首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The contributions of ferredoxin, P-700, plastocyanin and the cytochromes c-554, and b-563 to single-turnover electron transfer in Photosystem (PS) I-enriched subchloroplast vesicles were deconvoluted by fitting the literature-derived spectra of these components to the observed absorption data at a series of wavelengths, according to a linear least-squares method. The obtained corresponding residuals showed that the applied component spectra were satisfactory. The deconvoluted signals of cytochromes c-554 and b-563 differed in some cases significantly from the classical dual-wavelength signals recording at 554–545 nm and 563–575 (or −572) nm, due to interference from other electron-transferring components. KCN, DNP-INT (2-iodo-6-isopropyl-3-methyl-2′,4,4′-trinitrodiphenyl ether), DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzo-quinone) and antimycin A all inhibited electron transfer, although antimycin and DBMIB inhibited only after a few turnovers of the cytochrome bf complex. Fast flash-induced reduction of cytochrome b-563 exclusively reflected oxidant-induced reduction. Fast electron flow from cytochrome c-554 to plastocyanin and P-700 resulted in an apparent rereduction of cytochrome c-554 that was slower than the reduction of cytochrome b-563. Model simulations indicate that under highly oxidizing conditions for the Rieske FeS centre and reducing conditions for cytochrome b-563, the semiquinone at the Qz site cannot only reduce cytochrome b-563, but can also oxidize cytochrome b-563 and reduce the Rieske FeS centre. The effect of 10 μM gramicidin D was evaluated in order to determine the contributions by electrochromic absorption changes around 518 nm. Gramicidin left electron transfer, monitored in the 550–600 nm range, unchanged. The gramicidin-sensitive (membrane potential-associated) signal at 518 nm differed from the signals recorded in the absence of gramicidin at 518 nm or 518–545 nm, due to spectral interference from electron-transferring components in the latter signals. KCN, DBMIB and antimycin A affected both the fast and slow components of the electrochromic signal, but did not proportionally affect the initial electron transfer from P-700 to ferredoxin (charge separation in PS I). Not only the slow (10–100 ms) component of the 518 nm absorption change, but also part of the fast (less than 1 ms) component appears to minitor electrogenic events in the cytochrome bf complex.  相似文献   

2.
1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutant. A similar reoxidation is observed in the wild type in the presence of low concentrations of antimycin.

2. In contrast to the wild type, inhibition of electron transport in the mutant has a much higher antimycin titre than effects on cytochromes b (viz., aerobic steadystate reduction; reduction in the presence of substrate, cyanide and oxygen; the ‘red shift’ and lowering of E0 of cytochrome b-562). Moreover, the titration curve of electron transport is hyperbolic whereas the curves for the reduction are sigmoidal. The conclusion is, that in both mutant and wild type, the actions of antimycin on electron transport and cytochromes b are separable.

3. The red shift in the mutant is more extensive than in the wild type.

4. Cytochrome b-558 and cytochrome b-566 (that absorbs in mutant and wild type at 564.5 nm) do not respond simultaneously to addition of antimycin, indicating that they are two separate cytochromes.

5. The difference between the effect of antimycin on electron transport and cytochromes b reduction is also found in intact cells of the mutant.

6. A model is suggested for the wild-type respiratory chain in which (i) the cytochromes b lie, in an uncoupled system, out of the main electron-transfer chain, (ii) antimycin induces a conformation change in QH2-cytochrome c reductase resulting in effects on cytochrome b and inhibition of electron transport, (iii) a second antimycinbinding site with low affinity to the antibiotic is present, capable of inhibiting electron transport.  相似文献   


3.
S.C. Huber  G.E. Edwards   《BBA》1976,449(3):420-433
1. Cyclic photophosphorylation driven by white light, as followed by 14CO2 fixation by mesophyll chloroplast preparations of the C4 plant Digitaria sanguinalis, was specifically inhibited by disalicylidenepropanediamine (DSPD), antimycin A, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIb), 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDAC), and KCN suggesting that ferredoxin, cytochrome b563, plastoquinone, cytochrome f, and plastocyanin are obligatory intermediates of cyclic electron flow. It was found that 0.2 μM DCMU and 40 μM o-phenanthroline blocked noncyclic electron flow, stimulated cyclic photophosphorylation, and caused a partial reversal (40–100%) of the inhibition by DBMIB and antimycin A, but not DSPD.

