首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on microfacies analyses and sedimentological data, 17 facies are identified within the Middle Miocene carbonates at Siwa Oasis in the northern Western Desert of Egypt. These facies are attributed to five main facies belts. Within these facies and facies belts, five foraminiferal assemblages are recognized. A depositional model relates the reported facies and biofacies to a down-dip depositional profile of an inner to middle carbonate ramp. The facies of the peritidal to restricted lagoon (facies belt 1) and the less-restricted lagoon (facies belt 2) were deposited in the inner ramp behind the barrier/beach shoal facies belt 3. Basinward, lime mudstone of facies belts 4 and 5 accumulated in a proximal to distal middle ramp, respectively. The depositional evolution involved three stages, which are strongly controlled by tectonics and eustatic sea-level changes. The first stage comprises the transgressive Lower Miocene clastic-dominated fluvial facies of the Moghra Formation. The second stage heralds the deposition of the Langhian inner-ramp carbonate and shale facies of the basal Oasis Member of the Marmarica Formation under a relatively high stand of sea level, constrained clastic influx and climate warming. The final stage is represented by Langhian to Serravallian mid-ramp carbonate-dominated facies of the Siwa Escarpment and El Diffa Plateau members under fluctuating sea level, and a westward restriction in clastic supply and water turbidity.  相似文献   

2.
The well-exposed outcrops of the Bujan, northern Abadeh, and Varkan stratigraphic sections of the Qom Formation in the Iranian part of the “northeastern margin” of the Tethyan Seaway were characterized by abundant biogenic components dominated by foraminifers, coralline red algae, and corals. The Qom Formation is Rupelian–Chattian in age in the study areas. Based on the field investigations, depositional textures, and dominant biogenic components, fifteen (carbonate and terrigenous) facies were identified. These facies can be grouped into four depositional environments: open marine, open lagoon, restricted lagoon, and continental braided streams. The marine facies were deposited on a ramp-type platform. The euphotic inner ramp was characterized mainly by imperforate foraminifera, with co-occurrence of some perforate taxa. These facies passed basinward into a mesophotic (middle) ramp with Neorotalia packstone (F5), coral, coralline algae, perforate foraminiferal packstone (F4), and coral patch reefs (F7). The deeper, oligophotic ramp facies were marly packstones with planktonic and hyaline benthic foraminifera, including large lepidocyclinids and nummulitids. The abundance of perforate foraminifera and the absence of facies indicating restricted lagoonal or intertidal settings suggest that the Varkan section was deposited mainly in open marine settings with normal salinity. The prevalence of larger benthic foraminiferal and red algal assemblages, together with the coral facies, indicates that carbonate production took place in tropical–subtropical waters.  相似文献   

3.
Doo  Steve S.  Hamylton  Sarah  Finfer  Joshua  Byrne  Maria 《Coral reefs (Online)》2017,36(1):293-303

Large benthic foraminifera (LBFs) are a vital component of coral reef carbonate production, often overlooked due to their small size. These super-abundant calcifiers are crucial to reef calcification by generation of lagoon and beach sands. Reef-scale carbonate production by LBFs is not well understood, and seasonal fluctuations in this important process are largely unquantified. The biomass of five LBF species in their algal flat habitat was quantified in the austral winter (July 2013), spring (October 2013), and summer (February 2014) at One Tree Reef. WorldView-2 satellite images were used to characterize and create LBF habitat maps based on ground-referenced photographs of algal cover. Habitat maps and LBF biomass measurements were combined to estimate carbonate storage across the entire reef flat. Total carbonate storage of LBFs on the reef flat ranged from 270 tonnes (winter) to 380 tonnes (summer). Satellite images indicate that the habitat area used by LBFs ranged from 0.6 (winter) to 0.71 km2 (spring) of a total possible area of 0.96 km2. LBF biomass was highest in the winter when algal habitat area was lowest, but total carbonate storage was the highest in the summer, when algal habitat area was intermediate. Our data suggest that biomass measurements alone do not capture total abundance of LBF populations (carbonate storage), as the area of available habitat is variable. These results suggest LBF carbonate production studies that measure biomass in discrete locations and single time points fail to capture accurate reef-scale production by not incorporating estimates of the associated algal habitat. Reef-scale measurements in this study can be incorporated into carbonate production models to determine the role of LBFs in sedimentary landforms (lagoons, beaches, etc.). Based on previous models of entire reef metabolism, our estimates indicate that LBFs contribute approximately 3.9–5.4% of reef carbonate budgets, a previously underappreciated carbon sink.

