首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ma Y  Pannicke U  Schwarz K  Lieber MR 《Cell》2002,108(6):781-794
Mutations in the Artemis protein in humans result in hypersensitivity to DNA double-strand break-inducing agents and absence of B and T lymphocytes (radiosensitive severe combined immune deficiency [RS-SCID]). Here, we report that Artemis forms a complex with the 469 kDa DNA-dependent protein kinase (DNA-PKcs) in the absence of DNA. The purified Artemis protein alone possesses single-strand-specific 5' to 3' exonuclease activity. Upon complex formation, DNA-PKcs phosphorylates Artemis, and Artemis acquires endonucleolytic activity on 5' and 3' overhangs, as well as hairpins. Finally, the Artemis:DNA-PKcs complex can open hairpins generated by the RAG complex. Thus, DNA-PKcs regulates Artemis by both phosphorylation and complex formation to permit enzymatic activities that are critical for the hairpin-opening step of V(D)J recombination and for the 5' and 3' overhang processing in nonhomologous DNA end joining.  相似文献   

2.
Artemis protein has irreplaceable functions in V(D)J recombination and nonhomologous end joining (NHEJ) as a hairpin and 5' and 3' overhang endonuclease. The kinase activity of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is necessary in activating Artemis as an endonuclease. Here we report that three basal phosphorylation sites and 11 DNA-PKcs phosphorylation sites within the mammalian Artemis are all located in the C-terminal domain. All but one of these phosphorylation sites deviate from the SQ or TQ motif of DNA-PKcs that was predicted previously from in vitro phosphorylation studies. Phosphatase-treated mammalian Artemis and Artemis that is mutated at the three basal phosphorylation sites still retain DNA-PKcs-dependent endonucleolytic activities, indicating that basal phosphorylation is not required for the activation. In vivo studies of Artemis lacking the C-terminal domain have been reported to be sufficient to complement V(D)J recombination in Artemis null cells. Therefore, the C-terminal domain may have a negative regulatory effect on the Artemis endonucleolytic activities, and phosphorylation by DNA-PKcs in the C-terminal domain may relieve this inhibition.  相似文献   

3.
During V(D)J recombination, the RAG1 and RAG2 proteins form a complex and initiate the process of rearrangement by cleaving between the coding and signal segments and generating hairpins at the coding ends. Prior to ligation of the coding ends by DNA ligase IV/XRCC4, these hairpins are opened by the ARTEMIS/DNA-PKcs complex. ARTEMIS, a member of the metallo-beta-lactamase superfamily, shares several features with other family members that act on nucleic acids. ARTEMIS exhibits exonuclease and, in concert with DNA-PKcs, endonuclease activities. To characterize amino acids essential for its catalytic activities, we mutated nine evolutionary conserved histidine and aspartic acid residues within ARTEMIS. Biochemical analyses and a novel in vivo V(D)J recombination assay allowed the identification of eight mutants that were defective in both overhang endonucleolytic and hairpin-opening activities; the 5' to 3' exonuclease activity of ARTEMIS, however, was not impaired by these mutations. These results indicate that the hairpin-opening activity of ARTEMIS and/or its overhang endonucleolytic activity are necessary but its exonuclease activity is not sufficient for the process of V(D)J recombination.  相似文献   

4.
V(D)J recombination events are initiated by cleavage at gene segments by the RAG1:RAG2 complex, which results in hairpin formation at the coding ends. The hairpins are opened by the Artemis:DNA-PKcs complex, and then joined via the nonhomologous DNA end joining (NHEJ) process. Here we examine the opening of the hairpinned coding ends from all of the 39 functional human VH elements. We find that there is some sequence-dependent variation in the efficiency and even the position of hairpin opening by Artemis:DNA-PKcs. The hairpin opening efficiency varies over a 7-fold range. The hairpin opening position varies over the region from 1 to 4 nt 3′ of the hairpin tip, leading to a 2–8 nt single-stranded 3′ overhang at each coding end. This information provides greater clarity on the extent to which the hairpin opening position contributes to junctional diversification in V(D)J recombination.  相似文献   