2. Cyclic photophosphorylation could also be activated using only far-red illumination. Under this condition, however, cyclic photophosphorylation was much less sensitive to the inhibitors DBMIB, EDAC and antimycin A, but remained completely sensitive to DSPD and KCN. Inhibition in far-red light was not increased by preincubating the chloroplasts with the various inhibitors for several minutes in white light.

3. The striking correspondence between the effects of photosystem II inhibitors, DCMU and o-phenanthroline, on cyclic photophosphorylation under white light and cyclic photophosphorylation under far-red light (in the absence of photosystem II inhibitors) suggests that electrons flowing from photosystem II may regulate the pathway of cyclic electron flow.  相似文献   


4.
I. Y. Lee  E. C. Slater 《BBA》1972,283(3):395-402
Under anaerobic conditions cytochrome b in beef-heart mitochondria is partially reduced in the presence of NADH, whereas other cytochromes are completely reduced. Addition of antimycin together with oxygen under these conditions causes an immediate reduction of cytochromes b-558, b-562 and b-566 and oxidation of cytochrome c. During the subsequent transient aerobic steady state cytochromes b-558 and b-566 are rapidly re-oxidized without changes in redox state of cytochrome c, but cytochrome b-562 remains reduced. When oxygen is consumed by the leak through or around the antimycin-inhibition site, cytochrome b-562 becomes oxidized with concomitant reduction of cytochrome c.

The cytochromes b in lyophilized beef-heart mitochondria are more readily accessible to electrons from NADH, and in the presence of antimycin and NADH a complete and stable reduction is obtained under both aerobic and anaerobic conditions. Gradual addition of rotenone under these conditions causes re-oxidation of cytochromes b in which oxidation of cytochromes b-558 and b-566 precedes that of cytochrome b-562.

It is concluded that (1) the effect of antimycin in the presence of oxygen involves all three cytochromes b, (2) the reducibility of the cytochromes b in the aerobic steady state of antimycin-treated mitochondria is dependent upon the potential of the substrate redox couple registered on the cytochromes, and (3) the midpoint potential of cytochrome b-562 in the presence of antimycin is higher than that of cytochrome b-558 or b-566.  相似文献   


5.
A.N. Malviya  A. Rendon  D. Aunis 《FEBS letters》1983,160(1-2):153-158
Cytochrome b-561 in chromaffin granules interacts with antimycin and its -peak shifts 1 nm towards red. When chromaffin granules were treated with Triton X-100 antimycin no effect was observed. Cytochrome b-561 is located in the plasma membrane isolated from the chromaffin cells. The plasma membrane b-561 does not seem to interact with antimycin. A number of NADH or NADPH (acceptor) oxidoreductase activity has been observed in isolated plasma membrane providing clues to the origin of plasma membrane dehydrogenase. The possible role of cytochrome b561 in secretory granules other than its accredited energy conserving electron transport property is projected.  相似文献   

6.
1. Light-induced absorbance changes of cytochrome b-559 and cytochrome f in the -band region were examined in leaves and in isolated chloroplasts.

2. Absorbance changes of cytochrome b-559 were not detected in untreated leaves or in most preparations of isolated chloroplasts. After treatment of leaves or chloroplasts with carbonyl cyanide m-chlorophenylhydrazone, high rates of photooxidation of cytochrome b-559 were obtained, both in far-red (>700 nm) and red actinic light. Cytochrome f was photooxidized in far-red light, but in red light it remained mainly in the reduced state. The initial rates of photooxidation of cytochrome b-559 in leaves or chloroplasts treated with carbonyl cyanide m-chlorophenylhydrazone were considerably decreased by 3-(3′,4′-dichlorophenyl)-1,1-dimethyl urea.

