首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The soluble fraction of nuclear proteins is a functionally significant fraction, since it has been shown that it contains ribonucleoproteins active in nuclear RNA metabolism. The aim of this work was to detect variations associated with cell proliferation, by comparing two-dimensional proteomes obtained from the soluble fractions of onion nuclei isolated from actively proliferating root meristematic cells versus nonmeristematic root cells. In particular, we have studied the physicochemical features of the major nucleolar protein NopA100, a highly phosphorylated, nucleolin-like protein. A total of 384 spots were quantified in meristematic nuclei, while only 209 were detected in nonmeristematic nuclei. The comparison of both proteomes resulted in the determination of specific spots for each proliferative state and those which were common to both cases. Furthermore, among these latter, we could discriminate quantitative differences. Interestingly, well-known nucleolar proteins, such as RNA polymerase I, B23 and the nucleolin-like protein NopA100, were significantly increased in proliferating cells. Western blots with anti-NopA100 antibody demonstrated 26 spots in the meristematic sample. All the spots detected were clustered at 100 kDa and were distributed through an isoelectric point (pI) range of 4.3-6.6. In contrast, only seven spots were found in the extract from nonmeristematic nuclei, and the pI range was shortened to 4.8-6.1. These results indicate that the state of NopA100 phosphorylation correlates with the degree of nucleolar activity, i.e. the protein is more highly phosphorylated in cycling cells. We have also analyzed the bidimensional silver staining of the nucleolar organizing region (Ag-NOR) pattern of the soluble nuclear fraction in order to identify plant cell phosphoproteins that are considered to be markers of proliferation. These experiments demonstrated that NopA100, the onion, nucleolin-like protein, is an Ag-NOR protein. In addition we found that the plant homologue of the vertebrate nucleolar phosphoprotein B23 migrated as two clusters of acidic spots, 43 and 42 kDa respectively in molecular mass. The differences between these features and those described for mammalian cells is discussed. Our results demonstrate that the use of protein fractionation procedures with functional significance and the location of candidate spots by indirect techniques are advantageous, complementary methods to random selection procedures for proteomic studies involving further mass spectrometry analysis.  相似文献   

2.
Optimal defense theory (ODT) predicts antiherbivore defensive compounds will be allocated so that the most valuable or most susceptible tissues will be best defended. The growth–differentiation balance hypothesis (GDBH) predicts that defense allocation will be a result of trade-offs between growth and defense. Thus, these two theories predict opposite allocation patterns with respect to “valuable,” actively growing meristematic and reproductive tissues. ODT predicts that meristems and reproductive tissues should have higher defense levels than nonmeristematic vegetative tissues; the GDBH predicts the defense levels of meristems and reproductive tissues will be lower than vegetative tissues. We examined allocation patterns of phlorotannins in 21 species of kelps (Order Laminariales) and rockweeds (Order Fucales) from nine sites on the west coast of the United States to determine if allocation patterns better matched the predictions of ODT or the GDBH and to look for differences in allocation patterns among sites. Within-species differences in phlorotannin levels occurred in 10 of the 21 species examined. Meristems of both kelps and rockweeds had higher phlorotannin levels than nonmeristematic vegetative tissues, consistent with ODT. Phlorotannin levels in reproductive tissues of kelps were higher than vegetative tissues, but levels in reproductive tissues of rockweeds were lower than vegetative tissues, indicating that allocation strategies may follow taxonomic lines. Allocation patterns differed among sites in four of the 16 species collected from more than one site. Differences in allocation patterns among sites were usually changes in the ratios of phlorotannins in well-defended compared to poorly defended tissues, rather than changes in which tissues were well defended or poorly defended. We concluded that environmental variability can have large effects on the concentration of phlorotannins in algae but has limited effects on allocation patterns among tissues.  相似文献   

