首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Human VLA-2 (α2β1) mediates cellular adhesion to collagen and laminin and cell attachment by the human pathogen echovirus 1. We report here the cloning, sequencing and functional expression of the mouse VLA-2 α subunit homologue. This integrin subunit is closely related to its human counterpart, with 84% amino acid identity between the human and murine proteins. Conserved structural features include an identical number of amino acids, the presence of an I domain, and identity in the number and position of N-linked glycosylation sites and putative divalent cation binding regions. Murine and human α2 show 30% amino acid divergence within the cytoplasmic tail, a difference that can be detected with antisera directed against the C-terminal peptides. Functionally, mouse α2 was capable of mediating cell attachment to collagen and laminin, and responded to both intra- and extracellular signals with changes in its ligand affinity. In contrast, unlike its human homologue, mouse α2 did not promote binding of echovirus 1. Comparison of the primary structure of the homologues leads us to predict that echovirus 1 may bind in the region of the first two thirds of the human α2 I domain, where the sequences are most divergent, whereas more conserved flanking regions, and the conserved terminal one third of the I domain, may be involved in adhesion to collagen and laminin.  相似文献   

2.
Adhesion to collagens by most cell types is mediated by the integrins α1β1 and α2β1. Both integrin α subunits belong to a group which is characterized by the presence of an I domain in the N-terminal half of the molecule, and this domain has been implicated in the ligand recognition. Since purified α1β1 and α2β1 differ in their binding to collagens I and IV and recognize different sites within the major cell binding domain of collagen IV, we investigated the potential role of the α1 and α2 I domains in specific collagen adhesion. We find that introducing the α2 I domain into α1 results in surface expression of a functional collagen receptor. The adhesion mediated by this chimeric receptor (α1-2-1β1) is similar to the adhesion profile conferred by α2β1, not α1β1. The presence of α2 or α1-2-1 results in preferential binding to collagen I, whereas α1 expressing cells bind better to collagen IV. In addition, α1 containing cells bind to low amounts of a tryptic fragment of collagen IV, whereas α2 or α1-2-1 bearing cells adhere only to high concentrations of this substrate. We also find that collagen adhesion of NIH-3T3 mediated by α2β1 or α1-2-1β1, but not by α1, requires the presence of Mn2+ ions. This ion requirement was not found in CHO cells, implicating the I domain in cell type-specific activation of integrins. J. Cell. Physiol. 176:634–641, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Two new mAbs (M/K-1 and M/K-2) define an adhesion molecule expressed on stromal cell clones derived from murine bone marrow. The protein is similar in size to a human endothelial cell adhesion molecule known as VCAM-1 or INCAM110. VCAM-1 is expressed on endothelial cells in inflammatory sites and recognized by the integrin VLA-4 expressed on lymphocytes and monocytes. The new stromal cell molecule is a candidate ligand for the VLA-4 expressed on immature B lineage lymphocytes and a possible homologue of human VCAM-1. We now report additional similarities in the distribution, structure, and function of these proteins. The M/K antibodies detected large cells in normal bone marrow, as well as rare cells in other tissues. The antigen was constitutively expressed and functioned as a cell adhesion molecule on cultured murine endothelial cells. It correlated with the presence of mRNA which hybridized to a human VCAM-1 cDNA probe. Partial NH2 terminal amino acid sequencing of the murine protein revealed similarities to VCAM-1 and attachment of human lymphoma cells to murine endothelial cell lines was inhibited by the M/K antibodies. All of these observations suggest that the murine and human cell adhesion proteins may be related. The antibodies selectively interfered with B lymphocyte formation when included in long term bone marrow cultures. Moreover, they caused rapid detachment of lymphocytes from the adherent layer when added to preestablished cultures. The VCAM-like cell adhesion molecule on stromal cells and VLA-4 on lymphocyte precursors may both be important for B lymphocyte formation.  相似文献   

