首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Streptococcus mutans (S. mutans) uses a quorum sensing (QS) signaling system, which is dependent on competence stimulating peptide (CSP), to regulate diverse physiological activities including bacteriocin production, genetic transformation, and biofilm formation. However, the mechanism of the QS system-induced biofilm formation remains unclear. Here, we demonstrated that the late-stage biofilm formation was increased by the addition of exogenous CSP in S. mutans. The numbers of dead cells in biofilms formed in presence of CSP was 64.5% higher than that without CSP after 12 h (p < 0.05) and 76.3% higher after 24 h (p < 0.05), the numbers of live cells in biofilms formed in presence of CSP were 89.3% higher than that without CSP after 24 h (p < 0.01). The expression of QS-associated genes was increased 3.4-5.3-fold by CSP in biofilms. Our results revealed that cell viability of S. mutans grown in biofilms is affected by the CSP-dependent QS system.  相似文献   

2.
Sitaraman R  Leppla SH 《Gene》2012,494(1):44-50
Bacillus anthracis, the causative agent of anthrax, is poorly transformed with DNA that is methylated on adenine or cytosine. Here we characterize three genetic loci encoding type IV methylation-dependent restriction enzymes that target DNA containing C5-methylcytosine (m5C). Strains in which these genes were inactivated, either singly or collectively, showed increased transformation by methylated DNA. Additionally, a triple mutant with an ~ 30-kb genomic deletion could be transformed by DNA obtained from Dam+Dcm+E. coli, although at a low frequency of ~ 10− 3 transformants/106 cfu. This strain of B. anthracis can potentially serve as a preferred host for shuttle vectors that express recombinant proteins, including proteins to be used in vaccines. The gene(s) responsible for the restriction of m6A-containing DNA in B. anthracis remain unidentified, and we suggest that poor transformation by such DNA could in part be a consequence of the inefficient replication of hemimethylated DNA in B. anthracis.  相似文献   

3.
In this study, we developed a technique for delivering genes to microorganisms via electrospray of gold nanoparticles. During the electrospray process, charged monodisperse nano-droplets (a mixture of pET30a-GFP plasmid and nano-sized gold particles) were accelerated and deposited on a thin layer of non-competent Escherichia coli cells. Via antibiotic selection, transformed cells containing green fluorescent protein appeared on the agar plates. PCR amplification and restriction enzyme analysis further confirmed that pET30a-GFP plasmid had successfully been delivered into the non-competent E. coli cells. The transformation efficiencies were optimized under different electrospray conditions. Among several electrospray buffer solutions, CaCl2 (0.01 M) was found to be the best for gene delivery. Furthermore, gold nanoparticles (NPs, 50 nm diameter) significantly improved plasmid transformation efficiency by 5- 7 fold (up to 2 × 106 CFU/μg plasmid) compared with that obtained using naked plasmid. Electronic microscopy images and gel electrophoresis showed that the morphology of plasmids remained unchanged during the electrospray process, but cellular membrane integrity was reduced after being electrosprayed with gold NPs and CaCl2 buffer solutions. This gene delivery method has the potential to work for many other microorganisms.  相似文献   

4.
We here describe a new method for electroporation of Lactobacillus species, obligately homofermentative and facultatively heterofermentative, based on the cell-wall weakening resulting from growth in high-salt media. For L. casei, optimum transformation efficiency of up to 105 transformants per microgram of plasmid DNA was achieved following growth in the presence of 0.9 M NaCl. Plasmids of different sizes and replication origins were also similarly transformed. These competent cells could be used either directly or stored frozen, up to 1 month, for future use, with similar efficiency. This protocol was assayed with different Lactobacillus species: L. delbrueckii subsp. lactis, L. paracasei, L. plantarum and L. acidophilus, and it was found that they were transformed with similar efficiency.  相似文献   

