首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
DNA methylation functions as a prominent epigenetic mark, and its patterns are transmitted to the genomes of offspring. The nucleosome containing the histone H2A.Z variant and histone H3K4 mono-methylation acts as a “placeholder” nucleosome for DNA hypomethylation maintenance in zebrafish embryonic cells. However, the mechanism by which DNA methylation is deterred by the placeholder nucleosome is poorly understood. In the present study, we reconstituted the placeholder nucleosome containing histones H2A.Z and H3 with the Lys4 mono-methylation. The thermal stability assay revealed that the placeholder nucleosome is less stable than the canonical nucleosome. Nuclease susceptibility assays suggested that the nucleosomal DNA ends of the placeholder nucleosome are more accessible than those of the canonical nucleosome. These characteristics of the placeholder nucleosome are quite similar to those of the H2A.Z nucleosome without H3K4 methylation. Importantly, the linker histone H1, which is reportedly involved in the recruitment of DNA methyltransferases, efficiently binds to all of the placeholder, H2A.Z, and canonical nucleosomes. Therefore, the characteristics of the H2A.Z nucleosome are conserved in the placeholder nucleosome without synergistic effects on the H3K4 mono-methylation.  相似文献   

2.
真核生物染色质的基本结构组成单元是核小体,基因组DNA被压缩在染色质中,核小体的存在通常会抑制转录、复制、修复和重组等发生在DNA模板上的生物学过程。组蛋白变体H2A.Z可以调控染色质结构进而影响基因的转录过程,但其详细的调控机制仍未研究清楚。为了比较含有组蛋白变体H2A.Z的核小体和常规核小体在盐离子作用下的稳定性差异,本文采用Förster共振能量转移的方法检测氯化钠、氯化钾、氯化锰、氯化钙、氯化镁等离子对核小体的解聚影响。实验对Widom 601 DNA序列进行双荧光Cy3和Cy5标记,通过荧光信号值的变化来反映核小体的解聚变化。Förster共振能量转移检测结果显示:在氯化钠、氯化钾、氯化锰、氯化钙和氯化镁作用下,含有组蛋白变体H2A.Z的核小体解聚速度相比于常规核小体要慢,且氯化钙、氯化锰和氯化镁的影响更明显。电泳分析结果表明,在75℃条件下含有组蛋白变体H2A.Z的核小体的解聚速率明显低于常规核小体。采用荧光热漂移检测(fluorescence thermal shift analysis , FTS)进一步分析含有组蛋白变体H2A.Z核小体的稳定性,发现两类核小体的荧光信号均呈现2个明显的增长期,含有组蛋白变体H2A.Z核小体的第1个荧光信号增速期所对应的温度明显高于常规核小体,表明核小体中H2A.Z/H2B二聚体的解聚变性温度要高于常规的H2A/H2B二聚体,含有组蛋白变体H2A.Z核小体的热稳定性高。研究结果均表明,含有组蛋白变体H2A.Z的核小体的结构比常规核小体的结构稳定。  相似文献   

3.
《Epigenetics》2013,8(4):267-272
The incorporation of variant histone H2A.Z within chromatin is important for proper gene expression and genome stability. H2A.Z is inserted at discrete loci by the Swr1 or Swr1-like remodeling complexes, although very little is known about the nature of the targeting mechanism involved. Replacement of canonical histone H2A for H2A.Z has been shown to modify nucleosome dynamics, although discrepancies still exist in the literature regarding the mechanisms. Recent experiments have shown that H2A.Z can allow nucleosomes to adopt stable translational positions as compared to H2A, which could influence the accessibility to DNA regulatory proteins. This review provides a brief overview of H2A.Z biology and presents hypotheses that could reconcile contradictory reports that are found in the literature regarding the influence of H2A.Z on nucleosome stability.  相似文献   

4.
Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.  相似文献   

5.
Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.  相似文献   

6.
Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA‐based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z‐nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate‐specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z‐specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome‐wide mapping reveals that PWWP2A binds selectively to H2A.Z‐containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C‐terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z‐specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development.  相似文献   

7.
Nucleosomes are highly dynamic macromolecular complexes that are assembled and disassembled in a modular fashion. One important way in which this dynamic process can be modulated is by the replacement of major histones with their variants, thereby affecting nucleosome structure and function. Here we use fluorescence resonance energy transfer between fluorophores attached to various defined locations within the nucleosome to dissect and compare the structural transitions of a H2A.Z containing and a canonical nucleosome in response to increasing ionic strength. We show that the peripheral regions of the DNA dissociate from the surface of the histone octamer at relatively low ionic strength, under conditions where the dimer-tetramer interaction remains unaffected. At around 550 mm NaCl, the (H2A-H2B) dimer dissociates from the (H3-H4)(2) tetramer-DNA complex. Significantly, this latter transition is stabilized in nucleosomes that have been reconstituted with the essential histone variant H2A.Z. Our studies firmly establish fluorescence resonance energy transfer as a valid method to study nucleosome stability, and shed new light on the biological function of H2A.Z.  相似文献   