4.
Upon Ag stimulation, an arsonate-specific murine T cell clone exhibited a rapid but transient increase in cell adhesion to collagen, fibronectin, and laminin. This increase in cell adhesion was not observed when a mutant T cell clone lacking TCR expression was utilized. However, upon stimulation by phorbol esters, both parent and mutant T cell clones exhibited a similar transient increase in adhesion to the three matrix proteins. The observed cell adhesion was extensively inhibited by antibodies to the integrin beta 1 subunit, indicating the involvement of VLA proteins. Despite changes in the adhesive properties, there was essentially no difference in the expression of VLA-1, -3, -4, -5, and -6 between resting and stimulated T cells. Together these results suggest that Ag stimulation transmits signals via the TCR complex resulting in a rapid, but transient, up-regulation of matrix protein binding by VLA proteins already present at the cell surface. Because the appropriate reagents that recognize individual mouse VLA proteins were not available, we used the human T cell line Jurkat to demonstrate that T cell binding to collagen, laminin, and fibronectin is mediated largely by VLA-2, VLA-6, and a combination of VLA-5 and VLA-4, respectively.  相似文献   

5.
Vascular cell adhesion molecule 1 (VCAM-1), a member of the Ig superfamily originally identified on activated endothelium, binds to the integrin very late antigen-4 (VLA-4), also known as alpha 4 beta 1 or CD49d/CD29, to support cell-cell adhesion. Studies based on cell adhesion to two alternatively spliced forms of VCAM-1 or to chimeric molecules generated from them and intercellular adhesion molecule-1 (ICAM-1) have demonstrated two VLA-4 binding sites on the predominate form of VCAM-1. Here, we studied VLA-4-dependent adhesion of the lymphoid tumor cell line Ramos to cells expressing wild type and mutant forms of VCAM-1. Results based on domain deletion mutants demonstrated the existence and independence of two VLA-4-binding sites located in the first and fourth domains of VCAM-1. Results based on amino acid substitution mutants demonstrated that residues within a linear sequence of six amino acids found in both domain 1 and 4 were required for VLA-4 binding to either domain. Five of these amino acids represent a conserved motif also found in ICAM domains. We propose that integrin binding to these Ig-like domains depends on residues within this conserved motif. Specificity of integrin binding to Ig-like domains may be regulated by a set of nonconserved residues distinct from the conserved motif.  相似文献   

6.
Rotaviruses utilize integrins during virus-cell interactions that lead to infection. Cell binding and infection by simian rotavirus SA11 were inhibited by antibodies (Abs) to the inserted (I) domain of the alpha2 integrin subunit. To determine directly which integrins or other proteins bind rotaviruses, cell surface proteins precipitated by rotaviruses were compared with those precipitated by anti-alpha2beta1 Abs. Two proteins precipitated by SA11 and rhesus rotavirus RRV from MA104 and Caco-2 cells migrated indistinguishably from alpha2beta1 integrin, and SA11 precipitated beta1 from alpha2beta1-transfected CHO cells. These viruses specifically precipitated two MA104 cell proteins only, but an additional 160- to 165-kDa protein was precipitated by SA11 from Caco-2 cells. The role of the alpha2 I domain in rotavirus binding, infection, and growth was examined using CHO cell lines expressing wild-type or mutated human alpha2 or alpha2beta1. Infectious SA11 and RRV, but not human rotavirus Wa, specifically bound CHO cell-expressed human alpha2beta1 and, to a lesser extent, human alpha2 combined with hamster beta1. Binding was inhibited by anti-alpha2 I domain monoclonal Abs (MAbs), but not by non-I domain MAbs to alpha2, and required the presence of the alpha2 I domain. Amino acid residues 151, 221, and 254 in the metal ion-dependent adhesion site of the alpha2 I domain that are necessary for type I collagen binding to alpha2beta1 were not essential for rotavirus binding. Rotavirus-alpha2beta1 binding led to increased virus infection and RRV growth. SA11 and RRV require the alpha2 I domain for binding to alpha2beta1, and their binding to this integrin is distinguishable from that of collagen.  相似文献   

