首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Responses of abaxial and adaxial stomata of Populus trichocarpa Torr. & Gray. × P. deltoides Bartr. (ex Marsh.) cv. Unal to incident light, sudden darkening and leaf excision in the light and in the dark were studied on 5-year-old trees in the field using diffusion porometry. Stomatal closure in the dark was found to be incomplete in most cases studies. Stomata closed after leaf excision in the dark within 90 min. Stomatal closure after darkening of an entire tree or an entire branch (white the rest of the tree was in the light) was slower, and complete stomatal closure was noticed only for adaxial stomata after 3 h. Adaxial stomata were more reactive and sensitive than abaxial stomata to sudden darkening and leaf excision in the light and the dark. In all treatments, stomatal response was more responsive in mature leaves than in young, still expanding leaves.  相似文献   

2.
Stomatal oscillations in orange trees under natural climatic conditions   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: Stomatal oscillations have been reported in many plant species, but they are usually induced by sudden step changes in the environment when plants are grown under constant conditions. This study shows that in navel orange trees (Citrus sinensis) pronounced stomatal oscillations occur and persist under natural climatic conditions. METHODS: Oscillations in stomatal conductance were measured, and related to simultaneous measurements of leaf water potential, and flow rate of sap in the stems of young, potted plants. Cycling was also observed in soil-grown, mature orchard trees, as indicated by sap flow in stem and branches. KEY RESULTS: Oscillations in stomatal conductance were caused by the rapid propagation and synchronization of changes in xylem water potential throughout the tree, without rapid changes in atmospheric conditions. CONCLUSIONS: The results show marked stomatal oscillations persisting under natural climatic conditions and underscore the need to discover why this phenomenon is so pronounced in orange trees.  相似文献   

3.
Sustained cyclic oscillations in stomatal conductance, leaf water potential, and sap flow were observed in young orange trees growing under natural conditions. The oscillations had an average period of approximately 70 min. Water uptake by the roots and loss by the leaves was characterized by large time lags which led to imbalances between water supply and demand in the leaves. The bulk of the lag in response between stomatal movements and the upstream water balance resided downstream of the branch, with branch level sap flow lagging behind the stomatal conductance by approximately 20 min while the stem sap flow had a much shorter time lag of only 5 min behind the branch sap flow. This imbalance between water uptake and loss caused transient changes in internal water deficits which were closely correlated to the dynamics of the leaf water potential. The hydraulic resistance of the whole tree fluctuated throughout the day, suggesting transient changes in the efficiency of water supply to the leaves. A simple whole-tree water balance model was applied to describe the dynamics of water transport in the young orange trees, and typical values of the hydraulic parameters of the transpiration stream were estimated. In addition to the hydro-passive stomatal movements, whole-tree water balance appears to be an important factor in the generation of stomatal oscillations.  相似文献   

4.
胡杨叶片气孔导度特征及其对环境因子的响应   总被引:19,自引:2,他引:17  
依据2005年对极端干旱区荒漠河岸林胡杨的观测资料,对胡杨气孔运动进行了分析研究以揭示胡杨的水分利用特征与抗旱机理。结果表明:(1)胡杨叶片气孔导度日变化呈现为周期波动曲线,其波动周期为2 h,傍晚(20:00)波动消失;净光合速率和蒸腾速率与气孔导度的波动相对应而呈现同步周期波动。(2)胡杨的阳生叶气孔导度高于阴生叶,且不同季节气孔导度值不同,阳生叶气孔导度的季节变幅大于阴生叶。(3)胡杨气孔导度与气温、相对湿度和叶水势有显著相关关系,当CO2浓度较小时,胡杨气孔导度随CO2浓度的增加而增加,当CO2浓度达到一定值后气孔导度不再增加,反而随CO2浓度的增加大幅度降低。(4)胡杨适应极端干旱区生境的气孔调节机制为反馈式反应,即由于叶水势降低导致气孔导度减小,从而减少蒸腾耗水,达到节约用水、适应干旱的目的,表明胡杨的水分利用效率随气孔限制值的增大而减小,二者呈显著负相关。  相似文献   

