首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
2.
The MDM2 oncoprotein has transforming potential that can be activated by overexpression, and it represents a critical regulator of the p53 tumor suppressor protein. To identify other factors with a potential role in influencing the expression and/or function of MDM2, we utilized a yeast two-hybrid screening protocol. Here we report that MDM2 physically interacts with a structurally related protein termed MDMX. The results obtained in these studies provide evidence that C-terminal RING finger domains, contained within both of these proteins, play an important role in mediating the association between MDM2 and MDMX. The interaction of these proteins interferes with MDM2 degradation, leading to an increase in the steady-state levels of MDM2. MDMX also inhibits MDM2-mediated p53 degradation, with subsequent accumulation of p53. Taken together, these data indicate that MDMX has the potential to regulate the expression and function of the MDM2 oncoprotein.  相似文献   

3.
MDM2 is an E3 ubiquitin ligase that targets p53 for proteasomal degradation. Recent studies have shown, however, that the ring-finger domain (RFD) of MDM2, where the ubiquitin E3 ligase activity resides, is necessary but not sufficient for p53 ubiquitination, suggesting that an additional activity of MDM2 might be required. To test this possibility, we generated a series of MDM2/MDMX chimeric proteins to assess the contribution of each domain of MDM2 to the ubiquitination process. MDMX is a close structural homolog of MDM2 that nevertheless lacks the E3 ligase activity in vivo. We demonstrate here that MDMX gains self-ubiquitination activity and becomes extremely unstable upon introduction of the MDM2 RFD, indicating that the RFD is essential for self-ubiquitination. This MDMX chimeric protein, however, is unable to ubiquitinate p53 in vivo despite its E3 ligase activity and binding to p53, separating the self-ubiquitination activity of MDM2 from its ability to ubiquitinate p53. Significantly, fusion of the central acidic domain (AD) of MDM2 to the MDMX chimeric protein renders the protein fully capable of ubiquitinating p53, and p53 ubiquitination is associated with p53 degradation and nuclear export. Moreover, the AD mini protein expressed in trans can functionally rescue the AD-lacking MDM2 mutant, further supporting a critical role for the AD in MDM2-mediated p53 ubiquitination.  相似文献   

4.
Mutual dependence of MDM2 and MDMX in their functional inactivation of p53   总被引:12,自引:0,他引:12  
MDMX, an MDM2-related protein, has emerged as yet another essential negative regulator of p53 tumor suppressor, since loss of MDMX expression results in p53-dependent embryonic lethality in mice. However, it remains unknown why neither homologue can compensate for the loss of the other. In addition, results of biochemical studies have suggested that MDMX inhibits MDM2-mediated p53 degradation, thus contradicting its role as defined in gene knockout experiments. Using cells deficient in either MDM2 or MDMX, we demonstrated that these two p53 inhibitors are in fact functionally dependent on each other. In the absence of MDMX, MDM2 is largely ineffective in down-regulating p53 because of its extremely short half-life. MDMX renders MDM2 protein sufficiently stable to function at its full potential for p53 degradation. On the other hand, MDMX, which is a cytoplasmic protein, depends on MDM2 to redistribute into the nucleus and be able to inactivate p53. We also showed that MDMX, when exceedingly overexpressed, inhibits MDM2-mediated p53 degradation by competing with MDM2 for p53 binding. Our findings therefore provide a molecular basis for the nonoverlapping activities of these two p53 inhibitors previously revealed in genetic studies.  相似文献   

5.
6.
The tumor suppressor protein p53 governs many cellular pathways to control genome integrity, metabolic homeostasis, and cell viability. The critical roles of p53 highlight the importance of proper control over p53 in maintaining normal cellular function, with the negative regulators MDM2 and MDMX playing central roles in regulating p53 activity. The interaction between p53 and either MDM2 or MDMX involves the p53 transactivation domain (p53TD) and the N-terminal domains (NTD) of MDM2 or MDMX. Recently, the acidic domain (AD) of MDMX was found to bind to its own NTD, inhibiting the p53-MDMX interaction. Given the established structural and functional similarity between the MDM2 and MDMX NTDs, we hypothesized that the MDMX AD would also directly bind to MDM2 NTD to inhibit p53-MDM2 interaction. Through solution-state nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC), we show that the MDMX AD can indeed directly interact with the MDM2 NTD and, as a result, can compete for p53 binding. The MDMX AD is thus able to serve as a regulatory domain to inhibit the MDM2-p53 interaction and may also play a direct role in p53 activation.  相似文献   