7.
The human α2β1 integrin binds collagen and acts as a cellular receptor for rotaviruses and human echovirus 1. These ligands require the inserted (I) domain within the α2 subunit of α2β1 for binding. Previous studies have identified the binding sites for collagen and echovirus 1 in the α2 I domain. We used CHO cells expressing mutated α2β1 to identify amino acids involved in binding to human and animal rotaviruses. Residues where mutation affected rotavirus binding were located in several exposed loops and adjacent regions of the α2 I domain. Binding by all rotaviruses was eliminated by mutations in the activation-responsive αC-α6 and αF helices. This is a novel feature that distinguishes rotavirus from other α2β1 ligands. Mutation of residues that co-ordinate the metal ion (Ser-153, Thr-221, and Glu-256 in α2 and Asp-130 in β1) and nearby amino acids (Ser-154, Gln-215, and Asp-219) also inhibited rotavirus binding. The importance of most of these residues was greatest for binding by human rotaviruses. These mutations inhibit collagen binding to α2β1 (apart from Glu-256) but do not affect echovirus binding. Overall, residues where mutation affected both rotavirus and collagen recognition are located at one side of the metal ion-dependent adhesion site, whereas those important for collagen alone cluster nearby. Mutations eliminating rotavirus and echovirus binding are distinct, consistent with the respective preference of these viruses for activated or inactive α2β1. In contrast, rotavirus and collagen utilize activated α2β1 and show an overlap in α2β1 residues important for binding.  相似文献   

8.
Chinese hamster ovary (CHO) cells transfected with the integrin alpha 2 subunit formed a stable VLA-2 heterodimer that mediated cell adhesion to collagen. Within CHO cells spread on collagen, but not fibronectin, wild-type alpha 2 subunit localized into focal adhesion complexes (FACs). In contrast, alpha 2 with a deleted cytoplasmic domain was recruited into FACs whether CHO cells were spread on collagen or fibronectin. Thus, as previously seen for other integrins, the alpha 2 cytoplasmic domain acts as a negative regulator, preventing indiscriminate integrin recruitment into FACs. Notably, ligand-independent localization of the VLA-2 alpha 2 subunit into FACs was partially prevented if only one or two amino acids were present in the alpha 2 cytoplasmic domain (beyond the conserved GFFKR motif) and was completely prevented by four to seven amino acids. The addition of two alanine residues (added to GFFKR) also partially prevented ligand-independent localization. In a striking inverse correlation, the same mutants showing increased ligand-independent recruitment into FACs exhibited diminished alpha 2-dependent adhesion to collagen. Thus, control of VLA-2 localization may be closely related to the suppression of cell adhesion to collagen. In contrast to FAC localization and collagen adhesion results, VLA-2-dependent binding and infection by echovirus were unaffected by either alpha 2 cytoplasmic domain deletion or exchange with other cytoplasmic domains.  相似文献   

9.
Identification of integrin collagen receptors on human melanoma cells   总被引:29,自引:0,他引:29  
Integrin receptors may mediate the adhesion of cells to a number of extracellular matrix components. We found that the attachment of human melanoma cells to collagen types I and IV was blocked by antibodies to the integrin beta 1 subunit but not by peptides containing the Arg-Gly-Asp sequence. Ligand affinity chromatography was used to search for integrin-related receptors which mediate adhesion to native collagens. Detergent extracts of surface 125I-iodinated melanoma cells were chromatographed on type I or IV collagen-Sepharose columns. Bound material was eluted and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. EDTA, but not Arg-Gly-Asp peptides, eluted a mixture of two integrin-related heterodimeric complexes. Each complex contained the integrin beta 1 chain with Mr of 110,000 and a distinct alpha chain with Mr of either 200,000 or 150,000. Immunoprecipitation with specific monoclonal antibodies identified the complexes as very late activation antigen (VLA)-1 (alpha 1 beta 1) and VLA-2 (alpha 2 beta 1), respectively. The binding of these receptors to collagen appeared to be specific because they failed to be retained on fibronectin- or laminin-Sepharose columns. Immunofluorescent staining of cells on collagen substrates with antibodies to VLA-1 and VLA-2 localized these complexes in vinculin-positive adhesion plaques. In contrast, the receptor complexes were not detected in adhesion plaques of cells attached to fibronectin- or laminin-coated substrates. These results indicate that melanoma cells express at least two different integrin-related collagen-binding receptor complexes that appear to mediate cell adhesion to collagen.  相似文献   