5.
The effect of the photoperiod on some stomatal characteristics in various leaf lamina zones and in leaves of different age was studied on in vitro grown shoots of Prunus cerasifera clone Mr.S. 2/5, t Malus pumila Mill clone M9, and peach x almond hybrid clone GF 677. Stomatal density was highest in leaves exposed to continuous light and lowest with continuous dark. Photoperiod treatments supplying the same quantity of daily radiation but distributed over different cycles (4 h light and 2 h dark, 16 h light and 8 h dark) led to differing stomatal densities intermediate between those of the above light treatments. The light regime with the shortest light and dark periods was found to be most favorable to stomatal differentiation. Regardless of light treatment, stomatal density was found to be lower in the leaf lamina basal zone as compared to the median and apical zones, and decreasing from the 1st to 3rd to 5th leaf counting down from the apex. The photoperiod effect was also confirmed by a stomatal index. The stomatal axis ratio showed no interaction with the photoperiod but did highlight a tendency to rounder stomatal shape with increasing stomatal age. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
A marine unicellular aerobic nitrogen-fixing cyanobacterium Synechococcus sp. strain Miarni BG 043511 was pretreated with different light and dark regimes in order to induce higher growth synchrony. A pretreatment of two dark and light cycles of 16 h each yielded good synchrony for 3 cell division cycles. Longer dark treatments decreased the degree of synchrony and shorter dark treatments caused irregular cell division. Once synchronous culture was established, distinct phases of cellular carbohydrate accumulation and cellular carbohydrate degradation were observed even under continuous illumination. Changes in carbohydrate content were repeated in a cyclic manner with approximately 20 h intervals, the same as the cell division cycle. This change in carbohydrate metabolism provided a good index of growth synchrony under nitrogen-fixing conditions.
Photosynthetic oxygen evolution and nitrogen fixation capabilities and their activities in near, in situ, culture conditions were measured in well synchronized cultures of this strain under continuous illumination. Distinct oscillations of both photosynthetic oxygen evolution and nitrogen fixation capabilities with ca 20-h intervals, similar to the interval of the cell division cycle, were observed for three cycles. However, the activities of photosynthetic oxygen evolution were inversely correlated with those of nitrogen fixation. During the nitrogen fixation period, net oxygen consumption was observed even in the light under conditions approximating in situ culture conditions. The phase of temporal appearance of nitrogenase activity during the cell division cycle coincided with the phase of carbohydrate net degradation. These data indicate that this unicellular cyanobacterium can grow diazotrophically under conditions of continuous illumination by the segregation of photosynthesis and nitrogen fixation within a cell division cycle.  相似文献   

7.
Leaf and root control of stomatal closure during drying in soybean   总被引:2,自引:0,他引:2  
The stomatal conductance of an illuminated 2.5 cm2 area of an intact soybean leaflet was the same whether the rest of the shoot was in light or darkness. This was true throughout soil drying cycles. Water potential of tissue immediately outside the illuminated area consistently decreased about 0.3 MPa upon illumination of the shoot. This erroneously suggested that stomatal conductance during soil drying did not respond to diurnal reductions in leaf water potential, but was controlled by root or soil water status. Tests showed that the water potential of tissue in the illuminated area did not change in the steady-state upon illumination of the rest of the shoot. Water potentials of shaded sections of leaves were not different from predawn water potentials, and were higher than leaf xylem pressure potentials as determined with a pressure chamber. These steep local gradients of leaf water potential suggest that there is minimal interchange of water among xylem elements leading from roots to different sections of leaves. The relationship between stomatal conductance and leaf water potential was the same whether leaf water potential was reduced by soil drying, application of polyethylene glycol (PEG) to the root system, lowering root temperature, or leaf excision. In the root cooling experiment, there was no soil drying, and with leaf excision, there was no root drying. The similarity of stomatal responses to leaf water potential in all cases strongly suggests control of conductance by a signal produced by local leaf water potential rather than root or soil water status in these experiments.  相似文献   