3. A slow photoreduction of cytochrome b-559 was observed in aged mutant pea chloroplasts in red light.

4. The results do not support the view that cytochrome b-559 is a component of the electron transport chain between the light reactions. It is suggested that cytochrome b-559 is located on a side path from Photosystem II, but with a possible additional link to Photosystem I.  相似文献   


7.
Oxygen ist reduced by the electron transport chain of chloroplasts during CO2 reduction. The rate of electron flow to oxygen is low. Since antimycin A inhibited CO2-dependent oxygen evolution, it is concluded that cyclic photophosphorylation contributes ATP to photosynthesis in chloroplasts which cannot satisfy the ATP requirement of CO2 reduction by electron flow to NADP and to oxygen. Inhibition of photosynthesis by antimycin A was more significant at high than at low light intensities suggesting that cyclic photophosphorylation contributes to photosynthesis particularly at high intensities. Cyclic electron flow in intact chloroplasts is under the control of electron acceptors. At low light intensities or under far-red illumination it is decreased by substrates which accept electrons from photosystem I such as oxaloacetate, nitrite or oxygen. Obviously, the cyclic electron transport pathway is sensitive to electron drainage. In the absence of electron acceptors, cyclic electron flow is supported by far-red illumination and inhibited by red light. The inhibition by light exciting photosystem II demonstrated that the cyclic electron transport pathway is accessible to electrons from photosystem II. Inhibition can be relieved by oxygen which appears to prevent over-reduction of electron carriers of the cyclic pathway and thus has an important regulatory function. The data show that cyclic electron transport is under delicate redox control. Inhibition is caused both by excessive oxidation and by over-reduction of electron carriers of the pathway.  相似文献   

8.
M  rten K. F. Wikstr  m  Jan A. Berden 《BBA》1972,283(3):403-420
1. The effect of oxidizing equivalents on the redox state of cytochrome b in the presence of antimycin has been studied in the presence and absence of various redox mediators.

2. The antimycin-induced extra reduction of cytochrome b is always dependent on the initial presence of an oxidant such as oxygen. After removal of the oxidant this effect remains or is partially (under some conditions even completely) abolished depending on the redox potential of the substrate used and the leak through the antimycin-inhibited site.

3. The increased reduction of cytochrome b induced by oxidant in the presence of antimycin involves all three spectroscopically resolvable b components (b-562, b-566 and b-558.

4. Redox mediators with an actual redox potential of less than 100–170 mV cause the oxidation of cytochrome b reduced under the influence of antimycin and oxidant.

5. Redox titrations of cytochrome b with the succinate/fumarate couple were performed aerobically in the presence of cyanide. In the presence of antimycin two b components are separated potentiometrically, one with an apparent midpoint potential above 80 mV (at pH 7.0), outside the range of the succinate/fumurate couple, and one with an apparent midpoint potential of 40 mV and an n value of 2. In the absence of antimycin cytochrome b titrates essentially as one species with a midpoint potential of 39 mV (at pH 7.0) and n = 1.14.

6. The increased reducibility of cytochrome b induced by antimycin plus oxidant is considered to be the result of two effects: inhibition of oxidation of ferrocytochrome b by ferricytochrome c1 (the effect of antimycin), and oxidation of the semiquinone form of a two-equivalent redox couple such as ubiquinone/ubiquinol by the added oxidant, leading to a decreased redox potential of the QH2/QH couple and reduction of cytochrome b.  相似文献   


9.