10.

Background

Epithelial cell adhesion molecule (EpCAM) is frequently and highly expressed on human carcinomas. The emerging role of EpCAM as a signalling receptor and activator of the wnt pathway, and its expression on tumor-initiating cells, further add to its attractiveness as target for immunotherapy of cancer. Thus far, five conventional monoclonal IgG antibodies have been tested in cancer patients. These are murine IgG2a edrecolomab and its murine/human chimeric IgG1 antibody version, and humanized, human-engineered and fully human IgG1 antibodies 3622W94, ING-1, and adecatumumab (MT201), respectively. Here we compared all anti-EpCAM antibodies in an attempt to explain differences in clinical activity and safety.

Methods

We recombinantly produced all antibodies but murine edrecolomab and investigated them for binding affinity, EpCAM epitope recognition, ADCC and CDC, and inhibition of breast cancer cell proliferation.

Results

ING-1 and 3622W94 bound to EpCAM with much higher affinity than adecatumumab and edrecolomab. Edrecolomab, ING-1, and 3622W94 all recognized epitopes in the exon 2-encoded N-terminal domain of EpCAM, while adecatumumab recognized a more membrane proximal epitope encoded by exon 5. All antibodies induced lysis of EpCAM-expressing cancer cell lines by both ADCC and CDC with potencies that correlated with their binding affinities. The chimeric version of edrecolomab with a human Fcγ1 domain was much more potent in ADCC than the murine IgG2a version. Only adecatumumab showed a significant inhibition of MCF-7 breast cancer cell proliferation in the absence of complement and immune cells.

Conclusion

A moderate binding affinity and recognition of a distinct domain of EpCAM may best explain why adecatumumab showed a larger therapeutic window in cancer patients than the two high-affinity IgG1 antibodies ING-1 and 3622W94, both of which caused acute pancreatitis.  相似文献   

11.
Integrins are well characterized cell surface receptors for extracellular matrix proteins. Mapping integrin-binding sites within the fibrillar collagens identified GFOGER as a high affinity site recognized by α2β1, but with lower affinity for α1β1. Here, to identify specific ligands for α1β1, we examined binding of the recombinant human α1 I domain, the rat pheochromocytoma cell line (PC12), and the rat glioma Rugli cell line to our collagen Toolkit II and III peptides using solid-phase and real-time label-free adhesion assays. We observed Mg(2+)-dependent binding of the α1 I domain to the peptides in the following rank order: III-7 (GLOGEN), II-28 (GFOGER), II-7 and II-8 (GLOGER), II-18 (GAOGER), III-4 (GROGER). PC12 cells showed a similar profile. Using antibody blockade, we confirmed that binding of PC12 cells to peptide III-7 was mediated by integrin α1β1. We also identified a new α1β1-binding activity within peptide II-27. The sequence GVOGEA bound weakly to PC12 cells and strongly to activated Rugli cells or to an activated α1 I domain, but not to the α2 I domain or to C2C12 cells expressing α2β1 or α11β1. Thus, GVOGEA is specific for α1β1. Although recognized by both α2β1 and α11β1, GLOGEN is a better ligand for α1β1 compared with GFOGER. Finally, using biosensor assays, we show that although GLOGEN is able to compete for the α1 I domain from collagen IV (IC(50) ~3 μm), GFOGER is much less potent (IC(50) ~90 μm), as shown previously. These data confirm the selectivity of GFOGER for α2β1 and establish GLOGEN as a high affinity site for α1β1.  相似文献   

