首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Regulation of calcitonin (CT)/calcitonin gene-related peptide (CGRP) RNA processing involves the use of alternative 3' terminal exons. In most tissues and cell lines, the CT terminal exon is recognized. In an attempt to define regulatory sequences involved in the utilization of the CT-specific terminal exon, we performed deletion and mutation analyses of a mini-gene construct that contains the CT terminal exon and mimics the CT processing choice in vivo. These studies identified a 127-nucleotide intron enhancer located approximately 150 nucleotides downstream of the CT exon poly(A) cleavage site that is required for recognition of the exon. The enhancer contains an essential and conserved 5' splice site sequence. Mutation of the splice site resulted in diminished utilization of the CT-specific terminal exon and increased skipping of the CT exon in both the mini-gene and in the natural CT/CGRP gene. Other components of the intron enhancer modified utilization of the CT-specific terminal exon and were necessary to prevent utilization of the 5' splice site within the intron enhancer as an actual splice site directing cryptic splicing. Conservation of the intron enhancer in three mammalian species suggests an important role for this intron element in the regulation of CT/CGRP processing and an expanded role for intronic 5' splice site sequences in the regulation of RNA processing.  相似文献   

3.
Calcitonin exon sequences influence alternative RNA processing   总被引:6,自引:0,他引:6  
The pre-mRNA encoding calcitonin (CT) and CT gene-related peptide (CGRP) is differentially processed in a tissue-specific fashion to include exon 4 (which encodes CT) or exclude this exon and splice to exon 5 (which encodes CGRP). We have used a CT-specific in vitro RNA-processing system to identify cis-acting sequences required to prevent splicing to exon 5. Deletion mapping demonstrated the presence of an element within the first 45 nucleotides of the CT-specific exon 4 that was required to suppress splicing to the CGRP-specific exon 5. This element was able to function in a completely heterologous system to suppress splicing when the CGRP exon was replaced with a constitutive viral exon. The element was unable to suppress splicing in the absence of a proximal CT-specific 3' splice site. Our results suggest that CT-specific splicing requires assisted recognition of its 3' splice site.  相似文献   

4.
The human calcitonin/CGRP-I (CALC-I) gene contains 6 exons and encodes two polypeptide precursors. In thyroid C-cells, calcitonin (CT) mRNA is produced by splicing of exons 1-2-3 to exon 4 (CT-encoding) and polyadenylation at exon 4. CGRP-I mRNA is produced in particular neural cells by splicing of exons 1-2-3 to exon 5 (CGRP-I-encoding) and the polyadenylated exon 6. We previously reported that model precursor RNAs containing the exon 3 to exon 5 region of the CALC-I gene are processed predominantly into CGRP-I mRNA in vitro, in nuclear extracts of several cell types (neural and non-neural). Using truncated precursor RNAs containing only the exon 3 to exon 4 region of the CALC-I gene it was shown that CT splicing is an inefficient reaction in which a uridine residue serves as the major site of lariat formation. Here we report that the low CT splicing efficiency and the dominance of CGRP-I splicing over CT splicing in vitro are primarily due to the usage of the CT-specific uridine branch acceptor. Mutation of this uridine residue into an adenosine residue resulted in a strong increase in CT splicing efficiency causing a reversal of the splicing pattern. In addition, it was shown that this point mutation also increased CT splicing efficiency in vivo. These results and data obtained from other experiments involving mutation of the CT splice acceptor site suggest that the uridine branch acceptor is a cis-acting element involved in regulation of the alternative processing of the CALC-I pre-mRNA.  相似文献   

5.
To study splice site selection in alternative RNA processing we used the human Calcitonin/CGRP-I (CALC-I) gene. Expression of the CALC-I gene in thyroid C-cells results predominantly in calcitonin (CT) mRNA (containing exons 1 to 4) whereas CGRP-I mRNA (containing exons 1,2,3,5 and 6) is the exclusive product in particular nerve cells. We previously reported that a model precursor RNA containing the exon 3 to exon 5 region is predominantly processed into CGRP-I mRNA in vitro using nuclear extracts of three different cell types. To study CT specific processing in Hela cell nuclear extracts we have used precursor RNAs corresponding to the exon 3 to exon 4 region containing only CT specific processing signals. The results revealed the usage of a uridine residue 23 nucleotides upstream of the 3' splice site as the major site of lariat formation in CT specific splicing. The implications of this finding for the alternative, tissue specific processing of the CALC-I pre-mRNA and for branch point selection in general are discussed.  相似文献   