1. 1. Difference spectra of whole cells and of a particulate fraction of a streptomycin-bleached strain of Euglena gracilis showed the presence of a b-type cytochrome, cytochrome b (561 Euglena), and an a-type cytochrome, cytochrome a-type (609 Euglena). The cytochromes were characterized by pyridine hemochromogen formation and were found associated with a particulate fraction enriched with mitochondria.

2. 2. Both b-type and a-type cytochromes were reduced by succinate, oxidized by oxygen and reacted with a soluble c-type cytochrome, cytochrome c-type (556 Euglena), in reversible oxidation-reduction reactions. The steady-state level of reduction for each cytochrome was 92, 22 and 5% of the anaerobic level for the b-type, c-type and a-type cytochrome, respectively.

3. 3. Oxidation of c-type and a-type cytochromes was completely inhibited by cyanide, although respiration of a particulate fraction was only 60% inhibited by the same concentration of cyanide. Antimycin A inhibited respiration by up to 70% but completely inhibited reduction of the c-type cytochrome.

4. 4. The data suggest that electron transfer in the respiratory pathway of Euglena involves the b-, c- and a-type cytochrome in a direct sequence. The cyanide and antimycin A-insensitive oxidation pathway is considered to involve a more direct oxidation of the b-type cytochrome.

Abbreviations: STE medium, 250 mM sucrose, 24 mM Tris-HCI buffer (pH 7.6) and 0.1 mM EDTA  相似文献   


10.
The effect of antimycin on (i) the respiratory activity of the KCN-insensitive pathway of mitochondria of Neurospora grown on chloramphenicol (chloramphenicol-grown) with durohydroquinone and succinate or NADH as substrate, (ii) the electron transfer from the b-type cytochromes to ubiquinone with durohydroquinone as electron donor as well as (iii) the electron transfer from the b-type cytochromes to duroquinone with succinate as electron donor in chloramphenicol-grown Neurospora and beef heart submitochondrial particles was studied. All experiments were performed in the uncoupled state. 1. The respiratory chain of chloramphenicol-grown Neurospora mitochondria branches at ubiquinone into two pathways. Besides the cytochrome oxidase-dependent pathway, a KCN-insensitive branch equiped with a salicylhydroxamate-sensitive oxidase exists. Durohydroquinone, succinate or NADH are oxidized via both pathways. The durohydroquinone oxidation via the KCN-insensitive pathway is inhibited by antimycin, wheras the succinate or NADH oxidation is not. The titer for ful inhibition is one mol antimycin per mol cytochrome b-563 or cytochrome b-557. 2. The electron transfer from durohydroquinone to ubiquinone, which takes place in the KCN-inhibited state, does not occur in the antimycin-inhibited state. 3. The reduction of duroquinone by succinate in the presence of KCN is inhibited by antimycin. The titer for full inhibition is one mol antimycin per mol cytochrome b-566 or cytochrome b-562 for beef heart (or cytochrome b-563 or cytochrome b-557 for Neurospora). 4. When electron transfer from the b-type cytochromes to cytochrome C1, ubiquinone and duroquinone is inhibited by antimycin, the hemes of cytochrome b-566 and cytochrome b-562 (or cytochrome b-563 and cytochrome b-557) are in the reduced state. 5. The experimental results suggest that the two b-type cytochromes form a binary complex the electron transferring activity of which is inhibited by antimycin, the titer for full inhibition being one mol of antimycin per mol of complex. The electron transfer from the b-type cytochromes to ubiquinone is inhibited in a non-linear fashion.  相似文献   