8.
Fluorescence and thermal imaging were used to examine the dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves following a decrease in ambient humidity. Patches were not observed in all experiments, and in many experiments the patches were short-lived. In some experiments, however, patches persisted for many hours and showed complex temporal and spatial patterns. Rapidly sampled fluorescence images showed that the measurable variations of these patches were sufficiently slow to be captured by fluorescence images taken at 3-min intervals using a saturating flash of light. Stomatal patchiness with saturating flashes of light was not demonstrably different from that without saturating flashes of light, suggesting that the regular flashes of light did not directly cause the phenomenon. Comparison of simultaneous fluorescence and thermal images showed that the fluorescence patterns were largely the result of stomatal conductance patterns, and both thermal and fluorescence images showed patches of stomatal conductance that propagated coherently across the leaf surface. These nondispersing patches often crossed a given region of the leaf repeatedly at regular intervals, resulting in oscillations in stomatal conductance for that region. The existence of these coherently propagating structures has implications for the mechanisms that cause patchy stomatal behaviour as well as for the physiological ramifications of this phenomenon.  相似文献   

9.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

10.
Barta C  Loreto F 《Plant physiology》2006,141(4):1676-1683
It was investigated whether the methyl-erythritol phosphate (MEP) pathway that generates volatile isoprenoids and carotenoids also produces foliar abscisic acid (ABA) and controls stomatal opening. When the MEP pathway was blocked by fosmidomycin and volatile isoprenoid emission was largely suppressed, leaf ABA content decreased to about 50% and leaf stomatal conductance increased significantly. No effect of fosmidomycin was seen in leaves with constitutively high rates of stomatal conductance and in plant species with low foliar ABA concentration. In all other cases, isoprene emission was directly associated with foliar ABA, but ABA reduction upon MEP pathway inhibition was also observed in plant species that do not emit isoprenoids. Stomatal closure causing a midday depression of photosynthesis was also associated with a concurrent increase of isoprene emission and ABA content. It is suggested that the MEP pathway generates a labile pool of ABA that responds rapidly to environmental changes. This pool also regulates stomatal conductance, possibly when coping with frequent changes of water availability. MEP pathway inhibition by leaf darkening, and its down-regulation by exposure to elevated CO2, was also associated with a reduction of foliar ABA content. However, stomatal conductance was reduced, indicating that stomatal aperture is not regulated by the MEP-dependent foliar ABA pool, under these specific cases.  相似文献   

11.
Loss of Stomatal Function in Ageing Hybrid Poplar Leaves   总被引:4,自引:0,他引:4  
REICH  P. B. 《Annals of botany》1984,53(5):691-698
Under a variety of conditions old, non-senescent hybrid poplar(Populus sp.) leaves exhibited less stomatal control than young,mature leaves. Stomata of older leaves displayed oscillatorybehaviour more frequently, and oscillations were more random,than in younger leaves. Also, diffusive conductance of olderleaves changed less following sudden shifts from either darkto light, or vice versa, than in younger leaves, and temporalpatterns of diffusive conductance in older leaves appeared tobe relatively independent of microenvironmental conditions.Levels of conductance of older leaves were higher both in thedark and following excision than in younger leaves, while inthe light the situation was reversed. Total range of responseand stability of diffusive conductance were also lower in olderrather than in younger leaves. All of the observed age-relateddifferences suggest a loss of stomatal control with increasingleaf age. Leaf age, Populus sp., stomatal cycling, stomatal function, hybrid poplar  相似文献   

12.
对生长在荫棚3种不同光照条件下和全自然光下的热带雨林4个冠层种(望天树、绒毛番龙眼、团花、红厚壳)和3个中层种(玉蕊、藤黄、滇南风吹楠)树苗叶片气孔特征以及它们的可塑性进行了研究、结果表明,这些植物的气孔全部着生在远轴面.7种植物中,玉蕊和绒毛番龙眼的气孔密度较大,滇南红厚壳和团花的保卫细胞最长.随光强的增大,气孔密度和气孔指数增大,单位叶气孔数在低光强下较大.除团花外,其它植物叶片气孔导度在50%光强处最大,而光强对保卫细胞的长度影响不显著.相关分析表明,气孔密度与植物单位叶的面积呈负相关。而与气孔导度的相关性不显著、尽管两种不同生活型植物气孔指数和单位叶气孔数在不同光强下的可塑性差异较小,但冠层树种气孔密度和气孔导度的可塑性显著高于中层树种.  相似文献   