6.
M Buvoli  S A Mayer    J G Patton 《The EMBO journal》1997,16(23):7174-7183
We recently identified enhancer elements that activate the weak 3' splice site of alpha-tropomyosin exon 2 as well as a variety of heterologous weak 3' splice sites. To understand their mechanism of action, we devised an iterative selection strategy to identify functional pyrimidine tracts and branchpoint sequences in the presence or absence of enhancer elements. Surprisingly, we found that strong pyrimidine tracts were selected regardless of the presence of enhancer elements. However, the presence of enhancer elements resulted in the selection of multiple, non-consensus branchpoint sequences. Thus, enhancer elements apparently activate weak 3' splice sites primarily by increasing the efficiency of splicing of introns containing branchpoint sequences with less than optimal U2-branchpoint pairing arrangements. Comparison of consensus sequences from both our selection strategy and compilations of published intron sequences suggests that exon enhancer elements could be widespread and play an important role in the selection of 3' splice sites.  相似文献   

7.
Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3' and 5' splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5' splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3' splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon.  相似文献   

8.
Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. In vertebrates, most splice sites are initially recognized by the spliceosome across the exon, because most exons are small and surrounded by large introns. This gene architecture predicts that efficient exon recognition depends largely on the strength of the flanking 3' and 5' splice sites. However, it is unknown if the 3' or the 5' splice site dominates the exon recognition process. Here, we test the 3' and 5' splice site contributions towards efficient exon recognition by systematically replacing the splice sites of an internal exon with sequences of different splice site strengths. We show that the presence of an optimal splice site does not guarantee exon inclusion and that the best predictor for exon recognition is the sum of both splice site scores. Using a genome-wide approach, we demonstrate that the combined 3' and 5' splice site strengths of internal exons provide a much more significant separator between constitutive and alternative exons than either the 3' or the 5' splice site strength alone.  相似文献   

9.
J Ct  M J Simard    B Chabot 《Nucleic acids research》1999,27(12):2529-2537
The neural cell adhesion molecule (NCAM) gene contains an 801 nt exon that is included preferentially in neuronal cells. We have set up an in vitro splicing system that mimics the neuro-specific alternative splicing profile of NCAM exon 18. Splicing regulation is observed using model pre-mRNAs that contain competing 5' or 3' splice sites, suggesting that distinct pathways regulate NCAM 5' and 3' splice site selection. While inclusion of exon 18 is the predom-inant choice in neuronal cells, an element in the 5' common exon 17 improves exon 17/exon 19 splicing in a neuronal cell line. A similar behavior is observed in vitro as the element can stimulate the 5' splice site of exon 17 or a heterologous 5' splice site. The minimal 32 nt sequence of the exon 17 enhancer consists of purine stretches and A/C motifs. Mutations in the purine stretches compromise the binding of SR proteins and decreases splicing stimulation in vitro. Mutations in the A/C motifs do not affect SR protein binding but reduce enhancing activity. Our results suggest that the assembly of an enhancer complex containing SR proteins in a 5' common exon ensures that NCAM mRNAs lacking exon 18 are made in neuronal cells.  相似文献   

10.
Alternative splicing of the type II procollagen gene (COL2A1) is developmentally regulated during chondrogenesis. Chondroprogenitor cells produce the type IIA procollagen isoform by splicing (including) exon 2 during pre-mRNA processing, whereas differentiated chondrocytes synthesize the type IIB procollagen isoform by exon 2 skipping (exclusion). Using a COL2A1 mini-gene and chondrocytes at various stages of differentiation, we identified a non-classical consensus splicing sequence in intron 2 adjacent to the 5' splice site, which is essential in regulating exon 2 splicing. RNA mapping confirmed this region contains secondary structure in the form of a stem-loop. Mutational analysis identified three cis elements within the conserved double-stranded stem region that are functional only in the context of the natural weak 5' splice site of exon 2; they are 1) a uridine-rich enhancer element in all cell types tested except differentiated chondrocytes; 2) an adenine-rich silencer element, and 3) an enhancer cis element functional in the context of secondary structure. This is the first report identifying key cis elements in the COL2A1 gene that modulate the cell type-specific alternative splicing switch of exon 2 during cartilage development.  相似文献   