3.
4.
Chiatante  D.  Di Iorio  A.  Maiuro  L.  Scippa  S.G. 《Plant and Soil》1999,217(1-2):159-172
We investigated the effect of water stress on the root system architecture of pine saplings and pea seedlings during the first stage of development. Attention was focused on meristematic tissue situated at the root tip because of the leading role played by the tissue in the planning of root system architecture. The data showed that both species are extremely sensitive and that plants arrest their growth immediately during water stress treatment. When stress treatment was not intense, both species recovered growth but presented modifications in the root system architecture. In pine saplings, the modification in root system architecture was the consequence of fine root meristems not recovering from water stress. The saplings survived by producing new lateral meristems from the cortical tannin zone above the fine root tip. In the case of pea seedlings, the meristematic tissues in the primary root arrested proliferation during water stress although they recovered when the event occurred during the first hours of germination. The response was different when water stress was enforced on older seedlings. In this case, root meristems never completely recovered their proliferation despite the increase in proline content observed in the cells. The modification of root system architecture in pea seedlings depended on the arrest of primary root elongation and the formation of new root laterals. As regards the primary roots, water stress treatment induced along the axis the formation of irregular ‘swellings’ in the cortical zone above the meristematic zone. Anatomical investigations suggested that such swellings may have derived from the changes in elongation direction of derivatives. The formation of new laterals was observed in hydroponic cultures when water stress treatment was enforced slowly and prolonged for a long time. The production of new lateral meristems may have been a similar response of woody and herbaceous plants to water stress conditions. It is not known whether these new meristems present characteristics of resistance to water stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Experimental data were obtained that in pea seedlings modified by decapitation of main root had increased radioresistance (radioadaptation), fixed by various parameters of growth activity of lateral roots, and decreased ability to repair sublethal damages, detected by method of acute gamma-irradiation dose fractionation. These facts both with enlargement of dose dependence shoulder in lateral roots of decapitated seedlings led to conclusion that main role in such mechanism of radioadaptation effect of decapitation belongs to supercellular processes such as repopulation and regeneration. Conclusion was confirmed by the additional comparative investigations of cyto- and histological parameters of apical meristems of intact (control) and decapitated (experiment) lateral roots. It was shown, that the decapitated seedlings had increased mitotic activity of apical meristems of lateral roots and total volume of their meristematic zone. So at the moment of application of irradiation in the test-dose decapitated variant had significantly more meristematic cells of certain size that allowed biological object to form necessary (critical) amount of elements for valid or more complete postradiation recovery.  相似文献   

6.
7.
8.
Proteomic analysis of rice leaf, stem and root tissues during growth course   总被引:4,自引:0,他引:4  
Nozu Y  Tsugita A  Kamijo K 《Proteomics》2006,6(12):3665-3670
Rice proteins were isolated from leaf, stem and root tissues, harvesting at 1, 2, 4, 8 and 10 weeks after budding. Each tissue of each age was separately pulverized in liquid nitrogen, and the resulted tissue powders were suspended in 10% TCA-acetone and followed by acetone suspension to precipitate at low temperature, which resulted in the tissue-specific and age-specific protein mixture. The protein mixtures were separated by 2-DE using polyacrylamide gels (26 x 20 cm). The protein spots were identified by N-terminal sequence analysis and by MALDI and LC-MS/MS analyses after in-gel tryptic digestion. From a total of 4532 spots, 676 unique proteins were identified, of which 80 proteins (12%) were observed in all three tissues: leaf, stem and root. In addition, 45 (7%) were common in leaf and stem, 57 (8%) in stem and root, and 10 (2%) proteins in root and leaf. Also 141 unique proteins (21%) were observed only for leaf, 96 (14%) for stem, and 247 (36%) for root tissue. Proteins playing a role for photosynthesis and energy production were most abundant in leaf and stem, and those for cell defense were rich in roots.  相似文献   

9.
BACKGROUND AND AIMS: Lotus japonicus 'Gifu' develops multiple axillary shoots in the cotyledonary node region throughout the growth of the plant. The origin, initiation and development of these axillary meristems were investigated. METHODS: Morphological, histological and mRNA in situ analyses were done to characterize the ontogeny of cotyledonary axillary shoot meristems in Lotus. Morphological characterization of a putative Lotus shoot branching mutant (super-accessory branches) sac, is presented. KEY RESULTS: By using expression of an L. japonicus STM-like gene as a marker for meristematic tissues, it was demonstrated that groups of cells maintained in the meristematic state at the cotyledonary axil region coincide with the sites where additional axillary meristems (accessory meristems) form. A Lotus shoot branching mutant, sac, is a putative Lotus branching mutant characterized by increased proliferation of accessory shoots in all leaf axils including the cotyledons. CONCLUSION: In Lotus, axillary shoot meristems continually develop at the cotyledonary node region throughout the growth of the plant. These cotyledonary primary and accessory axillaries arise from the position of a meristematic zone of tissue at the cotyledonary node axil region.  相似文献   