5.
Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step in the biosynthesis of (S)-lysine, an essential constituent of bacterial cell walls. Escherichia coli DHDPS is homotetrameric, and each monomer contains an N-terminal (β/α)8-barrel, responsible for catalysis and regulation, and three C-terminal α-helices, the function of which is unknown. This study investigated the C-terminal domain of E. coli DHDPS by characterising a C-terminal truncated DHDPS (DHDPS-H225∗). DHDPS-H225∗ was unable to complement an (S)-lysine auxotroph, and showed significantly reduced solubility, stability, and maximum catalytic activity (kcat = 1.20 ± 0.01 s−1), which was only 1.6% of wild type E. coli DHDPS (DHDPS-WT). The affinity of DHDPS-H225∗ for substrates and the feedback inhibitor, (S)-lysine, remained comparable to DHDPS-WT. These changes were accompanied by disruption in the quaternary structure, which has previously been shown to be essential for efficient catalysis in this enzyme.  相似文献   

6.
The objectives of this study were to (1) characterize the photonic properties of Escherichia coli-Xen14 and (2) conduct photonic imaging of E. coli-Xen14 within bovine reproductive tract segments (RTS) ex vivo (Bos indicus). E. coli-Xen14 was grown for 24 h in Luria Bertani medium (LB), with or without kanamycin (KAN). Every 24 h, for an 8-d interval, inoculums were imaged and photonic emissions (PE) collected. Inoculums were subcultured and plated daily to determine the colony forming units (CFU) and ratio of photon emitters to nonemitters. In the second objective, abattoir-derived bovine reproductive tracts (n = 9) were separated into posterior and anterior vagina, cervix, uterine body, and uterine horns. Two concentrations (3.2 × 108 and 3.2 × 106 CFU/200 μL for relative [High] and [Low], respectively) of E. coli-Xen14 were placed in translucent tubes for detection of PE through RTS. The CFU did not differ (P = 0.31) over time with or without KAN presence; they remained stable with 99.93% and 99.98% photon emitters, respectively. However, PE were lower (P < 0.0001) in cultures containing KAN than in those containing no KAN (629.8 ± 117.7 vs. 3012.0 ± 423.5 relative lights units per second [RLU/sec], respectively). On average, the percentage of PE between RTS, for both concentrations, was higher (P < 0.05) in the uterine body. In summary, E. coli-Xen14 remained stable with respect to the proportions of photon emitters with or without KAN (used to selectively culture E. coli-Xen14). However, KAN presence suppressed photonic activity. The ability to detect PE through various segments of the reproductive tract demonstrated the feasibility of monitoring the presence of E. coli-Xen14 in the bovine reproductive tract ex vivo.  相似文献   

7.
This study describes the development of an efficient and reliable activation tagging system for the medicinal fungus Antrodia cinnamomea. For successful Agrobacterium tumefaciens-mediated transformation, different parameters were considered. The Agrobacterium concentration of 5 × 108 cfu ml−1, 1 mm acetosyringone, 25-d-old mycelia at 0.2 g ml−1, and co-culture period of 6 d were found to be the most optimal conditions for enhancing the transformation efficiency. The mitotic stability of transferred DNA (T-DNA) was demonstrated by growing eight randomly selected putative transformants in malt extract agar medium for five subcultures. Insertion of T-DNA into the genome of transformants was confirmed by PCR and Southern hybridization. Results showed that 88 % of the mutants contained a single T-DNA insertion. Two of the mutants were observed with different triterpenoid profiles compared with the untransformed cultures. Our results suggest a new functional genomics approach to tag the triterpenoid biosynthesis genes in A. cinnamomea.  相似文献   

8.
Alkyl hydroperoxide reductase E (AhpE), a novel subgroup of the peroxiredoxin family, comprises Mycobacterium tuberculosis AhpE (MtAhpE) and AhpE-like proteins present in many bacteria and archaea, for which functional characterization is scarce. We previously reported that MtAhpE reacted ~ 103 times faster with peroxynitrite than with hydrogen peroxide, but the molecular reasons for that remained unknown. Herein, we investigated the oxidizing substrate specificity and the oxidative inactivation of the enzyme. In most cases, both peroxidatic thiol oxidation and sulfenic acid overoxidation followed a trend in which those peroxides with the lower leaving-group pKa reacted faster than others. These data are in agreement with the accepted mechanisms of thiol oxidation and support that overoxidation occurs through sulfenate anion reaction with the protonated peroxide. However, MtAhpE oxidation and overoxidation by fatty acid-derived hydroperoxides (~ 108 and 105 M− 1 s− 1, respectively, at pH 7.4 and 25 °C) were much faster than expected according to the Brønsted relationship with leaving-group pKa. A stoichiometric reduction of the arachidonic acid hydroperoxide 15-HpETE to its corresponding alcohol was confirmed. Interactions of fatty acid hydroperoxides with a hydrophobic groove present on the reduced MtAhpE surface could be the basis of their surprisingly fast reactivity.  相似文献   