11.
We have identified four purine-rich sequences that act as splicing enhancer elements to activate the weak 3' splice site of alpha-tropomyosin exon 2. These elements also activate the splicing of heterologous substrates containing weak 3' splice sites or mutated 5' splice sites. However, they are unique in that they can activate splicing whether they are placed in an upstream or downstream exon, and the two central elements can function regardless of their position relative to one another. The presence of excess RNAs containing these enhancers could effectively inhibit in vitro pre-mRNA splicing reactions in a substrate-dependent manner and, at lower concentrations of competitor RNA, the addition of SR proteins could relieve the inhibition. However, when extracts were depleted by incubation with biotinylated exon 2 RNAs followed by passage over streptavidin agarose, SR proteins were not sufficient to restore splicing. Instead, both SR proteins and fractions containing a 110-kD protein were necessary to rescue splicing. Using gel mobility shift assays, we show that formation of stable enhancer-specific complexes on alpha-tropomyosin exon 2 requires the presence of both SR proteins and the 110-kD protein. By analogy to the doublesex exon enhancer elements in Drosophila, our results suggest that assembly of mammalian exon enhancer complexes requires both SR and non-SR proteins to activate selection of weak splice sites.  相似文献   

12.
Inclusion of fibronectin alternative exon B in mRNA is developmentally regulated. Here we demonstrate that exon B contains two unique purine-rich sequence tracts, PRE1 and PRE2, that are important for proper 5' splice site selection both in vivo and in vitro. Targeted mutations of both PREs decreased the inclusion of exon B in the mRNA by 50% in vivo. Deletion or mutation of the PREs reduced removal of the downstream intron, but not the upstream intron, and induced the activation of cryptic 5' splice sites in vitro. PRE-mediated 5' splice selection activity appears sensitive to position and sequence context. A well characterized exon sequence enhancer that normally acts on the upstream 3' splice site can partially rescue proper exon B 5' splice site selection. In addition, we found that PRE 5' splice selection activity was preserved when exon B was inserted into a heterologous pre-mRNA substrate. Possible roles of these unique activities in modulating exon B splicing are considered.  相似文献   

13.
tau mutations that deregulate alternative exon 10 (E10) splicing cause frontotemporal dementia with parkinsonism chromosome 17-type by several mechanisms. Previously we showed that E10 splicing involved exon splicing enhancer sequences at the 5' and 3' ends of E10, an exon splicing silencer, a weak 5' splice site, and an intron splicing silencer (ISS) within intron 10 (I10). Here, we identify additional regulatory sequences in I10 using both non-neuronal and neuronal cells. The ISS sequence extends from I10 nucleotides 11-18, which is sufficient to inhibit use of a weakened 5' splice site of a heterologous exon. Furthermore, ISS function is location-independent but requires proximity to a weak 5' splice site. Thus, the ISS functions as a linear sequence. A new cis-acting element, the intron splicing modulator (ISM), was identified immediately downstream of the ISS at I10 positions 19-26. The ISM and ISS form a bipartite regulatory element, within which the ISM functions when the ISS is present, mitigating E10 repression by the ISS. Additionally, the 3' splice site of E10 is weak and requires exon splicing enhancer elements for efficient E10 inclusion. Thus far, tau FTDP-17 splicing mutations affect six predicted cis-regulatory sequences.  相似文献   

