likely that the inhibition of adenylylcyclase by low concentrations of Ca2+ represents a novel means for a negative interaction between Ca2(+)-mobilizing and cAMP-generating systems.  相似文献   

18.
Vasopressin stimulated gluconeogenesis from proline in hepatocytes from starved rats; this was attributed to an activation of oxoglutarate dehydrogenase (EC 1.2.4.2) [Staddon & McGivan (1984) Biochem. J. 217, 477-483]. The role of Ca2+ in the activation mechanism was investigated. (1) In the absence of extracellular Ca2+, vasopressin caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content that were markedly transient when compared with the effects in the presence of Ca2+. (2) Ca2+ added to cells stimulated for 2 min by vasopressin in the absence of extracellular Ca2+ sustained the initial effects of vasopressin. Ca2+ added 15 min after vasopressin, a time at which both the rate of gluconeogenesis and the cell oxoglutarate content were close to the control values, caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content. (3) Under conditions of cell-Ca2+ depletion, vasopressin had no effect on gluconeogenesis or cell oxoglutarate content. (4) Ionophore A23187 stimulated gluconeogenesis and caused a decrease in cell oxoglutarate content, but the phorbol ester 4 beta-phorbol 12-myristate 13-acetate had no effects. (5) These data suggest that the initial activation of oxoglutarate dehydrogenase by vasopressin is dependent on an intracellular Ca2+ pool and independent of extracellular Ca2+. For activation of a greater duration, a requirement for extracellular Ca2+ occurs. The activation of oxoglutarate dehydrogenase by A23187 is consistent with a mechanism involving Ca2+, but the lack of effect of 4 beta-phorbol 12-myristate 13-acetate indicates that protein kinase C is not involved in the mechanism of activation by vasopressin.  相似文献   

19.
The effect of palmitic acid on basal and insulin-stimulated incorporation of glucose into rat adipocytes was studied. Palmitic acid (2.40 mM) stimulated basal as well as insulin-stimulated glucose incorporation in rat adipocytes three and twofold, respectively. Similar degrees of stimulation of basal glucose oxidation by palmitate were also observed. The ability of palmitic acid to stimulate glucose uptake was additive with respect to the stimulation induced by insulin and was proportional to the palmitic acid concentration between 0.15 mM and 2.40 mM. Stimulation of glucose incorporation by palmitic acid was inhibited by preincubating the cells with quin2-AM, which accumulates intracellularly yielding the trapped chelator form. quin2, which binds intracellular Ca2+.The concentration of quin2-AM required for half-maximal inhibition of palmitic acid stimulated glucose incorporation was 3.8 +/- 1.2 microM (mean +/- SEM). The inhibition of palmitic acid-stimulated glucose incorporation by quin2-AM (10 microM) was overcome by incubating cells with the Ca2+ ionophore, A23187, in the presence of extracellular Ca2+ (2.6 mM). Chelation of extracellular Ca2+ with EGTA did not significantly affect the magnitude of palmitic acid-stimulated glucose incorporation. Dantrolene (12.5-100 microM) failed to affect basal or palmitic acid-stimulated glucose incorporation. These findings suggest that palmitic acid stimulates incorporation of glucose in the adipocyte by a mechanism dependent upon intracellular but not extracellular Ca2+.  相似文献   

20.
By exploiting the unique characteristics of three ionophores, experimental conditions were found which permit the dissociation of respiratory stimulation from secretion in polymorphonuclear leucocytes. A marked stimulation of respiration was produced by ionophore X537A, which binds and transports both alkali-earth and alkali cations. The stimulatory activity of this ionophore was the same at either high or low Na+/K+ ratios in the medium and was virtually unaffected by extracellular Ca2+. A slight stimulation of oxygen consumption was also caused by the K+-selective ionophore valinomycin and by ionophore A23187, which complexes and transfers bivalent cations. Ionophore X537A and valinomycin were unable to stimulate selective release of granuleassociated beta-glucuronidase and gradually increased cell fragility, as monitored by increased leakage of lactate dehydrogenase. Ionophore A23187 slightly increased exocytosis of beta-glucuronidase. In a Mg2+-free medium, Ca2+, added simultaneously with ionophore A23187, greatly enhanced respiration and secretion of the granule enzyme. If Ca2+ was added a few minutes after the ionophore, exocytosis occurred, but no respiratory burst was observed. If the latter experiment was repeated in the presence of extracellular Mg2+, both secretion and respiration were stimulated. This effect was not produced by Mn2+ or Ba2+. It is proposed that Ca2+ is required for triggering selective secretion of granule enzymes from leucocytes is caused by an intracellular redistribution of cations, which may invovle Mg2+-dependent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号