11.
The triorganotin compounds triphenyltin chloride and tributyltin chloride have been known as inhibitors of the transmembrane proton channel forming F0-domain of ATPases at micromolar concentrations. We show that these compounds at higher concentrations (10–100 µM) also inhibit uncoupled electron transport in chloroplasts within the low potential chain of the cytochrome bf complex. They cause high levels of transiently reduced cytochrome b563 as they decelerate the reoxidation process in flash illuminated chloroplasts. At the same time they slow down the flash induced slow electrogenic step generated at the cytochrome bf complex. The inhibitory effect of triphenyltin chloride on cytochrome b563 turnover in chloroplasts is comparable to that of the Qn-inhibitor MOA-stilbene, with even less side effects on the high potential chain. Studies on the isolated bf complex suggest different binding sites for triorganotins and the quinone analogue type Qn-inhibitors. The results are interpreted within the framework of the modified Q-cycle model by a putative organotin sensitive proton translocating site which enables proton transfer from the outer aqueous face of the membrane to the hydrophobic quinone reduction site within the complex. Hence, cytochrome b563 oxidation and plastoquinone reduction may be inhibited as a consequence of proton transfer being suppressed by triorganotins. In analogy, the previously described inhibitory effect of Val/K+ at the n-side of the cytochrome bf complex [Klughammer and Schreiber (1993) FEBS 336: 491–495] may be rationalised by binding of the cyclic depsipeptide at the entrance of the proton path to the Qn-site.  相似文献   

12.
The effects of two molecular forms of water-soluble ferredoxin (Fd I and Fd II) on the kinetics of electron transport in bean chloroplasts (class B) were studied. The light-induced redox transitions of the photosystem I reaction center P700 were measured by the intensity of the EPR signal I produced by P700+. Both forms of ferredoxin, Fd I and Fd II, when added to the chloroplasts in catalytic amounts, stimulate the light-induced electron transfer from P700 to NADP+. Nevertheless, Fd I is a better mediator of the back reactions from NADPH to P700+. This electron transfer pathway is sensitive to the cyclic electron transport inhibitor, antimycin A, and to DCMU inhibitor of electron transport between photosystem II and plastoquinone. It may be concluded that the two molecular forms of ferredoxin, Fd I and Fd II, differ in their ability to catalyze cyclic electron transport in photosystem I. The role of Fd I and Fd II in regulation of electron transport at the acceptor site of photosystem I is discussed.  相似文献   

13.
The cytochrome bc complexes found in mitochondria, chloroplasts and many bacteria play critical roles in their respective electron transport chains. The quinol oxidase (Q(o)) site in this complex oxidizes a hydroquinone (quinol), reducing two one-electron carriers, a low potential cytochrome b heme and the "Rieske" iron-sulfur cluster. The overall electron transfer reactions are coupled to transmembrane translocation of protons via a "Q-cycle" mechanism, which generates proton motive force for ATP synthesis. Since semiquinone intermediates of quinol oxidation are generally highly reactive, one of the key questions in this field is: how does the Q(o) site oxidize quinol without the production of deleterious side reactions including superoxide production? We attempt to test three possible general models to account for this behavior: 1) The Q(o) site semiquinone (or quinol-imidazolate complex) is unstable and thus occurs at a very low steady-state concentration, limiting O(2) reduction; 2) the Q(o) site semiquinone is highly stabilized making it unreactive toward oxygen; and 3) the Q(o) site catalyzes a quantum mechanically coupled two-electron/two-proton transfer without a semiquinone intermediate. Enthalpies of activation were found to be almost identical between the uninhibited Q-cycle and superoxide production in the presence of antimycin A in wild type. This behavior was also preserved in a series of mutants with altered driving forces for quinol oxidation. Overall, the data support models where the rate-limiting step for both Q-cycle and superoxide production is essentially identical, consistent with model 1 but requiring modifications to models 2 and 3.  相似文献   