5.
Human nuclease Artemis belongs to the metallo-beta-lactamase protein family. It acquires double-stranded DNA endonuclease activity in the presence of DNA-PKcs. This double-stranded DNA endonuclease activity is critical for opening DNA hairpins in V(D)J recombination and is thought to be important for processing overhangs during the nonhomologous DNA end joining (NHEJ) process. Here we show that purified human Artemis exhibits single-stranded DNA endonuclease activity. This activity is proportional to the amount of highly purified Artemis from a gel filtration column. The activity is stimulated by DNA-PKcs and modulated by purified antibodies raised against Artemis. Moreover, the divalent cation-dependence and sequence-dependence of this single-stranded endonuclease activity is the same as the double-stranded DNA endonuclease activity of Artemis:DNA-PKcs. These findings further expand the range of DNA substrates upon which Artemis and Artemis:DNA-PKcs can act. The findings are discussed in the context of NHEJ.  相似文献   

6.
Radiosensitive severe combined immune deficiency in humans results from mutations in Artemis, a protein which, when coupled with DNA-dependent protein kinase catalytic subunit (DNA-PKcs), possesses DNA hairpin-opening activity in vitro. Here, we report that Artemis-deficient mice have an overall phenotype similar to that of DNA-PKcs-deficient mice-including severe combined immunodeficiency associated with defects in opening and joining V(D)J coding hairpin ends and increased cellular ionizing radiation sensitivity. While these findings strongly support the notion that Artemis functions with DNA-PKcs in a subset of NHEJ functions, differences between Artemis- and DNA-PKcs-deficient phenotypes, most notably decreased fidelity of V(D)J signal sequence joining in DNA-PKcs-deficient but not Artemis-deficient fibroblasts, suggest additional functions for DNA-PKcs. Finally, Artemis deficiency leads to chromosomal instability in fibroblasts, demonstrating that Artemis functions as a genomic caretaker.  相似文献   

7.
Pathologic chromosome breaks occur in human dividing cells ~10 times per day, and physiologic breaks occur in each lymphoid cell many additional times per day. Nonhomologous DNA end joining (NHEJ) is the major pathway for the repair of all of these double-strand breaks (DSBs) during most of the cell cycle. Nearly all broken DNA ends require trimming before they can be suitable for joining by ligation. Artemis is the major nuclease for this purpose. Artemis is tightly regulated by one of the largest protein kinases, which tethers Artemis to its surface. This kinase is called DNA-dependent protein kinase catalytic subunit (or DNA-PKcs) because it is only active when it encounters a broken DNA end. With this activation, DNA-PKcs permits the Artemis catalytic domain to enter a large cavity in the center of DNA-PKcs. Given this remarkably tight supervision of Artemis by DNA-PKcs, it is an appropriate time to ask what we know about the Artemis:DNA-PKcs complex, as we integrate recent structural information with the biochemistry of the complex and how this relates to other NHEJ proteins and to V(D)J recombination in the immune system.  相似文献   

8.
The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps   总被引:1,自引:0,他引:1  
Ma Y  Schwarz K  Lieber MR 《DNA Repair》2005,4(7):845-851
In eukaryotic cells, nonhomologous DNA end joining (NHEJ) is a major pathway for repair of double-strand DNA breaks (DSBs). Artemis and the 469kDa DNA-dependent protein kinase (DNA-PKcs) together form a key nuclease for NHEJ in vertebrate organisms. The structure-specific endonucleolytic activity of Artemis is activated by binding to and phosphorylation by DNA-PKcs. We tested various DNA structures in order to understand the range of structural features that are recognized by the Artemis:DNA-PKcs complex. We find that all tested substrates that contain single-to-double-strand transitions can be cleaved by the Artemis:DNA-PKcs complex near the transition region. The cleaved substrates include heterologous loops, stem-loops, flaps, and gapped substrates. Such versatile activity on single-/double-strand transition regions is important in understanding how reconstituted NHEJ systems that lack DNA polymerases can join incompatible DNA ends and yet preserve 3' overhangs. Additionally, the flexibility of the Artemis:DNA-PKcs nuclease may be important in removing secondary structures that hinder processing of DNA ends during NHEJ.  相似文献   

