首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A moderate genotoxic activity of halothane and isoflurane applied as volatile anaesthetics has already been shown. The aim of this work was to estimate a potential genotoxicity of sevoflurane, introduced to clinical practice later than halothane and isoflurane. A genotoxic activity of all three compounds was estimated by using the comet assay in human peripheral blood lymphocytes (PBL) proliferating in vitro. We demonstrated that in contrast to the previously studied anaesthetics, sevoflurane did not induce any increase in DNA migration in the studied conditions. To estimate a genotoxic effect of a prolonged exposure to halogenated anaesthetics in vivo, PBL taken from operating room personnel (n = 29) were tested for DNA degradation and compared with those from a control non-exposed group (n = 20). No significant differences were detected between the groups. We conclude that sevoflurane does not have genotoxic properties, both in vitro and in vivo.  相似文献   

2.
The alkaline single cell gel electrophoresis (comet) assay was applied to study genotoxic properties of two inhalation anesthetics-halothane and isoflurane-in human peripheral blood lymphocytes (PBL). The cells were exposed in vitro to either halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) or isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether) at concentrations 0.1-10 mM in DMSO. The anesthetics-induced DNA strand breaks as well as alkali-labile sites were measured as total comet length (i.e., increase of a DNA migration). Both analysed drugs were capable of increasing DNA migration in a dose-dependent manner. In experiments conducted at two different electrophoretic conditions (0. 56 and 0.78 V/cm), halothane was able to increase DNA migration to a higher extent than isoflurane. The comet assay detects DNA strand breaks induced directly by genotoxic agents as well as DNA degradation due to cell death. For this reason a contribution of toxicity in the observed effects was examined. We tested whether the exposed PBL were able to repair halothane- and isoflurane-induced DNA damage. The treated cells were incubated in a drug-free medium at 37 degrees C for 120 min to allow processing of the induced DNA damage. PBL exposed to isoflurane at 1 mM were able to complete repair within 60 min whereas for halothane a similar result was obtained at a concentration lower by one order of magnitude: the cells exposed to halothane at 1 mM removed the damage within 120 min only partly. We conclude that the increase of DNA migration induced in PBL by isoflurane at 1 mM and by halothane at 0.1 mM was not a result of cell death-associated DNA degradation but was caused by genotoxic action of the drugs. The DNA damage detected after the exposure to halothane at 1 mM was in part a result of DNA fragmentation due to cell death.  相似文献   

3.
The time interval since previous anaesthesia was compared in a surgical population in South Wales and in patients who developed jaundice after halothane. There was a significant difference in the pattern of time interval since previous general anaesthetics in the surgical population and in those patients who developed jaundice after halothane. In the group who developed jaundice there was an “excess” of patients who had had a previous halothane anaesthetic within four weeks. Halothane should if possible be avoided in patients who have had it before, particularly if this was within the previous four weeks. In the case of repeat halothane anaesthetics within four weeks, the risk seems to lie between 1 in 6,000 and 1 in 22,000.  相似文献   

4.
1. The application of the volatile anaesthetics, halothane and isoflurane (1% v/v and 2% v/v), to the CNS of Lymnaea reduced the firing frequency of the small weakly coupled pedal A cluster (PeA) neurones, which eventually become quiescent. There was no change in their resting membrane potential. 2. Met-enkephalin significantly increased the coupling coefficient between PeA neurones. 3. The volatile anaesthetics decreased the coupling coefficient even in the presence of met-enkephalin. 4. These effects were dose dependent and the effects of halothane were more rapid than those of isoflurane, reflecting their different anaesthetic potencies.  相似文献   

5.
Inhalant anaesthetic agents are commonly used in studies investigating the electroencephalographic (EEG) effects of noxious stimuli in animals. Halothane causes less EEG depression than isoflurane, however, the EEG effects of halothane, isoflurane, sevoflurane and desflurane have not been compared in the same model. This study aimed to compare the EEG effects of these inhalational agents in the rat. Forty male Sprague-Dawley rats were assigned to four groups and anaesthetized with halothane, isoflurane, sevoflurane or desflurane. EEG was recorded from the left and right somatosensory cortices for 5 min at three different multiples of minimal alveolar concentration (MAC) (1.25, 1.5 and 1.75). Median, 95% spectral edge frequency and total power were derived and a single mean value for each was calculated for the first 60 s of each recording period. When the raw EEG contained burst suppression (BS), the BS ratio (BSR) over 60 s was calculated. No BS was found in EEG recorded from the halothane group at any concentration. BS was present at all concentrations with the other anaesthetic agents. BS was almost complete at all concentrations of isoflurane, whereas BSR increased significantly with increasing concentrations of sevoflurane and desflurane. No significant differences were found between the BSR due to the 1.75 MAC multiple of isoflurane, sevoflurane or desflurane. Halothane causes significantly less depression of cortical activity than the newer inhalant agents at equivalent multiples of MAC. These data support the hypothesis that halothane has a fundamentally different mechanism of action than the other inhalant agents.  相似文献   