12.
The alpha 1 and alpha 2 domains of the class I MHC molecule constitute the putative binding site for processed peptides and the TCR, although the alpha 3 domain has been implicated as a binding site for the CD8 molecule. Species specificity in the binding of CD8 to the alpha 3 domain has been suggested as an explanation for the low xenogeneic T cell response to class I molecules, but results on this point have been conflicting and controversial. We have addressed this issue using CTL lines from HLA-A2.1 transgenic mice that specifically recognize and lyse A2.1-expressing cells infected with influenza A/PR/8 or pulsed with influenza matrix peptide M1(57-68). Species specificity was examined using transfectants that expressed hybrid molecules containing the alpha 1 and alpha 2 domains from HLA-A2.1 and the alpha 3 domain from a murine class I molecule. Lower levels of M1(57-68) peptide were required to sensitize L cell transfectants expressing a chimera that contained an H-2Dd alpha 3 domain than targets expressing the intact A2.1 molecule. However, at high doses of peptide, lysis of these two targets was similar. However, no reproducible difference in sensitization was observed using EL4 or Jurkat transfectants expressing A2.1 or A2.1 chimeric molecules that contained an H-2Kb alpha 3 domain. In all cases, however, lysis of peptide-pulsed A2.1 expressing targets was more sensitive to inhibition with anti-CD8 mAb than lysis of cells expressing these chimeric molecules. Thus, under suboptimal conditions such as low Ag density or in the presence of anti-CD8 mAb, these CTL preferentially recognize class I molecules with a murine alpha 3 domain. This suggests that there is some species specificity in the interaction of CD8 with the alpha 3 domain of the class I molecule. However, CTL recognition was inhibited by point mutations in the alpha 3 domain of HLA-A2.1 that have been shown to inhibit binding of human CD8 and recognition by human CTL, suggesting that murine CD8 interacts to some degree with human alpha 3 domains, and that similar alpha 3 domain residues may be important for murine and human CD8 binding. The relevance of these results to an understanding of low xenogeneic responses is discussed.  相似文献   

13.
A chimeric protein consisting of a cell-adhesive peptide derived from a neural cell adhesion molecule and a collagen-binding domain was synthesized using recombinant DNA technology. Here, we demonstrate that the chimeric protein binds to type I collagen and promotes the adhesion and neurite extension of hippocampus neurons. These results suggest that the chimeric protein has potential to provide microenvironments for neurons to adhere and survive in collagen-based matrices for use in cell-based therapies for central nervous disorders.  相似文献   

14.
The alpha1beta1 (VLA-1) integrin is a cell-surface receptor for collagen and laminin and has been implicated in biological pathways involved in several pathological processes. These processes may be inhibited by the monoclonal antibody AQC2, which binds with high affinity to human alpha1beta1 integrin. To understand the structural basis of the inhibition we determined the crystal structure of the complex of a chimeric rat/human I domain of the alpha1beta1 integrin and the Fab fragment of humanized AQC2 antibody. The structure of the complex shows that the antibody blocks the collagen binding site of the I domain. An aspartate residue, from the CDR3 loop of the antibody heavy chain, coordinates the MIDAS metal ion in a manner similar to that of a glutamate residue from collagen. Substitution of the aspartate residue by alanine or arginine results in significant reduction of antibody binding affinity. Interestingly, although the mode of metal ion coordination resembles that of the open conformation, the I domain maintains an overall closed conformation previously observed only for unliganded I domains.  相似文献   