14.
The intervening sequence (IVS) of the Tetrahymena thermophila ribosomal RNA precursor undergoes accurate self-splicing in vitro. The work presented here examines the requirement for Tetrahymena rRNA sequences in the 5' exon for the accuracy and efficiency of splicing. Three plasmids were constructed with nine, four and two nucleotides of the natural 5' exon sequence, followed by the IVS and 26 nucleotides of the Tetrahymena 3' exon. RNA was transcribed from these plasmids in vitro and tested for self-splicing activity. The efficiency of splicing, as measured by the production of ligated exons, is reduced as the natural 5' exon sequence is replaced with plasmid sequences. Accurate splicing persists even when only four nucleotides of the natural 5' exon sequence remain. When only two nucleotides of the natural exon remain, no ligated exons are observed. As the efficiency of the normal reaction diminishes, novel RNA species are produced in increasing amounts. The novel RNA species were examined and found to be products of aberrant reactions of the precursor RNA. Two of these aberrant reactions involve auto-addition of GTP to sites six nucleotides and 52 nucleotides downstream from the 3' splice site. The former site occurs just after the sequence GGU, and may indicate the existence of a GGU-binding site within the IVS RNA. The latter site follows the sequence CUCU, which is identical with the four nucleotides preceding the 5' splice site. This observation led to a model where where the CUCU sequence in the 3' exon acts as a cryptic 5' splice site. The model predicted the existence of a circular RNA containing the first 52 nucleotides of the 3' exon. A small circular RNA was isolated and partially sequenced and found to support the model. So, a cryptic 5' splice site can function even if it is located downstream from the 3' splice site. Precursor RNA labeled at its 5' end, presumably by a GTP exchange reaction mediated by the IVS, is also described.  相似文献   

15.
Invertases are responsible for the breakdown of sucrose to fructose and glucose. In all but one plant invertase gene, the second exon is only 9 nt in length and encodes three amino acids of a five-amino-acid sequence that is highly conserved in all invertases of plant origin. Sequences responsible for normal splicing (inclusion) of exon 2 have been investigated in vivo using the potato invertase, invGF gene. The upstream intron 1 is required for inclusion whereas the downstream intron 2 is not. Mutations within intron 1 have identified two sequence elements that are needed for inclusion: a putative branchpoint sequence and an adjacent U-rich region. Both are recognized plant intron splicing signals. The branchpoint sequence lies further upstream from the 3' splice site of intron 1 than is normally seen in plant introns. All dicotyledonous plant invertase genes contain this arrangement of sequence elements: a distal branchpoint sequence and adjacent, downstream U-rich region. Intron 1 sequences upstream of the branchpoint and sequences in exons 1, 2, or 3 do not determine inclusion, suggesting that intron or exon splicing enhancer elements seen in vertebrate mini-exon systems are absent. In addition, mutation of the 3' and 5' splice sites flanking the mini-exon cause skipping of the mini-exon, suggesting that both splice sites are required. The branchpoint/U-rich sequence is able to promote splicing of mini-exons of 6, 3, and 1 nt in length and of a chicken cTNT mini-exon of 6 nt. These sequence elements therefore act as a splicing enhancer and appear to function via interactions between factors bound at the branchpoint/U-rich region and at the 5' splice site of intron 2, activating removal of this intron followed by removal of intron 1. This first example of splicing of a plant mini-exon to be analyzed demonstrates that particular arrangement of standard plant intron splicing signals can drive constitutive splicing of a mini-exon.  相似文献   

16.
Human apolipoprotein A-II (apoA-II) intron 2/exon 3 junction shows a peculiar tract of alternating pyrimidines and purines (GU tract) that makes the acceptor site deviate significantly from the consensus. However, apoA-II exon 3 is constitutively included in mRNA. We have studied this unusual exon definition by creating a construct with the genomic fragment encompassing the whole gene from apoA-II and its regulatory regions. Transient transfections in Hep3B cells have shown that deletion or replacement of the GU repeats at the 3' splice site resulted in a decrease of apoA-II exon 3 inclusion, indicating a possible role of the GU tract in splicing. However, a 3' splice site composed of the GU tract in heterologous context, such as the extra domain A of human fibronectin or cystic fibrosis transmembrane conductance regulator exon 9, resulted in total skipping of the exons. Next, we identified the exonic cis-acting elements that may affect the splicing efficiency of apoA-II exon 3 and found that the region spanning from nucleotide 87 to 113 of human apoA-II exon 3 is essential for its inclusion in the mRNA. Overlapping deletions and point mutations (between nucleotides 91 and 102) precisely defined an exonic splicing enhancer (ESEwt). UV cross-linking assays followed by immunoprecipitation with anti-SR protein monoclonal antibodies showed that ESEwt, but not mutated ESE RNA, was able to bind both alternative splicing factor/splicing factor 2 and SC35. Furthermore, overexpression of both splicing factors enhanced exon 3 inclusion. These results show that this protein-ESE interaction is able to promote the incorporation of exon 3 in mRNA and suggest that they can rescue the splicing despite the noncanonical 3' splice site.  相似文献   