  相似文献   

4.
The microbiostratigraphic analysis of the three outcrop sections from the Cretaceous inner platform carbonate succession in the Yavca area (Bolkar Mountains) allows to recognize the four local benthic foraminiferal zones. These are: (1) Voloshinoides murgensis and Praechrysalidina infracretacea Cenozone in the Lower Aptian; (2) Pseudorhapydionina dubia and Biconcava bentori Cenozone in the Middle-Upper Cenomanian; (3) Ostracoda and Miliolidae Interval Zone in the probable Turonian, represented by dolomitized limestones without any significant markers; (4) Moncharmontia compressa and Dicyclina schlumbergeri Cenozone in the Coniacian-Santonian. The benthic foraminiferal assemblages correspond to those in other areas of the Mediterranean realm, with the exception of a lack of alveolinids and orbitolinids due to unfavorable environmental conditions (inner platform, restricted shelf). After the regionally well-known emergence during the late Aptian, Albian and early Cenomanian, very shallow subtidal to intertidal conditions were re-established during the middle-late Cenomanian time. The Coniacian-Santonian benthic foraminiferal assemblage shows an increase in diversity and abundance as a result of open marine influence, confirmed by the presence of larger foraminifera (Dicyclina), Rotaliidae and radiolitid fragments. Thaumatoporella and Aeolisaccus-bearing wackestone intercalations still indicate the existence of sporadic restricted environment conditions. The Cretaceous shallow-water platform carbonate succession of the Yavca area is conformably overlain by gray pelagic limestones with calcispheres and planktonic foraminifera. The Campanian flooding of the Bolkar Da? carbonate platform resulted in drowning of the pre-existing biota and facies.  相似文献   

5.
Summary The Middle Ordovician Duwibong Formation (about 100 m thick), Korea, comprises various lithotypes deposited across a carbonate ramp. Their stacking patterns constitute several kinds of meter-scale, shallowing-upward carbonate cycles. Lithofacies associations are grouped into four depositional facies: deep- to mid-ramp, shoal-complex, lagoonal, and tidal-flat facies. These facies are composed of distinctive depositional cycles: deep subtidal, shallow subtidal, restricted marine, and peritidal cycles, respectively. The subtidal cycles are capped by subtidal lithofacies and indicate incomplete shallowing to the peritidal zone. The restricted marine and peritidal cycles are capped by tidal flat lithofacies and show evidence of subaerial exposure. These cycles were formed by higher frequency sea-level fluctuations with durations of 120 ky (fifth order), which were superimposed on the longer term sea-level events, and by sediment redistribution by storm-induced currents and waves. The stratigraphic succession of the Duwibong Formation represents a general regressive trend. The vertical facies change records the transition from a deep- to mid-ramp to shoal, to lagoon, into a peritidal zone. The depositional system of the Duwibong Formation was influenced by frequent storms, especially on the deep ramp to mid-ramp seaward of ooid shoals. The storm deposits comprise about 20% of the Duwibong sequence.  相似文献   