6.
Various clinically used volatile general anaesthetics (e.g. sevoflurane, halothane, isoflurane and desflurane) have been shown to have significant negative inotropic effects on normal ventricular muscle. However, little is known about their effects in ventricular tissue from diabetic animals. Streptozotocin (STZ)-induced diabetes is known to induce changes in the amplitude and time course of shortening and one report suggests that the inotropic effects of anaesthetics are ameliorated in papillary muscles from diabetic animals. The aim of these studies was to investigate this further in electrically stimulated (1 Hz) ventricular myocytes. Cells were superfused with either normal Tyrode (NT) solution or NT containing anaesthetic (1 mM) for a period of 2 min (at 30–32°C). Myocytes from STZ rats were shown to have a significantly longer time to peak shortening (p > 0.001, n= 50) and the amplitude of shortening tended to be greater but this was not significant (p= 0.13, n= 50). Halothane, isoflurane, desflurane and sevoflurane significantly (p < 0.05) reduced the magnitude of shortening of control cells by 72.5 ± 3.2%, 46.5 ± 9.7%, 28.9 ± 4.3% and 22.8 ± 5.6%, respectively (n > 11 per group) but their steady-state negative inotropic effect was found to be no different in cells from STZ-treated rats (73.0 ± 4.8%, 40.7 ± 4.7%, 25.0 ± 5.2% and 19.8 ± 5.2%, respectively, n > 10 per group). Therefore, we conclude that the inotropic effects of volatile anaesthetics were not altered by STZ treatment. (Mol Cell Biochem 261: 209–215, 2004)  相似文献   

7.
Various clinically used volatile general anaesthetics (e.g. sevoflurane, halothane, isoflurane and desflurane) have been shown to have significant negative inotropic effects on normal ventricular muscle. However, little is known about their effects in ventricular tissue from diabetic animals. Streptozotocin (STZ)-induced diabetes is known to induce changes in the amplitude and time course of shortening and one report suggests that the inotropic effects of anaesthetics are ameliorated in papillary muscles from diabetic animals. The aim of these studies was to investigate this further in electrically stimulated (1 Hz) ventricular myocytes. Cells were superfused with either normal Tyrode (NT) solution or NT containing anaesthetic (1 mM) for a period of 2 min (at 30-32 degrees C). Myocytes from STZ rats were shown to have a significantly longer time to peak shortening (p > 0.001, n = 50) and the amplitude of shortening tended to be greater but this was not significant (p = 0.13, n = 50). Halothane, isoflurane, desflurane and sevoflurane significantly (p < 0.05) reduced the magnitude of shortening of control cells by 72.5 +/- 3.2%, 46.5 +/- 9.7%, 28.9 +/- 4.3% and 22.8 +/- 5.6%, respectively (n > 11 per group) but their steady-state negative inotropic effect was found to be no different in cells from STZ-treated rats (73.0 +/- 4.8%, 40.7 +/- 4.7%, 25.0 +/- 5.2% and 19.8 +/- 5.2%, respectively, n > 10 per group). Therefore, we conclude that the inotropic effects of volatile anaesthetics were not altered by STZ treatment.  相似文献   

8.
1. The gastropod mollusc Lymnaea stagnalis (L.) is an ideal model system for studies on anaesthesia. It is reversibly anaesthetized by the general anaesthetics halothane, enflurane and isoflurane. 2. Criteria for "anaesthesia" in Lymnaea were established. The reflex used in ED50 trials was the whole animal withdrawal reflex. 3. ED50 values for halothane, enflurane and isoflurane were, 0.83% v.v. (volume for volume), 1.01% v.v. and 1.09% v.v. respectively. 4. Relationships between anaesthetic concentrations, weights of animals and mortality rates are reported.  相似文献   

9.
A capacitive sensor was tested for its suitability for measuring relative humidity in an anaesthetic gas circuit. The valvo sensor PH1 was tested using various different anaesthetic gas mixtures. Measuring accuracy was influenced neither by such volatile anaesthetics as isoflurane and halothane, nor by oxygen or nitrous oxide. The response time of the sensor depends on its position within the gas, and in the most favourable case is about 3 minutes. The sensor is readily incorporated within an existing gas circuit. The linearity of the characteristic curve must be corrected by external electronic compensation to avoid measuring problems in the lower humidity range.  相似文献   

10.
The aim of the present study was to estimate the genotoxicity of desflurane, applied as a volatile anaesthetic. The potential genotoxicity was determined by the comet assay as the extent of DNA fragmentation in human peripheral blood lymphocytes in vitro. The comet assay detects DNA strand breaks induced directly by genotoxic agents as well as DNA fragmentation due to cell death. Another anaesthetic, halothane, already proved to be a genotoxic agent, was used as a positive control. Both analysed drugs were capable of increasing DNA migration in a dose-dependent manner under experimental conditions applied. The results of the study demonstrated that the genotoxicity of desflurane was comparable with that of halothane. However, considering the pharmacodynamics of both drugs, the genotoxic activity of desflurane may be connected with a less harmful effect on the exposed patients or medical staff.  相似文献   