15.
Using affinity chromatography with immobilized monoclonal antibodies to the beta 1-subunit of human integrin, a total integrin fraction (subfamily beta 1) was isolated from the detergent extract of human smooth muscle (uterus). Immunoprecipitation and immunoblotting with specific antibodies revealed integrins VLA-1 and VLA-5. The former was isolated in a homogeneous state by chromatography on immobilized type I collagen in the presence of 1 mM Mn2+. The pure receptor yield was 2-4 mg per 400 g of smooth muscle tissue. Analysis of substrate specificity of VLA-1 in the liposome test revealed that this integrin possesses a broad spectrum of ligand specificity and can interact via a Ca2+, Mg(2+)-dependent mechanism with interstitial collagens of I, II and III types and with basal membrane proteins (type IV collagen and laminin). VLA-1 does not interact with fibronectin, thrombospondin or albumin. Denaturation of type I collagen decreases the liposome binding 5-7-fold. The peptide Gly-Arg-Gly-Asp-Ser-Pro added to the incubation mixture does not inhibit the liposome interaction with incorporated VLA-1 integrin, type I collagen and laminin.  相似文献   

16.
The expression levels of integrin adhesion receptors have often been correlated with neoplastic transformation and invasiveness. To investigate more definitively the role of the integrin VLA-3 (α3β1) in tumor cell behavior, we transfected α3 subunit cDNA into human rhabdomyosarcoma (RD) cells. Transi ectants expressing high levels of α3β1, on their cell surface displayed an altered morphology and decreased anchorage-dependent growth in vitro. Cells expressing α3 also displayed marked reduction in anchorage-independent growth in soft agar and in their ability to form tumors when injected subcutaneously into athymic nude mice. Thus, VLA-3 can repress the transformed phenotype of rhabdomyosarcoma tumor cells. Similar changes in morphology and growth characteristics were observed in cells expressing a chimeric molecule X3C4 in which the α3 cytoplasmic domain had been exchanged with that of the α4 integrin subunit. Therefore, α3 inhibitory effects in RD cells appear not to require specific signalling through the α3 cytoplasmic domain.  相似文献   

17.
Many hemopoietic cell lines were examined for their ability to adhere to culture dishes coated with extracellular matrix proteins. Adhesion assay was performed with murine and human leukemic cell lines representative of different stages of differentiation along both erythroid and myeloid lineages. All the hemopoietic cell lines tested adhered to fibronectin but not to laminin, types I, III, and IV collagen, serum-spreading factor, and cartilage proteoglycans. In addition to immortalized cell lines, immature erythroid and myeloid mouse bone marrow cells adhered to fibronectin. To define the fibronectin region involved in hemopoietic cell adhesion, proteolytic fragments, monoclonal antibodies, and synthetic peptides were used. Among different fibronectin fragments tested, only a 110-kD polypeptide, corresponding to the fibroblast attachment domain, was active in promoting adhesion. Moreover, a monoclonal antibody to the cell binding site located within this domain prevented hemopoietic cell adhesion. Finally, the tetrapeptide Arg-Gly-Asp-Ser, which corresponds to the fibronectin sequence recognized by fibroblastic cells, specifically and competitively inhibited attachment of hemopoietic cells to this molecule. The cell surface molecule involved in the interaction of mouse hemopoietic cells with fibronectin was identified as a 145,000-D membrane glycoprotein by adhesion-blocking antibodies. This glycoprotein was found to be antigenically and functionally related to the GP135 membrane glycoprotein involved in the adhesion of fibroblasts to fibronectin (Giancotti, F. G., P. M. Comoglio, and G. Tarone, 1986, Exp. Cell Res., 163:47-62). On the basis of these data, we conclude that interaction of hemopoietic cells with fibronectin involves a specific fibronectin sequence and a 145,000-D cell surface glycoprotein. We speculate that this property might be relevant for the interaction of hemopoietic cells with the bone marrow stroma, which represents the natural site of hemopoiesis.  相似文献   