17.
In the NL4-3 strain of human immunodeficiency virus type 1 (HIV-1), regulatory elements responsible for the relative efficiencies of alternative splicing at the tat, rev, and the env/nef 3' splice sites (A3 through A5) are contained within the region of tat exon 2 and its flanking sequences. Two elements affecting splicing of tat, rev, and env/nef mRNAs have been localized to this region. First, an exon splicing silencer (ESS2) in NL4-3, located approximately 70 nucleotides downstream from the 3' splice site used to generate tat mRNA, acts specifically to inhibit splicing at this splice site. Second, the A4b 3' splice site, which is the most downstream of the three rev 3' splice sites, also serves as an element inhibiting splicing at the env/nef 3' splice site A5. These elements are conserved in some but not all HIV-1 strains, and the effects of these sequence changes on splicing have been investigated in cell transfection and in vitro splicing assays. SF2, another clade B virus and member of the major (group M) viruses, has several sequence changes within ESS2 and uses a different rev 3' splice site. However, splicing is inhibited by the two elements similarly to NL4-3. As with the NL4-3 strain, the SF2 A4b AG dinucleotide overlaps an A5 branchpoint, and thus the inhibitory effect may result from competition of the same site for two different splicing factors. The sequence changes in ANT70C, a member of the highly divergent outlier (group O) viruses, are more extensive, and ESS2 activity in tat exon 2 is not present. Group O viruses also lack the rev 3' splice site A4b, which is conserved in all group M viruses. Mutagenesis of the most downstream rev 3' splice site of ANT70C does not increase splicing at A5, and all of the branchpoints are upstream of the two rev 3' splice sites. Thus, splicing regulatory elements in tat exon 2 which are characteristic of most group M HIV-1 strains are not present in group O HIV-1 strains.  相似文献   

18.
Trans-splicing requires that 5' and 3' splice sites be independently recognized. Here, we have used mutational analyses and a sensitive nuclease protection assay to determine the mechanism of trans-3' splice site recognition in vitro. Efficient recognition of the 3' splice site is dependent upon both the sequence of the 3' splice site itself and enhancer elements located in the 3' exon. We show that the presence of three distinct classes of enhancers results in increased binding of U2 snRNP to the branchpoint region. Several lines of evidence strongly suggest that the increased binding of U2 snRNP is mediated by U2AF. These results expand the roles of enhancers in constitutive splicing and provide direct support for the recruitment model of enhancer function.  相似文献   

19.
20.
Exon 11 of the insulin receptor gene (INSR) is alternatively spliced in a developmentally and tissue-specific manner. Linker scanning mutations in a 5' GA-rich enhancer in intron 10 identified AGGGA sequences that are important for enhancer function. Using RNA-affinity purification and mass spectrometry, we identified hnRNP F and hnRNP A1 binding to these AGGGA sites and also to similar motifs at the 3' end of the intron. The hnRNPs have opposite functional effects with hnRNP F promoting and hnRNP A1 inhibiting exon 11 inclusion, and deletion of the GA-rich elements eliminates both effects. We also observed specific binding of hnRNP A1 to the 5' splice site of intron 11. The SR protein SRSF1 (SF2/ASF) co-purified on the GA-rich enhancer and, interestingly, also competes with hnRNP A1 for binding to the splice site. A point mutation -3U→C decreases hnRNP A1 binding, increases SRSF1 binding and renders the exon constitutive. Lastly, our data point to a functional interaction between hnRNP F and SRSF1 as a mutant that eliminates SRSF1 binding to exon 11, or a SRSF1 knockdown, which prevents the stimulatory effect of hnRNP F over expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号