首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrofurantoin is a widely utilized urinary antimicrobial drug which has been associated with pulmonary fibrosis, neuropathy, and hepatitis as well as hemolytic anemia in glucose-6-phosphate dehydrogenase-deficient individuals. Incubation of freshly isolated rat hepatocytes with nitrofurantoin caused oxygen activation as a result of futile redox cycling. Glutathione disulfide (GSSG) was formed and rapidly exported from the cell resulting in complete glutathione (GSH) depletion followed by cell death. However, fructose prevented the export of GSSG from the cell and GSH levels recovered rapidly without cytotoxicity occurring. Fructose did not affect nitrofurantoin metabolism but rapidly depleted cellular ATP levels by approximately 80% which remained depressed during the incubation period. Fructose, however, did not protect hepatocytes from nitrofurantoin-induced cytotoxicity if GSH was depleted beforehand. Protection by fructose only occurred at concentrations which caused ATP depletion. These results suggest that fructose prevents nitrofurantoin-induced toxicity by depleting ATP and thereby preventing the ATP-dependent GSSG efflux. GSSG is retained enabling NADPH and glutathione-reductase to reduce the GSSG back to GSH, thereby protecting the cell from nitrofurantoin-induced oxidative stress.  相似文献   

2.
Inhibition of glutathione disulfide reductase by glutathione   总被引:2,自引:0,他引:2  
Rat-liver glutathione disulfide reductase is significantly inhibited by physiological concentrations of the product, glutathione. GSH is a noncompetitive inhibitor against GSSG and an uncompetitive inhibitor against NADPH at saturating concentrations of the fixed substrate. In both cases, the inhibition by GSH is parabolic, consistent with the requirement for 2 eq. of GSH in the reverse reaction. The inhibition of GSSG reduction by physiological levels of the product, GSH, would result in a significantly more oxidizing intracellular environment than would be realized in the absence of inhibition. Considering inhibition by the high intracellular concentration of GSH, the steady-state concentration of GSSG required to maintain a basal glutathione peroxidase flux of 300 nmol/min/g in rat liver is estimated at 8-9 microM, about 1000-fold higher than the concentration of GSSG predicted from the equilibrium constant for glutathione reductase. The kinetic properties of glutathione reductase also provide a rationale for the increased glutathione (GSSG) efflux observed when cells are exposed to oxidative stress. The resulting decrease in intracellular GSH relieves the noncompetitive inhibition of glutathione reductase and results in an increased capacity (Vmax) and decreased Km for GSSG.  相似文献   

3.
Dietary copper deficiency has been shown to reduce copper-dependent superoxide dismutase (SOD) activity and to increase lipid peroxidation in rats. Circulating reduced glutathione (GSH) concentrations are elevated in copper-deficient (CuD) rats, which suggests an increased GSH synthesis or decreased degradation, perhaps as an adaptation to the oxidative stress of copper deficiency. GSH synthesis was examined in isolated hepatocytes from CuD rats. Isolated hepatocytes were prepared by collagenase perfusion and incubated in Krebs-Henseleit bicarbonate buffer, pH 7.4, 10 mM glucose, 2.5 mM Ca2+ in the presence and absence of 1.0 mM buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis. Cell viability was assessed by trypan blue exclusion. GSH and oxidized glutathione (GSSG) were measured by the glutathione reductase recycling assay. Copper deficiency depressed hepatocyte Cu by greater than 90% and increased intracellular GSH by 41-117% over the 3-h incubation, with a two- to threefold increase in the rate of intracellular GSH synthesis. Intracellular GSSG values were minimally influenced by CuD, with a constant mol% GSSG. Extracellular total glutathione (GSH + 2GSSG) synthesis was increased by approximately 33%. Both intracellular GSH and extracellular total glutathione synthesis were inhibited by BSO. The pattern of food consumption in CuD rats, meal fed versus ad libitum fed, had no effect on glutathione synthesis. The results indicate an increased hepatic GSH synthesis as a response to dietary copper deficiency and suggest an interrelationship between the essential nutrients involved in oxyradical metabolism.  相似文献   