6.
The internal facies and sequence architecture of a Late Jurassic (Late Kimmeridgian) shallow carbonate ramp was reconstructed after the analysis and correlation of 17 logs located south of Teruel (northeast Spain). The studied rocks are arranged in five high-frequency sequences A–E (5–26 m thick) bounded by discontinuities traceable across the entire study area (20 × 25 km). Facies analysis across these sequences resulted in the reconstruction of three sedimentary models showing the transition from interior ramp environments (i.e., lagoon, backshoal, and shoal) to the progressively deeper foreshoal and offshore areas. Coral-microbial reefs (meter-sized patch and pinnacle reefs) have a variable development throughout the sequences, mostly in the foreshoal and offshore-proximal environments. The preferential occurrence and down-dip gradation of non-skeletal carbonate grains has been evaluated across the three models: low-energy peloidal-dominated, intermittent high-energy oolitic-dominated and high-energy oolitic–oncolitic dominated. The predominance of these non-skeletal grains in the shoal facies was mainly controlled by the hydrodynamic conditions and spatial heterogeneity of terrigenous input. The models illustrate particular cases of down-dip size-decrease of the resedimented grains (ooids, peloids, oncoids) due to storm-induced density flows. Offshore coarsening of certain particles (intraclasts, oncoids) is locally observed in the mid-ramp areas favorable for microbial activity, involving coral-microbial reef and oncoid development. The observed facies variations can be applicable to carbonate platforms including similar non-skeletal components, where outcrop conditions make the recognition of their three-dimensional distribution difficult.  相似文献   

7.
We determined phosphate uptake by calcareous sediments at two locations within a shallow lagoon in Bermuda that varied in trophic status, with one site being mesotrophic and the other being more eutrophic. Phosphate adsorption over a six hour period was significantly faster in sediments from the mesotrophic site. Uptake at both sites was significantly less than that reported for a similar experiment on calcareous sediments in an oligotrophic lagoon in the Bahamas. The difference in phosphorus adsorption between our sites did not appear to be related to sediment characteristics often cited as important, such as differences in surface area (as inferred from grain size distributions), total organic matter content, or iron content. However, the sediment total phosphorus contents were inversely related to phosphorus uptake at our sites in Bermuda, and at the previously studied Bahamas site.We hypothesize that phosphate uptake in these calcareous sediments is a multi-step process, as previously described for fluvial sediments or pure calcium carbonate solids, with rapid initial surface chemisorption followed by a slower incorporation into the carbonate solid-phase matrix. Accordingly, sediments already richer in solid phase phosphorus take up additional phosphate more slowly since the slower incorporation of surface-adsorbed phosphate into the carbonate matrix limits the rate of renewal of surface-reactive adsorption sites.Although carbonate sediments are a sink for phosphate, and thereby reduce the availability of phosphorus for benthic macrophytes and phytoplankton in the shallow overlying water, phosphate uptake by these sediments appears to decrease along a gradient from oligotrophic to eutrophic sites. If our result is general, it implies a positive feedback in phosphorus availability, with a proportionately greater percentage of phosphorus loading being biologically available longer as phosphorus loading increases. This pattern is supported by the significantly higher tissue phosphorus content of the seagrass,Thalassia testudinum, collected from the eutrophic inner bay site. Over time, this effect may tend to cause a shift from phosphorus to nitrogen limitation in some calcareous marine environments.  相似文献   

8.
The dynamics of carbon and nitrogen in carbonate mud were examined in the lagoons of Arlington and Sudbury Reefs, Great Barrier Reef. Most (89–93%) of the organic carbon and total nitrogen depositing to the carbonate mud zones was mineralized over a sediment depth of 1 m, with ∼50% of CO2 produced during microbial decomposition involved in carbonate precipitation/dissolution reactions. There was proportionally little burial of organic carbon (10–11%) or nitrogen (7–10%). Nitrogen budgets suggest rapid turnover of porewater inorganic N pools on the order of hours to a few days. Incubation experiments indicate carbonate dissolution in surface deposits (≤20 cm depth) and carbonate precipitation in deeper sediments. Depth-integrated reaction rates indicate net carbonate precipitation of 7–10 mol CaCO3 m2 year−1 over a depth of 1 m. Budget calculations at the whole-reef scale imply that deposition of CaCO3 in the mud zones of both lagoons may equate to 50–90% of total reef carbonate production, with organic carbon fluxes equating to nearly all net primary production on each reef. These biogeochemical estimates point to the functional importance of carbonate mud zones in the lagoons of the shelf reefs of the Great Barrier Reef.  相似文献   