18.
The adhesion and motility of tumor cells on basement membranes is a central consideration in tumor cell invasion and metastasis. Basement membrane type IV collagen directly promotes the adhesion and migration of various tumor cell types in vitro. Our previous studies demonstrated that tumor cells adhered and spread on surfaces coated with intact type IV collagen or either of the two major enzymatically purified domains of this protein. Only one of these major domains, the pepsin-generated major triple helical fragment, also supported tumor cell motility in vitro, implicating the involvement of the major triple helical region in type IV collagen-mediated tumor cell invasion in vivo. The present studies extend our previous observations using a synthetic peptide approach. A peptide, designated IV-H1, was derived from a continuous collagenous region of the major triple helical domain of the human alpha 1(IV) chain. This peptide, which has the sequence GVKGDKGNPGWPGAP, directly supported the adhesion, spreading, and motility of the highly metastatic K1735 M4 murine melanoma cell line, as well as the adhesion and spreading of other cell types, in a concentration-dependent manner in vitro. Furthermore, excess soluble peptide IV-H1, or polyclonal antibodies directed against peptide IV-H1, inhibited type IV collagen-mediated melanoma cell adhesion, spreading, and motility, but had no effect on these cellular responses to type I collagen. The full complement of cell adhesion, spreading, and motility promoting activities was dependent upon the preservation of the three prolyl residues in the peptide IV-H1 sequence. These studies indicate that peptide IV-H1 represents a cell-specific adhesion, spreading, and motility promoting domain that is active within the type IV collagen molecule.  相似文献   

19.
The Very Late Activation Antigen (VLA) proteins are a family of five related heterodimers, which also are part of the integrin superfamily of cell adhesion molecules. Except for the identification of VLA-5 as a fibronectin receptor structure, the functions of the VLA proteins have remained unclarified. In this paper, immunoprecipitation experiments with both anti-alpha and anti-beta subunit antibodies showed that the previously identified cell adhesion receptor for collagen, extracellular matrix receptor II (ECMRII), is equivalent to VLA-2. At the same time a previously described multispecific cell adhesion receptor for collagen, fibronectin, and laminin (ECMRI) has been shown to be identical to VLA-3. Although the mAb 12F1 and P1H5 both recognized VLA-2 (ECMRII), they appeared to define distinct epitopes on the alpha 2 subunit. On the other hand, the mAb P1B5 and J143 recognized the alpha 3 subunit of VLA-3 (ECMRI) at or near the same site. Consistent with the collagen receptor functions of VLA-2 (ECMRII) and VLA-3 (ECMRI), anti-VLA beta antiserum blocked cell attachment to collagen.  相似文献   

20.
Physical interaction between human lymphomas and murine bone marrow derived stromal cells were studied. Nalm-6 pre-B cells adhered to BMS2 stromal cells and subsequently migrated beneath them, while Ramos Burkitt lymphoma cells, adhered but did not migrate. Four mAbs were established against Nalm-6 cells, which were able to block initial adhesion of Nalm-6 cells. Two of them were directed against the alpha 4 chain of VLA-4, and other two recognized the beta 1 chain of VLA integrins. Therefore, the initial adhesion of Ramos and Nalm-6 cells to BMS2 was largely mediated by the VLA-4 integrin expressed on lymphocytes. The corresponding ligand on stromal cells appears to be VCAM-1, because antibodies against murine VCAM-1 blocked the adhesion. However, antibodies against the alpha chain of VLA-4 were not capable of blocking subsequent migration beneath stromal cells. In contrast, antibodies against the beta chain of VLA integrins blocked the migration beneath stromal cells as well as the initial adhesion. Because a common beta chain can be shared among integrins, the role of other VLA integrins in Nalm-6 cells migration was investigated. VLA-5 and VLA-6 as well as VLA-4 were expressed on Nalm-6 cells, but not on Ramos cells. Additional blocking experiments revealed that VLA-4 and VLA-5 are likely to work in concert to mediate the migration of Nalm-6 cells beneath stromal cells. Thus, particular VLA integrins appear to be responsible not only for lymphocyte adhesion but also for migration with respect to stromal cells. These findings may have implications for cell-cell interactions and directed migration of lymphocytes in bone marrow and other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号