4.
Thiol-oxidizing agents were found to stimulate [14C] aminopyrine accumulation, a reliable index of acid secretory function of isolated canine parietal cells. Glutathione is the predominant intracellular free thiol; thus, its oxidation status largely determines the thiol-disulfide status of the cell by thiol-disulfide interchange reactions. Three agents which alter glutathione oxidation status by different mechanisms were applied to parietal cells in vitro to investigate whether enhanced formation of GSSG alters acid secretory function. The agents studied were diamide (which nonenzymatically oxidizes GSH to GSSG), tert-butyl hydroperoxide (an organic peroxide specifically reduced by glutathione peroxidase, thereby generating GSSG for GSH), and 1,3-bis(2-chloroethyl)-1-nitrosourea (an inhibitor of NADPH:GSSG reductase, which presumably allows the accumulation of GSSG). Each of these agents stimulated aminopyrine accumulation in a dose-dependent fashion. Simple depletion of GSH by diethyl maleate or 2-cyclohexene-1-one did not stimulate aminopyrine accumulation. Likewise, enhanced aminopyrine accumulation occurred at diamide concentrations which did not cause significant depletion of total cellular glutathione. The thiol-reducing agent, dithiothreitol, prevented enhanced aminopyrine accumulation by 1,3-bis(2-chloroethyl)-1-nitrosourea and tert-butyl hydroperoxide. These observations support the hypothesis that thiol-disulfide interchange reactions involving GSSG modulate the acid secretory function of the isolated parietal cell.  相似文献   

5.
1. A method was developed for the assay of GSSG in heart tissue. 2. GSSG and total glutathione were measured in rat hearts perfused under a variety of conditions. About 2% of the total glutathione is present as GSSG. The concentrations of GSSG and GSH remained constant under all the conditions tested. 3. These results are discussed with reference to the equilibrium and rate of the glutathione reductase reaction in the cell. It is concluded that the enzyme reaction does not lie near equilibrium.  相似文献   

6.
The proteasome inhibitors lactacystin, clastro lactacystin beta-lactone, or tri-leucine vinyl sulfone (NLVS), in the presence of [(35)S]cysteine/methionine, caused increased incorporation of (35)S into cellular proteins, even when protein synthesis was inhibited by cycloheximide. This effect was blocked by incubation with the glutathione synthesis inhibitor buthionine sulfoximine. Proteasome inhibitors also enhanced total glutathione levels, increased reduced/oxidized glutathione ratio (GSH/GSSG) and upregulated gamma-glutamylcysteine synthetase (rate-limiting in glutathione synthesis). Micromolar concentrations of GSH, GSSG, or cysteine stimulated the chymotrypsin-like activity of purified 20S proteasome, but millimolar GSH or GSSG was inhibitory. Interestingly, GSH did not affect 20S proteasome's trypsin-like activity. Enhanced proteasome glutathiolation was verified when purified preparations of the 20S core enzyme complex were incubated with [(35)S]GSH after pre-incubation with any of the inhibitors. NLVS, lactacystin or clastro lactacystin beta-lactone may promote structural modification of the 20S core proteasome, with increased exposure of cysteine residues, which are prone to S-thiolation. Three main conclusions can be drawn from the present work. First, proteasome inhibitors alter cellular glutathione metabolism. Second, proteasome glutathiolation is enhanced by inhibitors but still occurs in their absence, at physiological GSH and GSSG levels. Third, proteasome glutathiolation seems to be a previously unknown mechanism of proteasome regulation in vivo.  相似文献   