10.
Z. S. Wochok  D. Clayton 《Planta》1976,132(3):313-315
Summary All meristematic cells of dorsal angle meristems of Selaginella willdenowii Baker cultured in vitro possessed expanded plasmodesmata, unlike the conventional plasmodesmata which were also found in these cells. Apical tissues of stems, roots and shoots from intact plant also possessed these structures though to a lesser degree than angle meristems. Root tips and stem apices had numerous conventional plasmodesmata in their walls. The expanded plasmodesmata, with their marked symmetry, represent a unique variation of plasmodesmatal structure.This study was partially supported by NSF Grant GB 37945 to Zachary S. Wochok.  相似文献   

11.
Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development   总被引:1,自引:0,他引:1  
Hawker NP  Bowman JL 《Plant physiology》2004,135(4):2261-2270
Meristems within the plant body differ in their structure and the patterns and identities of organs they produce. Despite these differences, it is becoming apparent that shoot and root apical and vascular meristems share significant gene expression patterns. Class III HD-Zip genes are required for the formation of a functional shoot apical meristem. In addition, Class III HD-Zip and KANADI genes function in patterning lateral organs and vascular bundles produced from the shoot apical and vascular meristems, respectively. We utilize both gain- and loss-of-function mutants and gene expression patterns to analyze the function of Class III HD-Zip and KANADI genes in Arabidopsis roots. Here we show that both Class III HD-Zip and KANADI genes play roles in the ontogeny of lateral roots and suggest that Class III HD-Zip gene activity is required for meristematic activity in the pericycle analogous to its requirement in the shoot apical meristem.  相似文献   

12.
13.
14.
Infection of soybean root hairs by Bradyrhizobium japonicum is the first of several complex events leading to nodulation. In the current proteomic study, soybean root hairs after inoculation with B. japonicum were separated from roots. Total proteins were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis. In one experiment, 96 protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to compare protein profiles between uninoculated roots and root hairs. Another 37 spots, derived from inoculated root hairs over different timepoints, were also analyzed by tandem MS (MS/MS). As expected, some proteins were differentially expressed in root hairs compared with roots (e.g., a chitinase and phosphoenolpyruvate carboxylase). Out of 37 spots analyzed by MS/MS, 27 candidate proteins were identified by database comparisons. These included several proteins known to respond to rhizobial inoculation (e.g., peroxidase and phenylalanine-ammonia lyase). However, novel proteins were also identified (e.g., phospholipase D and phosphoglucomutase). This research establishes an excellent system for the study of root-hair infection by rhizobia and, in a more general sense, the functional genomics of a single, plant cell type. The results obtained also indicate that proteomic studies with soybean, lacking a complete genome sequence, are practical.  相似文献   

15.
16.
17.
As in mammalian systems, heterotrimeric G proteins, composed of alpha, beta and gamma subunits, are present in plants and are involved in the regulation of development and cell signaling. Besides the sole prototypical G protein alpha subunit gene, GPA1, the Arabidopsis thaliana genome has three extra-large GTP-binding protein (XLG)-encoding genes: XLG1 (At2g23460), XLG2 (At4g34390) and XLG3 (At1g31930). The C-termini of the XLGs are Galpha domains that are homologous to GPA1, whereas their N-termini each contain a cysteine-rich region and a putative nuclear localization signal (NLS). GFP fusions with each XLG confirmed nuclear localization. All three XLG genes are expressed in essentially all plant organs, with strong expression in vascular tissues, primary root meristems and lateral root primordia. Analysis of single, double and triple T-DNA insertional mutants of the XLG genes revealed redundancy in XLG function. Dark-grown xlg1-1 xlg2-1 xlg3-1 triple mutant plants showed markedly increased primary root length compared with wild-type plants. This phenotype was not observed in dark-grown xlg single mutants, and was suppressed upon complementation of the xlg triple mutant with each XLG. Root cell sizes of the xlg triple mutant and root morphology were highly similar to those of wild-type roots, suggesting that XLGs may regulate cell proliferation. Dark-grown roots of the xlg triple mutants also showed altered sensitivity to sugars, ABA hyposensitivity and ethylene hypersensitivity, whereas seed germination in xlg triple mutants was hypersensitive to osmotic stress and ABA. As plant-specific proteins, regulatory mechanisms of XLGs may differ from those of conventional Galphas.  相似文献   