7.
MDM2 promotes ubiquitination and degradation of MDMX   总被引:1,自引:0,他引:1       下载免费PDF全文
The p53 tumor suppressor is regulated by MDM2-mediated ubiquitination and degradation. Mitogenic signals activate p53 by induction of ARF expression, which inhibits p53 ubiquitination by MDM2. Recent studies showed that the MDM2 homolog MDMX is also an important regulator of p53. We present evidence that MDM2 promotes MDMX ubiquitination and degradation by the proteasomes. This effect is stimulated by ARF and correlates with the ability of ARF to bind MDM2. Promotion of MDM2-mediated MDMX ubiquitination requires the N-terminal domain of ARF, which normally inhibits MDM2 ubiquitination of p53. An intact RING domain of MDM2 is also required, both to interact with MDMX and to provide E3 ligase function. Increase of MDM2 and ARF levels by DNA damage, recombinant ARF adenovirus infection, or inducible MDM2 expression leads to proteasome-mediated down-regulation of MDMX levels. Therefore, MDMX and MDM2 are coordinately regulated by stress signals. The ARF tumor suppressor differentially regulates the ability of MDM2 to promote p53 and MDMX ubiquitination and activates p53 by targeting both members of the MDM2 family.  相似文献   

8.
In this study, we attempt to gain insights into the molecular mechanism underlying MDM2-mediated TGF-beta resistance. MDM2 renders cells refractory to TGF-beta by overcoming a TGF-beta-induced G1 cell cycle arrest. Because the TGF-beta resistant phenotype is reversible upon removal of MDM2, MDM2 likely confers TGF-beta resistance by directly targeting the cellular machinery involved in the growth inhibition by TGF-beta. Investigation of the structure-function relationship of MDM2 reveals three elements essential for MDM2 to confer TGF-beta resistance in both mink lung epithelial cells and human mammary epithelial cells. One of these elements is the C-terminal half of the p53-binding domain, which at least partially retained p53-binding and inhibitory activity. Second, the ability of MDM2 to mediate TGF-beta resistance is disrupted by mutation of the nuclear localization signal, but is restored upon coexpression of MDMX. Finally, mutations of the zinc coordination residues of the RING finger domain abrogates TGF-beta resistance, but not the ability of MDM2 to inhibit p53 activity or to bind MDMX. These data suggest that RING finger-mediated p53 inhibition and MDMX interaction are not sufficient to cause TGF-beta resistance and imply a crucial role of the E3 ubiquitin ligase activity of this domain in MDM2-mediated TGF-beta resistance.  相似文献   

9.
10.
CARP1 and CARP2 proteins (CARPs) are E3 ligases that target p53 as well as phospho-p53 for degradation. Because MDM2 is a critical regulator of p53 turnover, we investigated and found that CARPs associate with MDM2. We provide evidence that CARPs stabilize MDM2 by inhibiting MDM2 self-ubiquitination. CARPs together with MDM2 enhance p53 degradation, thereby inhibiting p53-mediated cell death. CARP protein levels correlate with MDM2 levels including under hypoxia where both are reduced. CARP2 was found to target 14-3-3σ for degradation, leading to MDM2 stabilization. MDMX, a homolog of MDM2, is not absolutely required for MDM2 stabilization by CARPs, although overexpression of CARP2 enhances MDM2/MDMX interaction. Taken together, our study identifies novel mechanisms by which CARP proteins regulate the p53 signaling pathway.  相似文献   

11.
MDM2--master regulator of the p53 tumor suppressor protein   总被引:35,自引:0,他引:35  
Momand J  Wu HH  Dasgupta G 《Gene》2000,242(1-2):15-29
MDM2 is an oncogene that mainly functions to modulate p53 tumor suppressor activity. In normal cells the MDM2 protein binds to the p53 protein and maintains p53 at low levels by increasing its susceptibility to proteolysis by the 26S proteosome. Immediately after the application of cellular stress, the ability of MDM2 to bind to p53 is blocked or altered in a fashion that prevents MDM2-mediated degradation. As a result, p53 levels rise, causing cell cycle arrest or apoptosis. In this review, we present evidence for the existence of three highly conserved regions (CRs) shared by MDM2 proteins and MDMX proteins of different species. These highly conserved regions encompass residues 42-94 (CR1), 301-329 (CR2), and 444-483 (CR3) on human MDM2. These three domains are respectively important for binding p53, for binding the retinoblastoma protein, and for transferring ubiquitin to p53. This review discusses the major milestones uncovered in MDM2 research during the past 12 years and potential uses of this knowledge in the fight against cancer.  相似文献   