7.
This study was aimed to analyse and compare the bioenergetics and oxidative status of mitochondria isolated from liver, heart and brain of ovariectomized rat females treated with 17β-estradiol (E2) and/or tamoxifen (TAM). E2 and/or TAM did not alter significantly the respiratory chain of the three types of mitochondria. However, TAM significantly decreased the phosphorylation efficiency of liver mitochondria while E2 significantly decreased the phosphorylation efficiency of heart mitochondria. E2 also significantly decreased the capacity of heart and liver mitochondria to accumulate Ca(2+) this effect being attenuated in liver mitochondria isolated from E2+TAM-treated rat females. TAM treatment increased the ratio of glutathione to glutathione disulfide (GSH/GSSG) of liver mitochondria. Brain mitochondria from TAM- and E2+TAM-treated females showed a significantly lower GSH/GSSG ratio. However, heart mitochondria from TAM- and E2+TAM-treated females presented a significant decrease in GSSG and an increase in GSH/GSSG ratio. Thiobarbituric acid reactive substances levels were significantly decreased in liver mitochondria isolated from E2+TAM-treated females. Finally, E2 and/or TAM treatment significantly decreased the levels of hydrogen peroxide produced by brain mitochondria energized with glutamate/malate. These results indicate that E2 and/or TAM have tissue-specific effects suggesting that TAM and hormonal replacement therapies may have some side effects that should be carefully considered.  相似文献   

8.
Refolding of dimeric porcine cytosolic or mitochondrial malate dehydrogenases and of tetrameric pig heart and skeletal muscle lactate dehydrogenases (containing 5-7 cysteine residues), as well as reformation of the four cystine cross-bridges of bovine pancreatic ribonuclease, were studied in the presence of reduced and oxidized glutathione (GSH and GSSG). At the intracellular GSH level (5 mM) reduced ribonuclease can be reoxidized by 0.01-0.5 mM GSSG (pH 7.4) both at 20 degrees C and 37 degrees C. In this physiological range of GSSG concentrations and pH, the dehydrogenases show at least partial reactivation. With GSSG concentrations greater than 5 mM, reactivation is found to be completely inhibited for all the enzymes given. The results show that at the intracellular level of GSH and GSSG, thiol groups in reduced, unfolded ribonuclease are oxidized to form intramolecular cystine cross-bridges, while thiol groups of typical cysteine enzymes, such as lactate and malate dehydrogenase, remain in their reduced state during refolding. The rate of reactivation of lactate dehydrogenase (porcine muscle) is not affected by GSSG. In the case of ribonuclease, increasing concentrations of GSSG increase the rate of reactivation: At 20 degrees C, the halftime of the correct disulfide bond formation varies from approximately equal to 80 h in the presence of 0.01 mM GSSG to approximately equal to 10 h in the presence of 0.25 mM GSSG. A further increase in the rate of reactivation at higher GSSG concentrations is accompanied by a decrease in yield. Reactivation of ribonuclease is also observed at the low glutathione level found in blood plasma (5-25 microM GSH).  相似文献   

9.
To study the relationship between glutathione and rooting, tomato seedling cuttings, grown on basal- or on auxin-supplemented media, were treated with the reduced (GSH) or oxidized (GSSG) form of this antioxidant. In turn, the consequences of the depletion of GSH pool on rooting were tested using l-buthionine sulfoximine (BSO), a specific inhibitor of GSH biosynthesis. Effects of the aforementioned treatments on rooting response were assessed. GSH treatment promoted root formation on cuttings grown on both basal- and auxin-supplemented media. Whereas GSSG did not affect the number of roots formed by cuttings grown on basal medium, it strongly enhanced the rooting stimulatory effect of auxin treatment. GSH depletion resulting from BSO application did not change the number of roots formed. All the tested compounds, namely GSH, GSSG, BSO and auxin, had a strong inhibitory effect on the elongation of regenerated roots. Supplementing the rooting medium with glutathione efficiently increased the GSH level in the rooting zones, while addition of BSO led to a strong decrease in endogenous GSH level. Neither of the treatments affected the level of GSSG. Exogenous auxin affect neither GSH nor GSSG levels in rooting zones; however, in the regenerated roots, GSH level was significantly higher when the organs were formed on auxin-supplemented medium. Patterns of GSH distribution in the roots regenerated on basal- and auxin-enriched media were studied using the GSH-specific dye monochlorobimane and confocal laser scanning microscopy. GSH was found in the root apical meristem and in the elongation zone. Auxin did not change the GSH distribution; however, the number of fluorescent cells was higher when roots were regenerated on auxin-supplemented medium.  相似文献   