13.
14.
Phytomonitoring techniques for irrigation of avocado orchards indicate that plants respond very rapidly to fluctuations in soil water content. Root to leaf abscicic acid transport cannot fully explain the almost immediate response of stomata to either irrigation and/or sudden changes in climatic conditions. Therefore, we studied the existence of a fast conducting signal between roots and leaves, and the possible involvement of such a signal in the regulation of stomatal behavior. Two-year-old avocado trees were subjected to drying and re-watering cycles or changes in incident radiation (light or darkness). The difference in extracellular electrical potential between the leaf petiole and the base of stem (DeltaV(L-S)) was continuously recorded. Stomatal conductance (gs) was also recorded for the same leaves that were used for voltage difference measurements. A sudden change in soil water content induced by root drying and re-watering was accompanied by a slow, significant change in the recorded DeltaV(L-S) signal, which was fully developed at 52 and 32min for root drying and re-watering, respectively. We found an inverse correlation (r=-0.56) between the change of DeltaV(L-S) and the gs difference measured before and after each soil-drying treatment. Plants that were girdled to disrupt the phloem and then irrigated tended to have lower DeltaV(L-S) differences over time than non-girdled irrigated plants, suggesting that the electrical signal was transmitted in the phloem. The existence of a fast signal transmitted from the root to the leaf that can be measured and correlated with stomatal control opens the possibility of developing a new phytomonitoring technique and/or artificially modifying plant responses by imposing agronomic management strategies aimed at rapid stomatal adaptation to changes in soil water content.  相似文献   

15.
Stomatal movement is accomplished by changes in the ionic content within guard cells as well as in the cell wall of the surrounding stomatal pore. In this study, the sub-stomatal apoplastic activities of K+, Cl-, Ca2+ and H+ were continuously monitored by inserting ion-selective micro-electrodes through the open stomata of intact Vicia faba leaves. In light-adapted leaves, the mean activities were 2.59 mM (K+), 1.26 mM (Cl-), 64 microM (Ca2+) and 89 microM (H+). Stomatal closure was investigated through exposure to abscisic acid (ABA), sudden darkness or both. Feeding the leaves with ABA through the cut petiole initially resulted in peaks after 9-10 min, in which Ca2+ and H+ activities transiently decreased, and Cl- and K+ activities transiently increased. Thereafter, Ca2+, H+ and Cl- activities completely recovered, while K+ activity approached an elevated level of around 10 mM within 20 min. Similar responses were observed following sudden darkness, with the difference that Cl- and Ca2+ activities recovered more slowly. Addition of ABA to dark-adapted leaves evoked responses of Cl- and Ca2+ similar to those observed in the light. K+ activity, starting from its elevated level, responded to ABA with a transient increase peaking around 16 mM, but then returned to its dark level. During stomatal closure, membrane potential changes in mesophyll cells showed no correlation with the K+ kinetics in the sub-stomatal cavity. We thus conclude that the increase in K+ activity mainly resulted from K+ release by the guard cells, indicating apoplastic compartmentation. Based on the close correlation between Cl- and Ca2+ changes, we suggest that anion channels are activated by a rise in cytosolic free Ca2+, a process which activates depolarization-activated K+ release channels.  相似文献   

16.
Responses to simulated sunflecks were examined in upper canopy and coppice leaves of Nothofagus cunninghamii growing in an old-growth rainforest gully in Victoria, Australia. Shaded leaves were exposed to a sudden increase in irradiance from 20 to 1500 micromol m(-2) s(-1). Gas exchange and chlorophyll fluorescence were measured during a 10 min simulated sunfleck and, in the ensuing dark treatment, we examined the recovery of PS II efficiency and the conversion state of xanthophyll cycle pigments. Photosynthetic induction was rapid compared with tropical and northern hemisphere species. Stomatal conductance was relatively high in the shade and stomata did not directly control photosynthetic induction under these conditions. During simulated sunflecks, zeaxanthin was formed rapidly and photochemical efficiency was reduced. These processes were reversed within 30 min in coppice leaves, but this took longer in upper canopy leaves. Poor drought tolerance and achieving a positive carbon balance in a shaded canopy may be functionally related to high stomatal conductance in the shade in N. cunninghamii. The more persistent reduction in photochemical efficiency of upper canopy leaves, which means less efficient light use in subsequent shade periods, but stronger protection from high light, may be related to the generally higher irradiance and longer duration of sunflecks in the upper canopy, but potentially reduces carbon gain during shade periods by 30%.  相似文献   