9.
To explore the utility of gravel-sized tests of large benthic foraminifers (LBFs) as practical paleoenvironmental indicators of tropical reef and shelf carbonate environments, depth and spatial distributions of gravel-sized empty tests of LBFs were examined using 39 surface sediment samples collected from depths shallower than 200 m off the west coast of Miyako Island (Ryukyu Islands, northwest Pacific). Distributions of the LBF tests were mainly related to water depth, topography, and substrate type. Q-mode cluster analysis based on the binary (presence/absence) data of LBF associations (4–2-mm size fraction) clearly delineates four depositional environments: bay, back reef to fore reef, flat shelf, and shelf slope. Application of this modern dataset to fossil LBF data from larger foraminiferal limestones of the Pleistocene Ryukyu Group indicate that a test section was deposited in an outer flat shelf at depths between 54 and 99 m. Comparisons of these results with previous reports suggest that our foraminiferal analysis using gravel-sized tests is methodologically easier than conventional analyses including smaller sized tests to distinguish similar levels of depositional environments. However, taxonomic and environmental similarities make the applicability of this dataset to fossil LBF data from Quaternary tropical carbonate environments in the northwest Pacific.  相似文献   

10.
Paleontological and biostratigraphical studies on carbonate platform succession from southwest Iran documented a great diversity of shallow-water benthic foraminifera during the Oligocene–Miocene. Larger foraminifera are the main means for the stratigraphic zonation of carbonate sediments. The distributions of larger benthic foraminifera in two outcrop sections (Abolhayat and Lali) in the Zagros Basin, Iran, are used to determine the age of the Asmari Formation. Four assemblage zones have been recognized by distribution of the larger benthic foraminifera in the study areas. Assemblage 3 (Aquitanian age) and 4 (Burdigalian age) have not been recognized in the Abolhayat section (Fars area), due to sea-level fall. The end Chattian sea-level fall restricted marine deposition in the Abolhayat section and Asmari Formation replaced laterally by the Gachsaran Formation. This suggests that the Miocene part of the formation as recognized in the Lali section (Khuzestan area) of the Zagros foreland basin is not present in the Abolhayat outcrop. The distribution of the Oligocene larger benthic foraminifera indicates that shallow marine carbonate sediments of the Asmari Formation at the study areas have been deposited in the photic zone of tropical to subtropical oceans. Based on analysis of larger benthic foraminiferal assemblages and microfacies features, three major depositional environments are identified. These include inner shelf, middle shelf and outer shelf. The inner shelf facies is characterized by wackestone–packstone, dominated by various taxa of imperforate foraminifera. The middle shelf is represented by packstone–grainstone to floatstone with a diverse assemblage of larger foraminifera with perforate wall. Basinwards is dominated by argillaceous wackestone characterized by planktonic foraminifera and large and flat nummulitidae and lepidocyclinidae. Planktonic foraminifera wackestone is the dominant facies in the outer shelf.  相似文献   

11.
Settlement tiles were used to characterise and quantify coral reef associated algal communities along water quality and herbivory gradients from terrestrial influenced near shore sites to oceanic passage sites in Marovo Lagoon, the Solomon Islands. After 6 months, settlement tile communities from inshore reefs were dominated by high biomass algal turfs (filamentous algae and cyanobacteria) whereas tiles located on offshore reefs were characterised by a mixed low biomass community of calcareous crustose algae, fleshy crustose algae and bare tile. The exclusion of macrograzers, via caging of tiles, on the outer reef sites resulted in the development of an algal turf community similar to that observed on inshore reefs. Caging on the inshore reef tiles had a limited impact on community composition or biomass. Water quality and herbivorous fish biomass were quantified at each site to elucidate factors that might influence algal community structure across the lagoon. Herbivore biomass was the dominant driver of algal community structure. Algal biomass on the other hand was controlled by both herbivory and water quality (particularly dissolved nutrients). This study demonstrates that algal communities on settlement tiles are an indicator capable of integrating the impacts of water quality and herbivory over a small spatial scale (kilometres) and short temporal scale (months), where other environmental drivers (current, light, regional variability) are constant.  相似文献   