10.
A bi-directional, saturable transport of glutathione (GSH) was found in rat liver microsomal vesicles. GSH transport could be inhibited by the anion transport blockers flufenamic acid and 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid. A part of GSH taken up by the vesicles was metabolized to glutathione disulfide (GSSG) in the lumen. Microsomal membrane was virtually nonpermeable toward GSSG; accordingly, GSSG generated in the microsomal lumen could hardly exit. Therefore, GSH transport, contrary to previous assumptions, is preferred in the endoplasmic reticulum, and GSSG entrapped and accumulated in the lumen creates the oxidized state of its redox buffer.  相似文献   

11.
Proportions between oxidized and reduced glutathione forms were determined in vacuoles isolated from red beet (Beta vulgaris L.) taproots. The pool of vacuolar glutathione was compared with glutathione pools in isolated plastids and mitochondria. The ratio of glutathione forms was assessed by approved methods, such as fluorescence microscopy with the fluorescent probe monochlorobimane (MCB), high-performance liquid chromatography (HPLC), and spectrophotometry with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB). The fluorescence microscopy revealed comparatively low concentrations of reduced glutathione (GSH) in vacuoles. The GSH content was 104 μM on average, which was lower than the GSH levels in mitochondria (448 μM) and plastids (379 μM). The content of reduced (GSH) and oxidized (GSSG) glutathione forms was quantified by means of HPLC and spectrophotometric assays with DTNB. The glutathione concentrations determined by HPLC in the vacuoles were 182 nmol GSH and 25 nmol GSSG per milligram protein. The respective concentrations of GSH and GSSG in the plastids were 112 and 6 nmol/mg protein and they were 228 and 10 nmol/mg protein in the mitochondria. The levels of GSH determined with DTNB were 1.5 times lower, whereas the amounts of GSSG were, by contrast, 1.5–2 times higher than in the HPLC assays. Although the glutathione redox ratios depended to some extent on the method used, the GSH/GSSG ratios were always lower for vacuoles than for plastids and mitochondria. In vacuoles, the pool of oxidized glutathione was higher than in other organelles.  相似文献   

12.

Menadione (2-methyl-1,4-naphthoquinone) is a synthetic derivative of vitamin K that allows rapid redox cycling in cells and thereby generates reactive oxygen species (ROS). To test for the consequences of a treatment of brain astrocytes with menadione, we incubated primary astrocyte cultures with this compound. Incubation with menadione in concentrations of up to 30 µM did not affect cell viability. In contrast, exposure of astrocytes to 100 µM menadione caused a time-dependent impairment of cellular metabolism and cell functions as demonstrated by impaired glycolytic lactate production and strong increases in the activity of extracellular lactate dehydrogenase and in the number of propidium iodide-positive cells within 4 h of incubation. In addition, already 5 min after exposure of astrocytes to menadione a concentration-dependent increase in the number of ROS-positive cells as well as a concentration-dependent and transient accumulation of cellular glutathione disulfide (GSSG) were observed. The rapid intracellular GSSG accumulation was followed by an export of GSSG that was prevented in the presence of MK571, an inhibitor of the multidrug resistance protein 1 (Mrp1). Menadione-induced glutathione (GSH) oxidation and ROS formation were found accelerated after glucose-deprivation, while the presence of dicoumarol, an inhibitor of the menadione-reducing enzyme NQO1, did not affect the menadione-dependent GSSG accumulation. Our study demonstrates that menadione rapidly depletes cultured astrocytes of GSH via ROS-induced oxidation to GSSG that is subsequently exported via Mrp1.