17.
I. Tari 《Biologia Plantarum》2003,47(2):215-220
The plant growth retardant, paclobutrazol at 8.5 or 17.0 μM concentrations effectively inhibited the stem elongation and primary leaf expansion of bean seedlings. Although the retardant reduced the relative water content in well-watered plants, the water and pressure potentials remained high in the primary leaves. K+, Na+, Mg2+ and Ca2+ contents in the primary leaves of the paclobutrazol-treated plants were not significantly different from those in the control. The stomatal density increased on both surfaces but the length of guard cells was not reduced significantly on the adaxial epidermes of the paclobutrazol-treated primary leaves. The inhibitory effect of paclobutrazol on the abaxial stomatal conductances became more pronounced with time during the light period but the adaxial surfaces displayed similar or slightly higher conductances than those of the control. The transpiration rate on a unit area basis did not change significantly or increased in the treated leaves thus the reduced water loss of paclobutrazol-treated plants was due to the reduced leaf area. Stomatal conductances of the adaxial surfaces responded more intensively to exogenous abscisic acid and the total leaf conductance decreased faster with increasing ABA concentration in the control than in the paclobutrazol-treated leaves. Paclobutrazol, an effective inhibitor of phytosterol biosynthesis, not only amplified the stomatal differentiation but increased the differences between the adaxial and abaxial stomatal conductances of the primary leaves.  相似文献   

18.
对野外海南红豆叶片的气体交换、气孔导度和水分利用效率及其相应环境因子的日变化进行测定的结果表明:夏季7月叶片净光光合速率和蒸腾速率的日变化曲线呈双峰型,前者的变化主要受光控制,与气温、叶温和湿度的关系不明显;后者与光、气温和叶温成正相关,与湿度成负相关,气孔导度对湿度的敏感性比对光和温度明显很多。分析结果显示,气孔导度和光合速率受环境因子的响应是相对独立的,海南红豆的水分利用效率最高值出现在上午较  相似文献   

19.
E.-D. Schulze  M. Küppers 《Planta》1979,146(3):319-326
Short-term (hours) changes in plant water status were induced in hazel (Corylus avellana L.) by changing the evaporative demand on a major portion of the shoot while maintaining a branch in a constant environment. Stomatal conductance of leaves on the branch was influenced little by these short-term changes in water status even with changes in leaf water potential as great as 8 bars. Long-term (days) changes in plant water status were imposed by soil drying cycles. Stomatal conductance progessively decreased with increases in long-term water stress. Stomata still responded to humidity with long-term water stress but the range of the conductance response decreased. Threshold responses of stomata to leaf water potential were not observed with either short-term or long-term changes in plant water status even when leaves wilted. It is suggested that concurrent measurements of plant water status may not be sufficient for explaining stomatal and other plant responses to drought.  相似文献   

20.
This study quantified stomatal conductance in a CO2-fertilized warm-temperate forest. The study considered five items: (1) the characteristics of the diurnal and seasonal variation, (2) simultaneous measurements of canopy-scale fluxes of heat and CO2 and the normalized difference vegetation index (NDVI), (3) the stomatal conductance of sunlit and shaded leaves, (4) a stomatal conductance model, and (5) the effects of leaf age on stomatal conductance. Sampled plants included evergreen and deciduous species. Stomatal conductance, SPAD, and leaf nitrogen content were measured between March and December 2001. Sunlit leaves had the largest diurnal and seasonal variation in conductance in terms of both magnitude and variability. In contrast, shaded leaves had only low conductance and slight variation. Stomatal conductance increased sharply in new shooting leaves of Quercus serrata until reaching a maximum 2 months after full leaf expansion. The seasonal changes in the canopy-scale heat and CO2 fluxes were similar to the change in the canopy-scale NDVI of the upper-canopy plants. These seasonal changes were correlated with the leaf-level H2O/CO2 exchanges of upper-canopy plants, although these did not represent the stomatal conductance in fall completely. Seasonal variations in the leaf nitrogen content and SPAD were similar, except leaf foliation, until day 130 of the year, when the behaviors were completely the opposite. A Jarvis-type model was used to estimate the stomatal conductance. We modified it to include SPAD as a measure of leaf age. The seasonal variation in stomatal conductance was not as sensitive to SPAD, although estimates for evergreen species showed improvements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号