14.
Three types of b cytochromes are demonstrated in Candida utilis mitochondria. One of these b cytochromes has a symmetrical -band at 561.5 nm at room temperature. This b cytochrome is readily reduced either by anaerobiosis or by cyanide treatment in the presence of glycerol 1-phosphate or succinate both in coupled and uncoupled mitochondria. The second b cytochrome has a double -band at 565 nm and 558 nm. This b cytochrome is readily reduced either by anaerobiosis or by cyanide treatment in the presence of glycerol 1-phosphate or succinate in coupled mitochondria, but in uncoupled mitochondria it is slowly reduced after anaerobiosis and this reduction rate is enhanced by antimycin A addition. Thus the oxidation-reduction state of this cytochrome is energy dependent. The first cytochrome is spectroscopically identified as cytochrome bK and the second as cytochrome bT. The third b cytochrome has an -band around 563 nm (b563) and is reduced slowly after anaerobiosis in uncoupled mitochondria but faster than the bT. Further properties of this component are not known. Midpoint potentials of cytochromes bT, b563 and bK are approximately −50 mV, +5 mV, and +65 mV, respectively.

In intact cells, cytochrome bT is reduced immediately after anaerobiosis or cyanide treatment, and rapidly oxidized when uncoupler is added. Addition of antimycin A instead of uncoupler to the anaerobic cells causes oxidation of mainly cytochrome bT while addition of antimycin A to the aerobic cells results in a reduction of the cytochrome bT.  相似文献   


15.
Myxothiazol inhibited oxygen consumption of beef heart mitochondria in the presence and absence of 2,4-dinitrophenol, as well as NADH oxidation by submitochondrial particles. The doses required for 50% inhibition were 0.58 mol myxothiazol/mol cytochrome b for oxygen consumption of beef heart mitochondria, and 0.45 mol/mol cytochrome b for NADH oxidation by submitochondrial particles. Difference spectra with beef heart mitochondria and with cell suspensions of Saccharomyces cerevisiae revealed that myxothiazol blocked the electron transport within the cytochrome b-c1 segment of the respiratory chain. Myxothiazol induced a spectral change in cytochrome b which was different from and independent of the shift induced by antimycin. Myxothiazol did not give the extra reduction of cytochrome b typical for antimycin. Studies on the effect of mixtures of myxothiazol and antimycin on the inhibition of NADH oxidation indicated that the binding sites of the two inhibitors are not identical.  相似文献   

16.
Shigeru Itoh 《BBA》1980,593(2):212-223
1. Electrogenic steps in photosynthetic cyclic electron transport in chromatophore membrane of Chromatium vinosum were studied by measuring absorption changes of added merocyanin dye and of intrinsic carotenoid.

2. The change in dye absorbance was linear with the membrane potential change induced either by light excitation or by application of diffusion potential by adding valinomycin in the presence of K+ concentration gradient.

3. It was estimated that chromatophore membrane became 40–60 mV and 110–170 mV inside positive upon single and multiple excitations with single-turnover flashes, respectively, from the responses of the dye and the carotenoid.

4. Electron transfers between cytochrome c-555 or c-552 and reaction center bacteriochlorophyll dimer (BChl2) and between BChl2 and the primary electron acceptor were concluded to be electrogenic from the redox titration of the dye response.

5. No dye response which corresponded to the change of redox level of cytochrome b was observed in the titration curve. Addition of antimycin A slightly decreased the dye response.

6. The dye response was decreased under phosphorylating conditions.

7. From the results obtained localization of the electron transfer components in chromatophore membrane is discussed.  相似文献   