18.
The aim of this work was to study the possible relationship between alkaloid production and growth measured as: biomass increase and cellular division frequency, in Datura stramonium in vitro root cultures (hairy root and normal cultures). A comparison of growth values on a fresh and dry weight basis showed that there were differences between transformed and non-transformed lines. The differential growth between lines occurred due to a real biomass increase and not because of water accumulation. On the other hand, the rate of cell division showed a similar pattern for all lines studied. Therefore, the differences in growth are not due to different cell division rates, nor to the presence of larger meristems, but to the development and growth of lateral roots and the presence of active intercalary meristematic zones in each line. The maximum alkaloid production occurred when the cultures were not growing. This suggests an inverse relationship. Finally, the data support a specific model of growth at the level of cell division in root cultures which has not been described before in the literature. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Expression of CDC2Zm and KNOTTED1 (KN1) in maize (Zea mays L.) and their cross-reacting proteins in barley (Hordeum vulgare L.) was studied using immunolocalization during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation. Expression of CDC2Zm, a protein involved in cell division, roughly correlated with in-vitro cell proliferation and in the meristematic domes CDC2Zm expression was triggered during in-vitro proliferation. Analysis of the expression of KN1, a protein necessary for maintenance of the shoot meristem, showed that KN1 or KN1-homologue(s) expression was retained in meristematic cells during in-vitro proliferation of axillary shoot meristems. Multiple adventitious shoot meristems appeared to form directly from the KN1- or KN1 homologue(s)-expressing meristematic cells in the in-vitro proliferating meristematic domes. However, unlike Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) leaves ectopically expressing KN1 (G. Chuck et al., 1996 Plant Cell 8: 1277–1289; N. Sinha et al., 1993 Genes Dev. 7: 787–797), transgenic maize leaves over-expressing KN1 were unable to initiate adventitious shoot meristems on their surfaces either in planta or in vitro. Therefore, expression of KN1 is not the sole triggering factor responsible for inducing adventitious shoot meristem formation from in-vitro proliferating axillary shoot meristems in maize. Our results show that genes critical to cell division and plant development have utility in defining in-vitro plant morphogenesis at the molecular level and, in combination with transformation technologies, will be powerful tools in identifying the fundamental molecular and-or genetic triggering factor(s) responsible for reprogramming of plant cells during plant morphogenesis in-vitro. Received: 2 June 1997 / Accepted: 21 July 1997  相似文献   

20.
The morphometry of the root system, the meristematic activity and the level of indole-3-acetic acid (IAA), abscisic acid (ABA) and zeatin in the primary root tips of rapeseed seedlings were analyzed as functions of time on a slowly rotating clinostat (1 rpm) or in the vertical controls (1 rpm). The fresh weight of the root system was 30% higher throughout the growth period (25 days) in clinorotated seedlings. Morphometric analysis showed that the increase in biomass on the clinostat was due to greater primary root growth, earlier initiation and greater elongation of the secondary roots, which could be observed even in 5-day-old seedlings. However, after 15 days, the growth of the primary root slowed on the clinostat, whereas secondary roots still grew faster in clinorotated plants than in the controls. At this time, the secondary roots began to be initiated closer to the root tip on the clinostat than in the control. Analysis of the meristematic activity and determination of the levels in IAA, ABA and zeatin in the primary root tips demonstrated that after 5 days on the clinostat, the increased length of the primary root could be the consequence of higher meristematic activity and coincided with an increase in both IAA and ABA concentrations. After 15 days on the clinostat, a marked increase in IAA, ABA and zeatin, which probably reached supraoptimal levels, seems to cause a progressive disturbance of the meristematic cells, inducing a decrease of primary root growth between 15 and 25 days. These modifications in the hormonal balance and the perturbation of the meristematic activity on the clinostat were followed by a loss of apical dominance, which was responsible for the early initiation of secondary roots, the greater elongation of the root system and the emergence of the lateral roots near the tip of the primary root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号