9.
The vaoA gene from Penicillium simplicissimum CBS 170.90, encoding vanillyl alcohol oxidase, which also catalyzes the conversion of eugenol to coniferyl alcohol, was expressed in Escherichia coli XL1-Blue under the control of the lac promoter, together with the genes calA and calB, encoding coniferyl alcohol dehydrogenase and coniferyl aldehyde dehydrogenase of Pseudomonas sp. strain HR199, respectively. Resting cells of the corresponding recombinant strain E. coli XL1-Blue(pSKvaomPcalAmcalB) converted eugenol to ferulic acid with a molar yield of 91% within 15 h on a 50-ml scale, reaching a ferulic acid concentration of 8.6 g liter−1. This biotransformation was scaled up to a 30-liter fermentation volume. The maximum production rate for ferulic acid at that scale was 14.4 mmol per h per liter of culture. The maximum concentration of ferulic acid obtained was 14.7 g liter−1 after a total fermentation time of 30 h, which corresponded to a molar yield of 93.3% with respect to the added amount of eugenol. In a two-step biotransformation, E. coli XL1-Blue(pSKvaomPcalAmcalB) was used to produce ferulic acid from eugenol and, subsequently, E. coli(pSKechE/Hfcs) was used to convert ferulic acid to vanillin (J. Overhage, H. Priefert, and A. Steinbüchel, Appl. Environ. Microbiol. 65:4837-4847, 1999). This process led to 0.3 g of vanillin liter−1, besides 0.1 g of vanillyl alcohol and 4.6 g of ferulic acid liter−1. The genes ehyAB, encoding eugenol hydroxylase of Pseudomonas sp. strain HR199, and azu, encoding the potential physiological electron acceptor of this enzyme, were shown to be unsuitable for establishing eugenol bioconversion in E. coli XL1-Blue.  相似文献   

10.
The TOPRIM domain found in many nucleotidyl transferases contains a DxD motif involved in magnesium ion coordination for catalysis. Medium- to high-copy-number plasmid clones of Yersinia pestis topoisomerase I (YpTOP) with Asp-to-Asn substitution at the first aspartate residue (D117N) of this motif could not be generated in Escherichia coli without second-site mutation even when expression was under the control of the tightly regulated BAD promoter and suppressed by 2% glucose in the medium. Arabinose induction of a single-copy YpTOP-D117N mutant gene integrated into the chromosome resulted in ∼ 105-fold of cell killing in 2.5 h. Attempt to induce expression of the corresponding E. coli topoisomerase I mutant (EcTOP-D111N) encoded on a high-copy-number plasmid resulted in either loss of viability or reversion of the clone to wild type. High-copy-number plasmid clones of YpTOP-D119N and EcTOP-D113N with the Asn substitution at the second Asp of the TOPRIM motif could be stably maintained, but overexpression also decreased cell viability significantly. The Asp-to-Asn substitutions at these TOPRIM residues can selectively decrease Mg2+ binding affinity with minimal disruption of the active-site geometry, leading to trapping of the covalent complex with cleaved DNA and causing bacterial cell death. The extreme sensitivity of the first TOPRIM position suggested that this might be a useful site for binding of small molecules that could act as topoisomerase poisons.  相似文献   