17.
Intact spinach chloroplasts, capable of high rates of photochemical oxygen evolution with CO2 as electron acceptor (120-350 mumol O2 mg chlorophyll-1 h-1) were examined for cytochrome redox changes. The response of the cytochromes in intact chloroplasts to oxidants and reductants appears to be governed by the permeability of the chloroplast envelope. The low potential cytochromes (b-559LP and b-563) were more slowly reduced at 25 degrees C by dithionite than is the case with broken chloroplasts. At 0 degrees C, the reduction of the low potential cytochromes in intactchloroplasts was extremely slow. The chloroplast envelope is impermeable to ferricyanide, slowly permeable to ascorbate and rapidly permeable to reduced dichlorophenolindophenol. Light-induced redox changes of cytochrome b-563 in intact chloroplasts were examined both at 0 degrees and 25 degrees C. A red/far-red antagonism on the redox changes of cytochrome b-563 was observed at 0 degrees C under anaerobic conditions. 3-(3,4-dichlorophenyl)-1, 1-dimethlyurea (DCMU) inhibited the photoreduction of cytochrome b-563 in red light following far-red illumination. The photooxidation of cytochrome b-563 under anaerobic conditions was not influenced by DCMU or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). The photoreduction of cytochrome b-563 under aerobic conditions was much less efficient than its photooxidation under anaerobic conditions. Developing pea chloroplasts showed much greater light-induced redox changes of cytochrome b-563 than did intact spinach chloroplasts. Our data are consistent with the view that cytochrome b-563 functions on a cyclic pathway around Photosystem I, but it appears that cyclic flow is sensitive to the relative poising of the redox levels of cytochrome b-563 and the components of the non-cylic pathway.  相似文献   

18.
Wieckowski  S.  Bojko  M. 《Photosynthetica》1998,34(4):481-496
The NADPH-dependent reduction of some photosynthetic electron carriers in the dark, and the reduction of NADP+ associated with the glycolytic sequence and the oxidative pentose phosphate pathway in chloroplasts are reviewed. The postulated pathways of electron transports sensitive and insensitive to antimycin A are also evaluated. It is proposed that the electron flow, predominantly through cytochrome bf complex, may be also involved in the pathway of NADPH-dependent and antimycin A-insensitive back electron transport. An information on the chlororespiration in higher plants is also included.  相似文献   

19.
Roy Powls  J. Wong  Norman I. Bishop 《BBA》1969,180(3):490-499
To investigate the possible alteration of various components of the photosynthetic electron transport system of certain mutants of Scenedesmus techniques were developed for their extraction and purification from whole cells of this alga. The components identified in the normal alga were cytochrome c 549, cytochrome b 562, a cytochrome c 551, flavoprotein-ferredoxin reductase, plastocyanin, cytochrome c 552, and ferredoxin. Lamellar-bound cytochrome c 552 and cytochromes b were also detected. Application of the extraction and purification techniques to two photosynthetic mutants revealed that Mutants 26 and 50 lacked cytochrome f in both the bound and soluble forms (Mutant 50) or in only the bound form (Mutant 26). Chloroplasts prepared from either of these mutants lacked Hill reaction activity with a variety of oxidants with water as the electron donor but photoreduced NADP+ with 2,6-dichlorophenolindophenol and ascorbate as the electron donor system. No photophosphorylation in vivo was detected with either mutant, but isolated chloroplasts performed a cyclic photophosphorylation with phenazine methosulphate as cofactor. Fluorescence analysis revealed that both mutants possess a measurable Photosystem II activity.

It was concluded that the loss of cytochrome f prevents the normal flow of electrons from Photosystem II to NADP and also to a variety of other Hill reaction oxidants. Furthermore, cytochrome f is not required for the reduction of NADP with electron donor systems other than water nor is it an essential component of the mechanism of cyclic photophosphorylation with phenazine methosulphate as cofactor.  相似文献   


20.
The spectroscopic measurements of the slow phase of the electrochromic effect and the redox kinetics of cytochrome b6 and f provide strong evidence that a Q cycle operates in chloroplasts under conditions of non-cyclic electron transport. The effect of HQNO and DBMIB on the extent and kinetics of these light-induced changes places several constraints on the mechanism of quinol oxidation by the cyt. b/f—FeS complex: for each electron removed from the cyt. b/f—FeS complex by P700 an additional charge is transferred across the membrane; the cyclic pathway of electrons involved in quinol oxidation by the cyt. b/f—FeS complex includes at least one of the two b6 cytochromes; the electrogenic step associated with quinol oxidation is subsequent to the reduction of at least one cytochrome b6 quinol oxidation may proceed in a stepwise manner, with the first electron going to cytochrome b6 and the second electron going to the FeS center and cytochrome f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号