12.
MDM2 interacts with MDMX through their RING finger domains   总被引:6,自引:0,他引:6  
  相似文献   

13.
We have shown previously that MDM2 promotes the degradation of the cyclin-dependent kinase inhibitor p21 through a ubiquitin-independent proteolytic pathway. Here we report that the MDM2 analog, MDMX, also displays a similar activity. MDMX directly bound to p21 and mediated its proteasomal degradation. Although the MDMX effect was independent of MDM2, they synergistically promoted p21 degradation when coexpressed in cells. This degradation appears to be mediated by the 26S proteasome, as MDMX and p21 bound to S2, one of the subunits of the 19S component of the 26S proteasome, in vivo. Conversely, knockdown of MDMX induced the level of endogenous p21 proteins that no longer cofractionated with 26S proteasome, resulting in G1 arrest. The level of p21 was low at early S phase but markedly induced by knocking down either MDMX or MDM2 in human cells. Ablation of p21 rescued the G1 arrest caused by double depletion of MDM2 and MDMX in p53-null cells. These results demonstrate that MDMX and MDM2 independently and cooperatively regulate the proteasome-mediated degradation of p21 at the G1 and early S phases.  相似文献   

14.
Both MDM2 and MDMX regulate p53, but these proteins play different roles in this process. To clarify the difference, we performed a yeast 2 hybrid (Y2H) screen using the MDM2 acidic domain as bait. DNAJB1 was found to specifically bind to MDM2, but not MDMX, in vitro and in vivo. Further investigation revealed that DNAJB1 stabilizes MDM2 at the post-translational level. The C-terminus of DNAJB1 is essential for its interaction with MDM2 and for MDM2 accumulation. MDM2 was degraded faster by a ubiquitin-mediated pathway when DNAJB1 was depleted. DNAJB1 inhibited the MDM2-mediated ubiquitination and degradation of p53 and contributed to p53 activation in cancer cells. Depletion of DNAJB1 in cancer cells inhibited activity of the p53 pathway, enhanced the activity of the Rb/E2F pathway, and promoted cancer cell growth in vitro and in vivo. This function was p53 dependent, and either human papillomavirus (HPV) E6 protein or siRNA against p53 was able to block the contribution caused by DNAJB1 depletion. In this study, we discovered a new MDM2 interacting protein, DNAJB1, and provided evidence to support its p53-dependent tumor suppressor function.  相似文献   

15.
16.
Wang X  Arooz T  Siu WY  Chiu CH  Lau A  Yamashita K  Poon RY 《FEBS letters》2001,490(3):202-208
  相似文献   

17.
18.
Pirh2, a recently identified ubiquitin-protein ligase, has been reported to promote p53 degradation. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of MDM2. Like MDM2, Pirh2 is thought to participate in an autoregulatory feedback loop that controls p53 function. We have previously reported that Pirh2 was overexpressed in human and murine lung cancers as compared to uninvolved lung tissue. Pirh2 increase could potentially cause degradation of wildtype p53 and reduce its tumor suppression function in the lung tumor cells. Since Pirh2 has been reported to be transactivated by p53, however, the mechanisms by which a high level of Pirh2 expression is maintained in tumor cells despite low level of wildtype p53 protein are unclear. In order to evaluate p53 involvement in the transactivation of Pirh2, we evaluated Pirh2, MDM2, p53 and p21 expression with Western blot analysis and real time PCR after gamma irradiation or cisplatin DNA damage treatment using human cancer cell lines containing wildtype (A549, MCF-7), mutant (H719) and null (H1299) p53. Surprisingly, Pirh2 expression was not affected by the presence of wildtype p53 in the cancer cells. In contrast, MDM2 was upregulated by wildtype p53 in A549 and MCF-7 cells and was absent from the H1299 and the H719 cells. We conclude that Pirh2 operates in a distinct manner from MDM2 in response to DNA damage in cancer cells. Pirh2 elevation in p53 null cells indicates the existence of additional molecular mechanisms for Pirh2 upregulation and suggests that p53 is not the sole target of Pirh2 ubiquitin ligase activity.  相似文献   

19.
The oncogenic proteins MDM2 and MDMX have distinct and critical roles in the control of the activity of the p53 tumor suppressor protein. Recently, we have used spatial coarse graining simulations to analyze the conformational transitions manifest in the p53 recognition of MDM2 and MDMX. These conformational movements are different between MDM2 and MDMX and unveil the presence of conserved and nonconserved interactions in the p53 binding cleft that may be exploited in the design of selective and dual modulators of the oncogenic proteins. In this study, we investigate the conformational profiles of apo‐ and p53‐bound states of MDM2 and MDMX using molecular dynamic simulations along a time scale of 60 ns. The analysis of the trajectories is instrumental to discuss energetical and conformational aspects of p53 recognition and to point out specific key residues whose conformational shifts have crucial roles in affecting the apo‐ and p53‐bound states of MDM2 and MDMX. Among these, in particular, linear discriminant analyses identify diverse conformations of Y99/Y100 (MDMX/MDM2) as markers of the apo‐ and p53‐bound states of the oncogenic proteins. The results of this study shed further light on different p53 recognition in MDM2 and MDMX and may prove useful for the design and identification of new potent and selective synthetic modulators of p53‐MDM2/MDMX interactions. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号