12.
Ocean acidification (OA) resulting from uptake of anthropogenic CO2 may negatively affect coral reefs by causing decreased rates of biogenic calcification and increased rates of CaCO3 dissolution and bioerosion. However, in addition to the gradual decrease in seawater pH and Ω a resulting from anthropogenic activities, seawater carbonate chemistry in these coastal ecosystems is also strongly influenced by the benthic metabolism which can either exacerbate or alleviate OA through net community calcification (NCC = calcification – CaCO3 dissolution) and net community organic carbon production (NCP = primary production ? respiration). Therefore, to project OA on coral reefs, it is necessary to understand how different benthic communities modify the reef seawater carbonate chemistry. In this study, we used flow-through mesocosms to investigate the modification of seawater carbonate chemistry by benthic metabolism of five distinct reef communities [carbonate sand, crustose coralline algae (CCA), corals, fleshy algae, and a mixed community] under ambient and acidified conditions during summer and winter. The results showed that different communities had distinct influences on carbonate chemistry related to the relative importance of NCC and NCP. Sand, CCA, and corals exerted relatively small influences on seawater pH and Ω a over diel cycles due to closely balanced NCC and NCP rates, whereas fleshy algae and mixed communities strongly elevated daytime pH and Ω a due to high NCP rates. Interestingly, the influence on seawater pH at night was relatively small and quite similar across communities. NCC and NCP rates were not significantly affected by short-term acidification, but larger diel variability in pH was observed due to decreased seawater buffering capacity. Except for corals, increased net dissolution was observed at night for all communities under OA, partially buffering against nighttime acidification. Thus, algal-dominated areas of coral reefs and increased net CaCO3 dissolution may partially counteract reductions in seawater pH associated with anthropogenic OA at the local scale.  相似文献   

13.
Patterns of Phanerozoic carbonate platform sedimentation   总被引:3,自引:0,他引:3  
Carbonate platforms changed substantially in spatial extent, geometry, composition and palaeogeographical distribution through the Phanerozoic. Although reef construction and carbonate platform development are intimately linked today, this was not the case for most of the Phanerozoic. Carbonate production by non-enzymatic precipitation and non-reefal organisms is mostly responsible for this decoupling. Non-reefal carbonate production was especially prolific during times of depressed reef growth, balancing losses in reef carbonate production. Palaeogeographical distribution and spatial extent of Phanerozoic carbonate platforms exhibit trends related to continental drift, evolutionary patterns within carbonate platform biotas, climatic change and, possibly, variations in ocean chemistry. Continental drift moved large Palaeozoic tropical shelf areas into higher latitudes, thereby reducing the potential size of tropical platforms. However, the combined global size of carbonate platforms shows no significant decline through the Phanerozoic, suggesting that availability of tropical shelf areas was not a major control of platform area. This is explained by the limited platform coverage of low-latitude shelves (42% maximum) and occasional high-latitude excursions of platform carbonates. We speculate that reduced tropical shelf area in the icehouse tropics forced the migration of the many carbonate-secreting organisms into higher latitudes and, where terrigenous input was sufficiently low, extensive carbonate platform could develop.  相似文献   

14.
Larger symbiont-bearing foraminifera are prominent and important producers of calcium carbonate in modern tropical environments. With an estimated production of at least 130 million tons of CaCO(3) per year, they contribute almost 5% of the annual present-day carbonate production in the world's reef and shelf areas (0-200 m) and approximately 2.5% of the CaCO(3) of all oceans. Together with non-symbiont-bearing smaller foraminifera, all benthic foraminifera are estimated to annually produce 200 million tons of calcium carbonate worldwide. The majority of foraminiferal calcite in modern oceans is produced by planktic foraminifera. With an estimated annual production of at least 1.2 billion tons, planktic foraminifera contribute more than 21% of the annual global ocean carbonate production. Total CaCO(3) of benthic and planktic foraminifera together amounts to 1.4 billion tons of calcium carbonate per year. This accounts to almost 25% of the present-day carbonate production of the oceans, and highlights the importance of foraminifera within the CaCO(3) budget of the world's oceans.  相似文献   