11.
Techniques utilizing β-glucuronidase (GUS) activity as an indicator of Escherichia coli (E. coli) presence use labeled glucuronides to produce optical signals. Carboxyumbelliferyl-β-d-glucuronide (CUGlcU) is a fluorescent labeled glucuronide that is soluble and highly fluorescent at natural water pHs and temperatures and, therefore, may be an ideal reagent for use in an in situ optical sensor. This paper reports for the first time the Michaelis-Menten kinetic parameters for the binding of E. coli GUS with CUGlcU as Km = 910 μM, Vmax = 41.0 μM min−1, Vmax/Km 45.0 μmol L−1 min−1, the optimal pH as 6.5 ± 1.0, optimal temperature as 38 °C, and the Gibb's free energy of activation as 61.40 kJ mol−1. Additionally, it was found CUGlcU hydrolysis is not significantly affected by heavy solvents suggesting proton transfer and solvent addition that occur during hydrolysis are not limiting steps. Comparison studies were made with the more common fluorescent molecule methylumbelliferyl-β-d-glucuronide (MUGlcU). Experiments showed GUS preferentially binds to MUGlcU in comparison to CUGlcU. CUGlcU was also demonstrated in a prototype optical sensor for the detection of E. coli. Initial bench testing of the sensor produced detection of low concentrations of E. coli (1.00 × 103 CFU/100 mL) in 230 ± 15.1 min and high concentrations (1.05 × 105 CFU/100 mL) in 8.00 ± 1.01 min.  相似文献   

12.
Recently we have described the globin-coupled heme containing adenylate cyclase from Leishmania major (HemAC-Lm) that shows an O2 dependent cAMP signaling (Sen Santara, et. al. Proc. Natl. Acad. Sci. U.S.A. 110, 16790–16795 (2013)). The heme iron of HemAC-Lm is expected to participate in oxygen binding and activates adenylate cyclase activity during catalysis, but its interactions with O2 are uncharacterized. We have utilized the HemAC-Lm and stopped-flow methods to study the formation and decay of the HemAC-Lm oxygenated complex at 25 °C. Mixing of the ferrous HemAC-Lm with air-saturated buffer generates a very stable oxygenated complex with absorption maxima at 414, 540 and 576 nm. The distal axial ligand in the deoxygenated ferrous HemAC-Lm is displaced by O2 at a rate of ~ 10 s− 1. To prepare apoprotein of heme iron in HemAC-Lm, we have mutated the proximal His161 to Ala and characterized the mutant protein. The apo as well as heme reconstituted ferric state of the mutant protein shows a ~ 30 fold lower catalytic activity compared to oxygenated form of wild type protein. The oxygenated form of heme reconstituted mutant protein is highly unstable (decay rate = 6.1 s− 1). Decomposition of the oxygenated intermediate is independent of O2 concentration and is monophasic. Thus, the stabilization of ferrous-oxy species is an essential requirement in the wild type HemAC-Lm for a conformational alteration in the sensor domain that, sequentially, activates the adenylate cyclase domain, resulting in the synthesis of cAMP.  相似文献   

13.
A prerequisite for genetic studies of Arthrobacter is a high efficiency transformation system that allows for DNA transfer, transposon mutagenesis, and expression of specific genes. In this study, we develop a detailed electroporation method through a systematic examination of the factors involved in the entire electroporation process. Key features of this procedure, including the addition of penicillin to cells during the early log phase of growth and the presence of 0.5 M sorbitol in the electroporation and recovery media, produced the greatest increases in transformation efficiency and consistency of results. The transformation rate also varied depending on the electrical parameters, DNA concentration, and recovery time period. Using optimum conditions, we generally achieved an efficiency of 6.8 × 107 transformants per microgram of PART2 for Arthrobacter sp. A3. This protocol was also successfully applied to other Arthrobacter species. Therefore, we conclude that the proposed method is rapid, simple and convenient, which allows a transformation trial to be accomplished in minutes.  相似文献   

14.
Previously, we described the production of N-acetylneuraminic acid (NeuAc) from N-acetylglucosamine (GlcNAc) in a system combining recombinant Escherichia coli expressing GlcNAc 2-epimerase (slr1975), E. coli expressing NeuAc synthetase (neuB), and Corynebacterium ammoniagenes. However, this system was unsuitable for large-scale production because of its complexity and low productivity. To overcome these problems, we constructed a recombinant E. coli simultaneously overexpressing slr1975 and neuB. This recombinant E. coli produced 81 mM (25 g/L) NeuAc in 22 h without the addition of C. ammoniagenes cells. For manufacturing on an industrial scale, it is preferable to use unconcentrated culture broth as the source of enzymes, and therefore, a high-density cell culture is required. An acetate-resistant mutant strain of E. coli (HN0074) was selected as the host strain because of its ability to grow to a high cell density. The NeuAc aldolase gene of E. coli HN0074 was disrupted by homologous recombination yielding E. coli N18-14, which cannot degrade NeuAc. After a 22 h reaction with 540 mM (120 g/L) GlcNAc in a 5 L jar fermenter, the culture broth of E. coli N18-14 overexpressing slr1975 and neuB contained 172 mM (53 g/L) NeuAc.  相似文献   