  相似文献   

13.
Ageing of tomato seeds involves glutathione oxidation   总被引:2,自引:0,他引:2  
The effect of seed ageing on the oxidation of reduced glutathione (GSH) and the role of GSH oxidation in ageing-induced deterioration were studied in seeds of tomato ( Lycopersicon esculentum Mill. cv. Lerica, Moneymaker and Cromco). Both long-term storage at 15°C/30% relative humidity (RH) and artificial ageing at 20°C/75% RH, 30°C/45% RH and 60°C/45% RH resulted in a marked loss of GSH and a simultaneous, though not proportional, increase in its oxidized form GSSG. The glutathione thiol-disulfide status shifted towards a highly oxidized form, while the total glutathione pool decreased. The extent of GSH oxidation differed between ageing conditions and was not directly related to the extent of seed deterioration. Thiobarbituric acid-reactive substances did not increase in ageing tomato seeds, suggesting that lipid peroxidation did not take place. Hydration of seeds, either upon imbibition in water or by priming in an osmotic solution, resulted in a rapid decrease in GSSG, a shift of the glutathione redox couple to a mainly reduced status and an increase in the glutathione pool, in both control and aged seeds. The results indicate that, in tomato seeds, (1) seed ageing involves GSH oxidation into GSSG, which is indicative of oxidative stress, (2) ageing does not affect the GSSG reduction capacity upon subsequent imbibition, and (3) the lowered viability of aged seeds cannot directly be ascribed to the decreased GSH pool or To the highly oxidized glutathione redox status.  相似文献   

14.
A rapid, sensitive, and selective method for the quantitation of both oxidized (GSSG) and reduced (GSH) glutathione in biological materials is described. Oxidized and reduced glutathione are resolved by anion-exchange high-performance liquid chromatography and detected with an in-line, recycling postcolumn reaction. The recycling reaction specifically amplifies the response to oxidized and reduced glutathione 20-100 times over that obtained with a stoichiometric reaction, permitting the detection of 2 pmol glutathione. Oxidized and reduced glutathione levels were measured in rat liver and in dog heart mitochondria. Special precautions are necessary to avoid artifacts which lead to either underestimation or overestimation of GSSG levels. GSH/GSSG ratios of approximately 100-300 were observed in samples prepared from rapidly frozen rat liver. Somewhat higher GSH/GSSG ratios were observed in isolated dog heart mitochondria.  相似文献   

15.

Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH–bimane-conjugate (GS–B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS–B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.

  相似文献   

16.
During CCl4-induced lipid peroxidation GSH content in total homogenate from rat liver falls very rapidly in the first 30 min. of incubation "in vitro". CCl4 does not enhance the decrease in total glutathione (TG) during the incubation time, so GSH loss is mainly due to its oxidation to GSSG. On the contrary PG and EDTA, two substances decreasing lipid peroxidation rate, are able to decrease GSH oxidation, without affecting TG content. At 25 degrees C EDTA and PG completely prevent GSH decrease at pH 7.4, while at pH 6 PG affords only a partial prevention. At 37 degrees C both compounds are able to limit GSH decrease at a large extent. Lipid peroxidation seems to have a great importance in the kinetics of GSH decrease and GSSG formation, at least "in vitro". It is noteworthy that PG which inhibits lipid peroxidation stimulated by CCl4 is also able to limit the high GSH loss observed in the homogenates incubated in the presence of halogeno-alkane.  相似文献   

17.
The purpose of this study was to determine if exercise (Ex) protects hearts from arrhythmias induced by glutathione oxidation or ischemia-reperfusion (I/R). Female Sprague-Dawley rats were divided into two experimental groups: sedentary controls (Sed) or short-term Ex (10 days of treadmill running). Twenty-four hours after the last session, hearts were excised and exposed to either perfusion with the thiol oxidant diamide (200 μM) or global I/R. Ex significantly delayed the time to the onset of ventricular arrhythmia after irreversible diamide perfusion. During a shorter diamide perfusion protocol with washout, Ex significantly decreased the incidence of arrhythmia, as evidenced by a delayed time to the first observed arrhythmia, lower arrhythmia scores, and lower incidence of ventricular fibrillation. Ex hearts exposed to I/R (30-min ischemia/30-min reperfusion) also showed lower arrhythmia scores and incidence of ventricular fibrillation compared with Sed counterparts. Our finding that Ex protected intact hearts from thiol oxidation was corroborated in isolated ventricular myocytes. In myocytes from Ex animals, both the increase in H(2)O(2) fluorescence and incidence of cell death were delayed after diamide. Although there were no baseline differences in reduced-to-oxidized glutathione ratios (GSH/GSSG) between the Sed and Ex groups, GSH/GSSG was better preserved in Ex groups after diamide perfusion and I/R. Myocardial glutathione reductase activity was significantly enhanced after Ex, and this was preserved in the Ex group after diamide perfusion. Our results show that Ex protects the heart from arrhythmias after two different oxidative stressors and support the hypothesis that sustaining the GSH/GSSG pool stabilizes cardiac electrical function during conditions of oxidative stress.  相似文献   