9.
Artemis is a nuclear phosphoprotein required for genomic integrity whose phosphorylation is increased subsequent to DNA damage. Artemis phosphorylation by the DNA-dependent protein kinase (DNA-PK) and the association of Artemis with DNA-PK catalytic subunit (DNA-PKcs) have been proposed to be crucial for the variable, diversity, joining (V(D)J) reaction, genomic stability and cell survival in response to double-stranded DNA breaks. The exact nature of the effectors of Artemis phosphorylation is presently being debated. Here, we have delimited the interface on Artemis required for its association with DNA-PKcs and present the characterization of six DNA-PK phosphorylation sites on Artemis whose phosphorylation shows dependence on its association with DNA-PKcs and is induced by double-stranded DNA damage. Surprisingly, DNA-PKcs Artemis association appeared to be dispensable in a V(D)J recombination assay with stably integrated DNA substrates. Phosphorylation at two of the sites on Artemis, S516 and S645, was verified in vivo using phosphospecific antibodies. Basal Artemis S516 and S645 phosphorylation in vivo showed a significant dependence on DNA-PKcs association. However, regardless of its association with DNA-PKcs, phosphorylation of Artemis at both S516 and S645 was stimulated in response to the double-stranded DNA-damaging agent bleomycin, albeit to a lesser extent. This suggests that additional factors contribute to promote DNA damage-induced Artemis phosphorylation. Intriguingly, pS516/pS645 Artemis was concentrated in chromatin-associated nuclear foci in na?ve cells. These foci were maintained upon DNA damage but failed to overlap with the damage-induced gammaH2AX. These results provide the expectation of a specific role for DNA-PK-phosphorylated Artemis in both na?ve and damaged cells.  相似文献   

10.
V(D)J recombination is one of the most complex DNA transactions in biology. The RAG complex makes double-stranded breaks adjacent to signal sequences and creates hairpin coding ends. Here, we find that the kinase activity of the Artemis:DNA-PKcs complex can be activated by hairpin DNA ends in cis, thereby allowing the hairpins to be nicked and then to undergo processing and joining by nonhomologous DNA end joining. Based on these insights, we have reconstituted many aspects of the antigen receptor diversification of V(D)J recombination by using 13 highly purified polypeptides, thereby permitting variable domain exon assembly by using this fully defined system in accord with the 12/23 rule for this process. The features of the recombination sites created by this system include all of the features observed in vivo (nucleolytic resection, P nucleotides, and N nucleotide addition), indicating that most, if not all, of the end modification enzymes have been identified.  相似文献   

11.
DNA-PK autophosphorylation facilitates Artemis endonuclease activity   总被引:1,自引:0,他引:1  
The Artemis nuclease is defective in radiosensitive severe combined immunodeficiency patients and is required for the repair of a subset of ionising radiation induced DNA double-strand breaks (DSBs) in an ATM and DNA-PK dependent process. Here, we show that Artemis phosphorylation by ATM and DNA-PK in vitro is primarily attributable to S503, S516 and S645 and demonstrate ATM dependent phosphorylation at serine 645 in vivo. However, analysis of multisite phosphorylation mutants of Artemis demonstrates that Artemis phosphorylation is dispensable for endonuclease activity in vitro and for DSB repair and V(D)J recombination in vivo. Importantly, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) autophosphorylation at the T2609-T2647 cluster, in the presence of Ku and target DNA, is required for Artemis-mediated endonuclease activity. Moreover, autophosphorylated DNA-PKcs stably associates with Ku-bound DNA with large single-stranded overhangs until overhang cleavage by Artemis. We propose that autophosphorylation triggers conformational changes in DNA-PK that enhance Artemis cleavage at single-strand to double-strand DNA junctions. These findings demonstrate that DNA-PK autophosphorylation regulates Artemis access to DNA ends, providing insight into the mechanism of Artemis mediated DNA end processing.  相似文献   

12.
The Artemis nuclease is required for V(D)J recombination and for repair of an as yet undefined subset of radiation-induced DNA double strand breaks. To assess the possibility that Artemis acts on oxidatively modified double strand break termini, its activity toward model DNA substrates, bearing either 3'-hydroxyl or 3'-phosphoglycolate moieties, was examined. A 3'-phosphoglycolate had little effect on Artemis-mediated trimming of long 3' overhangs (> or =9 nucleotides), which were efficiently trimmed to 4-5 nucleotides. However, 3'-phosphoglycolates on overhangs of 4-5 bases promoted Artemis-mediated removal of a single 3'-terminal nucleotide, while at least 2 nucleotides were trimmed from identical hydroxyl-terminated substrates. Artemis also efficiently removed a single nucleotide from a phosphoglycolate-terminated 3-base 3' overhang, while leaving an analogous hydroxyl-terminated overhang largely intact. Such removal was completely dependent on DNA-dependent protein kinase and ATP and was largely dependent on Ku, which markedly stimulated Artemis activity toward all 3' overhangs. Together, these data suggest that efficient Artemis-mediated cleavage of 3' overhangs requires a minimum of 2 nucleotides, or a nucleotide plus a phosphoglycolate, 3' to the cleavage site, as well as 2 unpaired nucleotides 5' to the cleavage site. Shorter 3'-phosphoglycolate-terminated overhangs and blunt ends were also processed by Artemis but much more slowly. Consistent with a role for Artemis in repair of terminally blocked double strand breaks in vivo, human cells lacking Artemis exhibited hypersensitivity to x-rays, bleomycin, and neocarzinostatin, which all induce 3'-phosphoglycolate-terminated double strand breaks.  相似文献   