15.
Due to the major role of Streptococcus mutans and Streptococcus sobrinus in the etiology of dental caries, it is important to use culture media that allow for differentiating these bacterial species. The aim of this study was to evaluate the suitability of a modified SB-20 culture medium (SB-20M) for the isolation and morphological differentiation of S. mutans and S. sobrinus, compared to biochemical identification (biotyping). Saliva samples were collected using the spatula method from 145 children, seeded on plates containing the SB-20M, in which sucrose was replaced by coarse granular cane sugar, and incubated in microaerophilia at 37 °C during 72 h. Identification of the microorganisms was performed under stereomicroscopy based on colony morphology of 4904 colonies. The morphological identification was examined by biochemical tests of 94 randomly selected colonies with the macroscopic characteristic of S. mutans and S. sobrinus using sugar fermentation, resistance to bacitracin and production of hydrogen peroxide. There was no statistically significant difference (p>0.05) between morphological identification in the SB-20M medium and biochemical identification (biotyping). Biotyping confirmed that S. mutans and S. sobrinus colonies were correctly characterized in the SB-20M in 95.8% and 95.5% of the cases, respectively. Of the mutans streptococci detected in the children 98% were S. mutans and 2% S. sobrinus. The SB-20M medium is reliable for detection and direct morphological identification of S. mutans and S. sobrinus.  相似文献   

16.
Chitin is an important component of the exoskeleton and peritrophic matrix in insects. Its bio-degradation is initiated by the endo-splitting chitinase. We cloned an ORF cDNA encoding chitinase from the last instar larva of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), into E. coli to confirm its functionality. Its amino acid sequence was compared with previously described lepidopteran chitinases. S. exigua chitinase expression enhanced cell growth approx. 1.5 fold in transformed E. coli than in the wild strain in a 1% colloidal chitin-containing medium with insufficient regular nutrients. Compared with the wild strain, the two intracellular chitin degradation derivatives, glucosamine and N-acetylglucosamine, increased approx. 5.8 and 1.5 fold, respectively, and extracellular chitinase activity in the transformed strain was about 1.6 fold higher. The ORF of S. exigua chitinase-encoding cDNA including stop codon was composed of 1674 bp nucleotides and the calculated molecular weight of the deduced 557 amino acid residues was about 62.6 kDa. The ORF consisted of an N-terminal leading signal peptide (AA 1-20), a catalytic domain (AA 21-392), a linker region (AA 393-493), and a C-terminal chitin-binding domain (AA 494-557) showing a typical molting fluid chitinase structure. Phylogenetic analysis determined that all 5 noctuid chitinases were grouped together, while two bombycid enzymes and one tortricid enzyme mapped together in one lineage. In the noctuid group, the sub-lineages reflected their taxonomic relationships at the Genus level.  相似文献   

17.
In the search for new therapeutic tools against tuberculosis two novel iron complexes, [Fe(L-H)3], with 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide derivatives (L) as ligands, were synthesized, characterized by a combination of techniques, and in vitro evaluated. Results were compared with those previously reported for two analogous iron complexes of other ligands of the same family of quinoxaline derivatives. In addition, the complexes were studied by cyclic voltammetry and EPR spectroscopy. Cyclic voltammograms of the iron compounds showed several cathodic processes which were attributed to the reduction of the metal center (Fe(III)/Fe(II)) and the coordinated ligand. EPR signals were characteristic of magnetically isolated high-spin Fe(III) in a rhombic environment and arise from transitions between mS = ± 1/2 (geff ~ 9) or mS = ± 3/2 (geff ~ 4.3) states. Mössbauer experiments showed hyperfine parameters that are typical of high-spin Fe(III) ions in a not too distorted environment. The novel complexes showed in vitro growth inhibitory activity on Mycobacterium tuberculosis H37Rv (ATCC 27294), together with very low unspecific cytotoxicity on eukaryotic cells (cultured murine cell line J774). Both complexes showed higher inhibitory effects on M. tuberculosis than the “second-line” therapeutic drugs.  相似文献   