15.
Geochemical environments were characterized for 14 sites along the northern Gulf of Mexico continental shelf and upper slope, in an effort to examine the relationship between sediment geochemistry and carbonate shell taphonomy in a long-term study—Shelf and Slope Experimental Taphonomy Initiative (SSETI). Three groups of environments of preservation (seep, near-seep, and shelf-and-slope) were identified based on their geochemical characteristics (i.e., oxygen uptake rate and penetration depth, pore-water saturation states, and carbonate dissolution fluxes). Diffusive oxygen uptake rate increased in the order of shelf-and-slope, near-seep, and seep, although carbonate dissolution flux did not show significant correlation with O2 flux, presumably due to non-diffusive behavior at some sites. Using pore-water saturation indices with respect to aragonite and calcite and sedimentation rates, we defined a semi-quantitative parameter, carbonate dissolution index (CDI), to predict carbonate preservation potential during the taphonomic processes. Our limited database suggests that both the seep and the shelf-and-slope sediments may have higher carbonate preservation potential than the near-seep sediments.  相似文献   

16.
On the basis of thin-section studies of cuttings and a core from two wells in the Amapá Formation of the Foz do Amazonas Basin, five main microfacies have been recognized within three stratigraphic sequences deposited during the Late Paleocene to Early Eocene. The facies are: 1) Ranikothalia grainstone to packstone facies; 2) ooidal grainstone to packstone facies; 3) larger foraminiferal and red algal grainstone to packstone facies; 4) Amphistegina and Helicostegina packstone facies; and 5) green algal and small benthic foraminiferal grainstone to packstone facies, divisible locally into a green algal and the miliolid foraminiferal subfacies and a green algal and small rotaliine foraminiferal subfacies. The lowermost sequence (S1) was deposited in the Late Paleocene–Early Eocene (biozone LF1, equivalent to P3–P6?) and includes rudaceous grainstones and packstones with large specimens of Ranikothalia bermudezi representative of the mid- and inner ramp. The intermediate and uppermost sequences (S2 and S3) display well-developed lowstand deposits formed at the end of the Late Paleocene (upper biozone LF1) and beginning of the Early Eocene (biozone LF2) on the inner ramp (larger foraminiferal and red algal grainstone to packstone facies), in lagoons (green algal and small benthic foraminiferal facies) and as shoals (ooidal facies) or banks (Amphistegina and Helicostegina facies). Depth and oceanic influence were the main controls on the distribution of these microfacies. Stratal stacking patterns evident within these sequences may well have been related to sea level changes postulated for the Late Paleocene and Early Eocene. During this time, the Amapá Formation was dominated by cyclic sedimentation on a gently sloping ramp. Environmental and ecological stress brought about by sea level change at the end of the biozone LF1 led to the extinction of the larger foraminifera (Ranikothalia bermudezi).  相似文献   

17.
The Middle-to-Upper Permian in the Kuh-e Gakhum anticline (southeastern Iran) has rarely been studied due to its structural complexity and the difficult access. Rich Permian fusulinid assemblages varying in age from Wordian to Changhsingian were found in a thick carbonate succession corresponding to the Dalan Formation. Three new species of foraminifers are described and a new biostratigraphic framework including five biozones is proposed. One of these, described and defined for the first time in the Dalan Formation, is based on the presence of Praedunbarula simplicissima n. gen. n. sp. When compared to the fossil content of existing bioprovinces, the floro-faunal biota of the Dalan Formation shows an affinity with Central and Western Tethys. A mass extinction of fusulinids and small foraminifers (70%) occurred concomitantly with the onset of a relative sea-level fall. This event led to a change in the carbonate factories from biologically induced carbonate production to ooid-rich chemically induced precipitation. The morphology of the platform at the Guadalupian/Lopingian transition evolves from a bioclastic ramp to a shelf. This transition is also characterized by a major sequence boundary and morphological anomalies in foraminifers. Therefore, as the regression and the changes in floro-faunal contents have been observed at the Guadalupian/Lopingian boundary, the extinction event is considered as end-Guadalupian. It is followed by a Lopingian transgression yielding renewed foraminiferal assemblages.  相似文献   