8.
9.
10.
11.
12.
13.
14.
组蛋白H2A的变体H2A.Z在基因的表达过程中发挥着重要的作用。根据H2A.Z和H2A核小体中组蛋白甲基化修饰方式的不同,作者应用多样性增量二次判别方法(increment of diversity with quadratic discriminant,IDQD)成功地对H2A.Z和H2A核小体进行了识别,说明了以组蛋白甲基化信息作为特征参数的IDQD模型对H2A.Z和H2A核小体识别的有效性。通过计算DNA序列的柔性,发现H2A.Z核小体对应的DNA序列的平均柔性比常规H2A核小体对应的DNA序列的平均柔性弱。  相似文献   

15.
核小体是构成真核生物染色质的基本结构单位,组蛋白变体H2A.Z及H3.3对染色质结构及基因转录过程发挥着重要的调控作用。体内研究核小体及染色质结构受到诸多因素限制,体外重构含有H2A.Z及H3.3的核小体结构是研究与组蛋白变体相关基因表达调控的重要方法之一。实验表达纯化了6种组蛋白,在复性的过程中装配了含有H2A.Z和H3.3的组蛋白八聚体。基于DNA序列10bp周期性及序列模体设计了3条易于形成核小体的DNA序列,通过PCR大量扩增的方法,回收了标记Cy3荧光分子的目的DNA序列。采用盐透析法体外组装了含有H2A.Z和H3.3的核小体结构,利用荧光标记、EB染色及考马斯亮蓝染色检测了含有组蛋白变体的核小体形成效率及形成过程的吉布斯自由能变化。结果发现,设计的3条DNA序列可以有效地组装形成含有组蛋白电梯的核小体结构,而且随着组蛋白八聚体与DNA比例的增加,核小体的形成效率显著提高;采用Cy3荧光标记可以灵敏且定量地计算组装过程的吉布斯自由能。该方法的建立对研究组蛋白变体相关的结构生物学及转录调控等具有一定的意义。  相似文献   

16.
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.  相似文献   

17.
18.
Histone variants are used by the cell to build specialized nucleosomes, replacing canonical histones and generating functionally specialized chromatin domains. Among many other processes, the specialization imparted by histone H2A (H2A.X and H2A.Z) variants to the nucleosome core particle constitutes the earliest response to DNA damage in the cell. Consequently, chromatin-based genotoxicity tests have been developed in those cases where enough information pertaining chromatin structure and dynamics is available (i.e., human and mouse). However, detailed chromatin knowledge is almost absent in most organisms, specially protostome animals. Molluscs (which represent sentinel organisms for the study of pollution) are not an exception to this lack of knowledge. In the present work we first identified the existence of functionally differentiated histone H2A.X and H2A.Z variants in the mussel Mytilus galloprovincialis (MgH2A.X and MgH2A.Z), a marine organism widely used in biomonitoring programs. Our results support the functional specialization of these variants based on: a) their active expression in different tissues, as revealed by the isolation of native MgH2A.X and MgH2A.Z proteins in gonad and hepatopancreas; b) the evolutionary conservation of different residues encompassing functional relevance; and c) their ability to confer specialization to nucleosomes, as revealed by nucleosome reconstitution experiments using recombinant MgH2A.X and MgH2A.Z histones. Given the seminal role of these variants in maintaining genomic integrity and regulating gene expression, their preliminary characterization opens up new potential applications for the future development of chromatin-based genotoxicity tests in pollution biomonitoring programs.  相似文献   

19.
Although the existence of histone variants has been known for quite some time, only recently are we grasping the breadth and diversity of the cellular processes in which they are involved. Of particular interest are the two variants of histone H2A, H2A.Z and H2A.X because of their roles in regulation of gene expression and in DNA double-strand break repair, respectively. We hypothesize that nucleosomes containing these variants may perform their distinct functions by interacting with different sets of proteins. Here, we present our proteome analysis aimed at identifying protein partners that interact with nucleosomes containing H2A.Z, H2A.X or their canonical H2A counterpart. Our development of a nucleosome-pull down assay and analysis of the recovered nucleosome-interacting proteins by mass spectrometry allowed us to directly compare nuclear partners of these variant-containing nucleosomes to those containing canonical H2A. To our knowledge, our data represent the first systematic analysis of the H2A.Z and H2A.X interactome in the context of nucleosome structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号