18.
Summary Salmonella typhimurium and S. typhi were transformd with high efficiency by electroporation. Transformation efficiencies of up to 1010 transformants per g of pBR322 were obtained. In contrast to chemical transformation methods, neither the smooth lipopolysaccharide of S. typhimurium nor the Vi capsular polysaccharide of S. typhi greatly affected transformation efficiency. The introduction of a galE mutation slightly improved transformation efficiency in S. typhimurium (< tenfold) while the Vi antigen of S. typhi had no detectable effect. The transformation efficiency of S. typhimurium with DNA derived from Escherichia coli was increased greatly by the removal of the hsd restriction system (100-fold). Under these conditions electroporation can be used for the routine and direct transformation of Salmonella strains with partially purified (alkaline lysis) plasmid DNA from E. coli.  相似文献   

19.
Cystathionine γ-lyase (CGL) catalyzes the hydrolysis of l-cystathionine (l-Cth), producing l-cysteine (l-Cys), α-ketobutyrate and ammonia, in the second step of the reverse transsulfuration pathway, which converts l-homocysteine (l-Hcys) to l-Cys. Site-directed variants substituting residues E48 and E333 with alanine, aspartate and glutamine were characterized to probe the roles of these acidic residues, conserved in fungal and mammalian CGL sequences, in the active-site of CGL from Saccharomyces cerevisiae (yCGL). The pH optimum of variants containing the alanine or glutamine substitutions of E333 is increased by 0.4–1.2 pH units, likely due to repositioning of the cofactor and modification of the pKa of the pyridinium nitrogen. The pH profile of yCGL-E48A/E333A resembles that of Escherichia coli cystathionine β-lyase. The effect of substituting E48, E333 or both residues is the 1.3–3, 26–58 and 124–568-fold reduction, respectively, of the catalytic efficiency of l-Cth hydrolysis. The Kml-Cth of E333 substitution variants is increased ~ 17-fold, while Kml-OAS is within 2.5-fold of the wild-type enzyme, indicating that residue E333 interacts with the distal amine moiety of l-Cth, which is not present in the alternative substrate O-acetyl-l-serine. The catalytic efficiency of yCGL for α,γ-elimination of O-succinyl-l-homoserine (kcat/Kml-OSHS = 7 ± 2), which possesses a distal carboxylate, but lacks an amino group, is 300-fold lower than that of the physiological l-Cth substrate (kcat/Kml-Cth = 2100 ± 100) and 260-fold higher than that of l-Hcys (kcat/Kml-Hcys = 0.027 ± 0.005), which lacks both distal polar moieties. The results of this study suggest that the glutamate residue at position 333 is a determinant of specificity.  相似文献   

20.
The polysialic acid (PSA) production in Escherichia coli (E. coli) K1 was studied using three different cultivation strategies. A batch cultivation, a fed-batch cultivation at a constant specific growth rate of 0.25 h−1 and a fed-batch cultivation at a constant glucose concentration of 50 mg l−1 was performed. PSA formation kinetics under different cultivation strategies were analyzed based on the Monod growth model and the Luedeking-Piret equation. The results revealed that PSA formation in E. coli K1 was completely growth associated, the highest specific PSA formation rate (0.0489 g g−1 h−1) was obtained in the batch cultivation. However, comparing biomass and PSA yields on the glucose consumed, both fed-batch cultivations provided higher yields than that of the batch cultivation and acetate formation was prevented. Moreover, PSA yield on glucose was also correlated to the specific growth rate of the cells. The optimal specific growth rate for PSA production was 0.32 h−1 obtained in the fed-batch cultivation at a constant glucose concentration of 50 mg l−1, with highest conversion efficiency of 43 mg g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号