18.
Upper Jurassic reefs rich in microbial crusts generally appear in deeper (sponge—‘algal’ crust reefs) or in very shallow but protected settings (coral or coral-coralline sponge meadows with ‘algal’ crusts). Upper Jurassic high-energy reefs (coral reefs and coral-stromatoporoid reefs) normally lack major participation of microbial crusts but rather represent huge bioclastic piles with only minor framestone patches preserved. An exception to this rule is represented by the high-energy, coral-‘algal’ Ota Reef from the Kimmeridgian of the Lusitanian Basin (Portugal). The narrow Ota Reef tract rims a small intra-basinal carbonate platform exhibiting perfect facies zonation (from W to E: Reef tract, back reef sands, peritidal belt, low-energy shallow lagoon). The reef is dominated by massive corals (Thamnasteria, Microsolena, Stylina). Complete preservation of coral framework is rare: like other Upper Jurassic high-energy reefs, the Ota Reef is very rich in debris; however, this debris is largely stabilized by algal and microbial crusts, what contrasts the other examples and gives the Ota Reef the appearance of a typical modern high-energy coral-melobesioid algal reef. Further similarities to modern reefs are the likely existence of a spur-and-groove system, the perfect sheltering of inner platform areas and the occurrence of small islands, as indicated by local blackenings and early vadose and karstic features.  相似文献   

19.
Summary The limestones of the Wadi Nasb Formation of the uppermost Lower Cambrian of Jordan are under- and overlain by massive sandstones of a near-shore facies. Facies analysis is based on samples from an outcrop at the northeastern shore of the Dead Sea and two oil test wells in the Wadi Sirhan Depression in eastern Jordan. Limestones were deposited in the shallow sea and within the coastal tidal area. Cyanobacteria, algae, echinoderms, trilobites and hyoliths have contributed the bulk of the carbonate and phosphatic material composing the Wadi Nasb limestone. Fine-grained facies types are composed of peloidal carbonate muds with laminar and nodular algal and cyanobacterial mats. They formed within a quiet tidallagoonal environment. The coarse grained facies types consist of carbonate sands with layers of sheell debris deposited in crossbeds in an environment with a rich endobenthic fauna. Here most particles were coated by cyanobacterial crusts. Ooids, oncoids and various coated grains are present. Consolidated sediments were commonly eroded within or near to this environment and their remains were integrated within the sands. Diagenesis is reconstructed step by step with deposition, first cementation, aragonite dissolution, compaction, pore filling, formation of pressure solution, growth of dolomite and anhydrite within the calcitic limestone and final fissure formation and filling.  相似文献   

20.
Early Ilerdian (Early Eocene, Shallow Benthic Zones 5 and 6) carbonate systems of the Pyrenees shelf were deposited after a time of severe climatic (‘Paleocene–Eocene Thermal Maximum, PETM’) and phylogenetic (‘Larger Foraminifer Turnover’) changes. They reflect the radiation of nummulitid, alveolinid, and orbitolitid larger foraminifera after remarkable biotic changes at the end of the Paleocene, and announce their subsequent flourishing in the Middle Eocene.A paleoenvironmental model for tropical carbonate environments of this particular time interval is provided herein. During the Early Ilerdian, the inner and middle ramp deposits from Minerve, Campo and Serraduy revealed the end-member of a tropical carbonate factory with carbonate production dominated by the end-members of biotically (photo-autotrophic skeletal) controlled and biotically induced carbonate precipitation. Inner platform environments are dominated by alveolinids and in part by orbitolitids, middle platform environments are dominated by nummulitids. Corals are present, but they do not form reefs, which is a typical feature for the Eocene. Nummulite shoal complexes, which are well-known from the Middle Eocene are also absent during the studied Early Ilerdian interval, which may reflect the early evolutionary stage of this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号