18.
The occurrence, nature and prevention of ammonia-induced cell death were assayed in cultured primary cortical neurons from newborn rats. Treatment with 1-10 mM ammonium chloride for 24 or 48 h, dose-dependently decreased neuronal survival (MTT assay) and GSH/GSSG ratio in the cultures, whereas total GSH content was significantly reduced only with 10mM ammonia. Treatment with a glutathione synthesis inhibitor, buthionyl sulfoximine (BSO) (10 microM), decreased the GSH content and GSH/GSSG ratio to a degree similar to that of 10 mM ammonia, but it did not decrease cell survival in control cells. This indicates that glutathione depletion per se is not a cause of ammonia-induced neuronal death. However, ammonia-induced decrease of cell viability was attenuated by incubation with glutathione diethyl ester (GEE), which transiently increased the intracellular GSH level in both control and ammonia-treated cells. Neuronal survival in the presence of ammonia was partly improved by the NMDA receptor antagonists MK-801 and APV. Morphological analysis revealed that ammonia treatment causes both apoptotic and non-apoptotic neuronal death, the former not being inhibited by MK-801. Apoptosis was the dominant type of cell death at 10mM ammonia, as concluded both from morphologic examination and the absence of survival improvement in the presence of GABA+nipecotic acid or taurine, model anti-excitotoxic treatments of cortical neurons. The mechanism underlying apoptosis may include inhibition of a survival kinase, Akt, whose activatory phosphorylation at Ser473 is reduced in neurons treated with 10 mM, but not 1 mM ammonia.  相似文献   

19.
The ability of astroglia-rich primary cultures derived from the brains of newborn rats to detoxify exogenously applied cumene hydroperoxide (CHP) was analyzed as a model to study glutathione-mediated peroxide detoxification by astrocytes. Under the conditions used, 200 microM CHP disappeared from the incubation buffer with a half-time of approximately 10 min. The half-time of CHP in the incubation buffer was found strongly elevated (a) in cultures depleted of glutathione by a preincubation with buthionine sulfoximine, an inhibitor of glutathione synthesis, (b) in the presence of mercaptosuccinate, an inhibitor of glutathione peroxidase, and (c) in the absence of glucose, a precursor for the regeneration of NADPH. The involvement of glutathione peroxidase in the clearance of CHP was confirmed by the rapid increase in the level of GSSG after application of CHP. The restoration of the initial high ratio of GSH to GSSG depended on the presence of glucose during the incubation. The high capacity of astroglial cells to clear CHP and to restore the initial ratio of GSH to GSSG was fully maintained when glucose was replaced by mannose. In addition, fructose and galactose at least partially substituted for glucose, whereas exogenous isocitrate and malate were at best marginally able to replace glucose during peroxide detoxification and regeneration of GSH. These results demonstrate that CHP is detoxified rapidly by astroglial cells via the glutathione system. This metabolic process strongly depends on the availability of glucose or mannose as hydride donors for the regeneration of the NADPH that is required for the reduction of GSSG by glutathione reductase.  相似文献   

20.
Summary Reperfusion of isolated rabbit heart after 60 min of ischaemia resulted in poor recovery of mechanical function, release of reduced (GSH) and oxidized glutathione (GSSG), reduction of tissue GSH/GSSG ratio and shift of cellular thiol redox state toward oxidation, suggesting the occurrence of oxidative stress. Pretreatment of the isolated heart with propionyl-L-carnitine (10–7M) improved the functional recovery of the myocardium, reduced GSH and GSSG release and attenuated the accumulation of tissue GSSG. This effect was specific for propionyl-L-carnitine as L-carnitine and propionyl acid did not modify myocardial damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号