13.
Previous work showed that, in the presence of DNA-dependent protein kinase (DNA-PK), Artemis slowly trims 3′-phosphoglycolate-terminated blunt ends. To examine the trimming reaction in more detail, long internally labeled DNA substrates were treated with Artemis. In the absence of DNA-PK, Artemis catalyzed extensive 5′→3′ exonucleolytic resection of double-stranded DNA. This resection required a 5′-phosphate, but did not require ATP, and was accompanied by endonucleolytic cleavage of the resulting 3′ overhang. In the presence of DNA-PK, Artemis-mediated trimming was more limited, was ATP-dependent and did not require a 5′-phosphate. For a blunt end with either a 3′-phosphoglycolate or 3′-hydroxyl terminus, endonucleolytic trimming of 2–4 nucleotides from the 3′-terminal strand was accompanied by trimming of 6 nt from the 5′-terminal strand. The results suggest that autophosphorylated DNA-PK suppresses the exonuclease activity of Artemis toward blunt-ended DNA, and promotes slow and limited endonucleolytic trimming of the 5′-terminal strand, resulting in short 3′ overhangs that are trimmed endonucleolytically. Thus, Artemis and DNA-PK can convert terminally blocked DNA ends of diverse geometry and chemical structure to a form suitable for polymerase-mediated patching and ligation, with minimal loss of terminal sequence. Such processing could account for the very small deletions often found at DNA double-strand break repair sites.  相似文献   

14.
Artemis (SNM1C/DCLRE1C) is an endonuclease that plays a key role in development of B- and T-lymphocytes and in dsDNA break repair by non-homologous end-joining (NHEJ). Artemis is phosphorylated by DNA-PKcs and acts to open DNA hairpin intermediates generated during V(D)J and class-switch recombination. Artemis deficiency leads to congenital radiosensitive severe acquired immune deficiency (RS-SCID). Artemis belongs to a superfamily of nucleases containing metallo-β-lactamase (MBL) and β-CASP (CPSF-Artemis-SNM1-Pso2) domains. We present crystal structures of the catalytic domain of wildtype and variant forms of Artemis, including one causing RS-SCID Omenn syndrome. The catalytic domain of the Artemis has similar endonuclease activity to the phosphorylated full-length protein. Our structures help explain the predominantly endonucleolytic activity of Artemis, which contrasts with the predominantly exonuclease activity of the closely related SNM1A and SNM1B MBL fold nucleases. The structures reveal a second metal binding site in its β-CASP domain unique to Artemis, which is amenable to inhibition by compounds including ebselen. By combining our structural data with that from a recently reported Artemis structure, we were able model the interaction of Artemis with DNA substrates. The structures, including one of Artemis with the cephalosporin ceftriaxone, will help enable the rational development of selective SNM1 nuclease inhibitors.  相似文献   

15.
Inagaki K  Ma C  Storm TA  Kay MA  Nakai H 《Journal of virology》2007,81(20):11304-11321
A subset of cellular DNA hairpins at double-strand breaks is processed by DNA-dependent protein kinase catalytic subunit (DNA-PKcs)- and Artemis-associated endonuclease. DNA hairpin termini of adeno-associated virus (AAV) are processed by DNA repair machinery; however, how and what cellular factors are involved in the process remain elusive. Here, we show that DNA-PKcs and Artemis open AAV inverted terminal repeat (ITR) hairpin loops in a tissue-dependent manner. We investigated recombinant AAV (rAAV) genome metabolism in various tissues of DNA-PKcs- or Artemis-proficient or -deficient mice. In the absence of either factor, ITR hairpin opening was impaired, resulting in accumulation of double-stranded linear rAAV genomes capped with covalently closed hairpins at termini. The 5' end of 3-base hairpin loops of the ITR was the primary target for DNA-PKcs- and Artemis-mediated cleavage. In the muscle, heart, and kidney, DNA-PKcs- and Artemis-dependent hairpin opening constituted a significant pathway, while in the liver, undefined alternative pathways effectively processed hairpins. In addition, our study revealed a Holliday junction resolvase-like activity in the liver that cleaved T-shaped ITR hairpin shoulders by making nicks at diametrically opposed sites. Thus, our approach furthers our understanding of not only rAAV biology but also fundamental DNA repair systems in various tissues of living animals.  相似文献   

16.
Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.  相似文献   

17.
18.
The lymphoid cell-specific proteins RAG1 and RAG2 initiate V(D)J recombination by cleaving DNA adjacent to recombination signals, generating blunt signal ends and covalently sealed, hairpin coding ends. A critical next step in the reaction is opening of the hairpins, but the factor(s) responsible has not been identified and had been thought to be a ubiquitous component(s) of the DNA repair machinery. Here we demonstrate that RAG1 and RAG2 possess an intrinsic single-stranded nuclease activity capable of nicking hairpin coding ends at or near the hairpin tip. In Mn2+, a synthetic hairpin is nicked 5 nucleotides (nt) 5' of the hairpin tip, with more distant sites of nicking suppressed by HMG2. In Mg2+, hairpins generated by V(D)J cleavage are nicked whereas synthetic hairpins are not. Cleavage-generated hairpins are nicked at the tip and predominantly 1 to 2 nt 5' of the tip. RAG1 and RAG2 may therefore be responsible for initiating the processing of coding ends and for the generation of P nucleotides during V(D)J recombination.  相似文献   

19.
Proteins of the metallo-beta-lactamase family with either demonstrated or predicted nuclease activity have been identified in a number of organisms ranging from bacteria to humans and has been shown to be important constituents of cellular metabolism. Nucleases of this family are believed to utilize a zinc-dependent mechanism in catalysis and function as 5' to 3' exonucleases and or endonucleases in such processes as 3' end processing of RNA precursors, DNA repair, V(D)J recombination, and telomere maintenance. Examples of metallo-beta-lactamase nucleases include CPSF-73, a known component of the cleavage/polyadenylation machinery, which functions as the endonuclease in 3' end formation of both polyadenylated and histone mRNAs, and Artemis that opens DNA hairpins during V(D)J recombination. Mutations in two metallo-beta-lactamase nucleases have been implicated in human diseases: tRNase Z required for 3' processing of tRNA precursors has been linked to the familial form of prostate cancer, whereas inactivation of Artemis causes severe combined immunodeficiency (SCID). There is also a group of as yet uncharacterized proteins of this family in bacteria and archaea that based on sequence similarity to CPSF-73 are predicted to function as nucleases in RNA metabolism. This article reviews the cellular roles of nucleases of the metallo-beta-lactamase family and the recent advances in studying these proteins.  相似文献   

20.
Both Metnase and Artemis possess endonuclease activities that trim 3′ overhangs of duplex DNA. To assess the potential of these enzymes for facilitating resolution of damaged ends during double-strand break rejoining, substrates bearing a variety of normal and structurally modified 3′ overhangs were constructed, and treated either with Metnase or with Artemis plus DNA-dependent protein kinase (DNA-PK). Unlike Artemis, which trims long overhangs to 4–5 bases, cleavage by Metnase was more evenly distributed over the length of the overhang, but with significant sequence dependence. In many substrates, Metnase also induced marked cleavage in the double-stranded region within a few bases of the overhang. Like Artemis, Metnase efficiently trimmed overhangs terminated in 3′-phosphoglycolates (PGs), and in some cases the presence of 3′-PG stimulated cleavage and altered its specificity. The nonplanar base thymine glycol in a 3′ overhang severely inhibited cleavage by Metnase in the vicinity of the modified base, while Artemis was less affected. Nevertheless, thymine glycol moieties could be removed by Metnase- or Artemis-mediated cleavage at sites farther from the terminus than the lesion itself. In in vitro end-joining systems based on human cell extracts, addition of Artemis, but not Metnase, effected robust trimming of an unligatable 3′-PG overhang, resulting in a dramatic stimulation of ligase IV- and XLF-dependent end joining. Thus, while both Metnase and Artemis are biochemically capable of resolving a variety of damaged DNA ends for the repair of complex double-strand breaks, Artemis appears to act more efficiently in the context of other nonhomologous end joining proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号