11.
Practical applications and relevant studies involving the anaesthetic gases, have been extensively described in the literature. Many eminent analytical methods have already been developed for medical practice where routine analysis of anaesthetics is frequently needed, particularly during anaesthesia, and in related and respiratory research programmes. The determination of halothane, isoflurane, enflurane and nitrous oxide concentrations from vaporizers, in exhaled and inhaled gas mixtures, in body fluids and tissues is necessary to control anaesthetic concentrations, and thus, the relevant and adverse effects successfully. Therefore, a literature review, with particular emphasis on gas chromatography would provide important information for investigators in the search for a suitable analytical method for the analysis of multi-component mixtures of anaesthetic gases.  相似文献   

12.
Volatile anaesthetics such as halothane, isoflurane and sevoflurane inhibit membrane currents contributing to the ventricular action potential. Transmural variation in the extent of current blockade induces differential effects on action potential duration (APD) in the endocardium and epicardium which may be pro-arrhythmic. Biophysical modelling techniques were used to simulate the functional impact of anaesthetic-induced blockade of membrane currents on APD and effective refractory period (ERP) in rat endocardial and epicardial cell models. Additionally, the transmural conduction of excitation waves in 1-dimensional cell arrays, the tissue's vulnerability to arrhythmogenesis and dynamic behaviour of re-entrant excitation in 2-dimensional cell arrays were studied. Simulated anaesthetic exposure reduced APD and ERP in both epicardial and endocardial cell models. The reduction in APD was greater in endocardial than epicardial cells, reducing transmural APD dispersion consistent with experimental data. However, the transmural ERP dispersion was augmented. All three anaesthetics increased the width of the tissue's vulnerable window during which a premature stimulus could induce unidirectional conduction block but only halothane reduced the critical size of ventricular substrates necessary to initiate and sustain re-entrant excitation. All three anaesthetics accelerated the rate of re-entrant excitation waves, but only halothane prolonged the lifespan of re-entry. These data illustrate in silico, that modest changes in ion channel conductance abbreviate rat ventricular APD and ERP, reduce transmural APD dispersion, but augment transmural ERP dispersion. These changes collectively enhance the propensity for arrhythmia generation and provide a substrate for re-entry circuits with a longer half life than in control conditions.  相似文献   

13.
Halothane minimum alveolar concentration (MAC)-sparing response is preserved in rats rendered tolerant to the action of dexmedetomidine. It has been shown that halothane and isoflurane act at different sites to produce immobility. The authors studied whether there was any difference between halothane and isoflurane MAC-sparing effects of dexmedetomidine in rats after chronic administration of a low dose of this drug. Twenty-four female Wistar rats were randomly allocated into four groups of six animals: two groups received 10 μg/kg intraperitoneal dexmedetomidine for five days (treated groups) and the other two groups received intraperitoneal saline solution for five days (naive groups) prior to halothane or isoflurane MAC determination (one treated and one naive group of halothane and one treated and one naive group of isoflurane). Halothane or isoflurane MAC determination was performed before (basal) and 30 min after an intraperitoneal dose of 30 μg/kg of dexmedetomidine (post-dex) from alveolar gas samples at the time of tail clamp. Administration of an acute dose of dexmedetomidine to animals that had chronically received dexmedetomidine resulted in a MAC-sparing effect that was similar to that seen in naive animals for halothane; however, the same treatment increased the MAC-sparing response of dexmedetomidine for isoflurane. Isoflurane but not halothane MAC-sparing response of acutely administered dexmedetomidine is enhanced in rats chronically treated with this drug.  相似文献   

14.
《Life sciences》1995,56(25):PL455-PL460
Halothane and isoflurane increase the rate of phospholipid methylation (PLM) in rat brain synaptosomal membranes, a process linked to the coupling of neuronal excitation to neurotransmitter release. In contrast, synaptic plasma membrane (SPM) Ca2+ ATPase (PMCA) pumping is reduced by exposure to halothane, isoflurane, xenon and nitrous oxide (N2O). To examine further the relationship between PLM, PMCA and anesthetic action, we investigated the effect of clinically relevant concentrations of two less potent anesthetic gases, N2O and xenon, on PLM in SPM. Biochemical assays were performed on SPM exposed to 1.3 MAC of N2O (2 atm), 1.3 MAC of xenon (1.23 atm) or an equivalent pressure of helium for control. N2O or xenon exposure increased PLM to 115% or 113%, respectively, of helium control (p < 0.02). Similar exposures to N2O or xenon depressed PMCA activity to 78% and 85% of control (p < 0.05). Observations that PLM and PMCA are both altered by a wide variety of inhalation anesthetic agents at clinically relevant partial pressures lend support to a possible involvement and interaction of these processes in anesthetic action.  相似文献   

15.
Volatileanesthetics have multiple actions on intracellular Ca2+homeostasis, including activation of the ryanodine channel (RyR) andsensitization of this channel to agonists such as caffeine andryanodine. Recently it has been described that the nucleotide cADP-ribose (cADPR) is the endogenous regulator of the RyR in manymammalian cells, and cADPR has been proposed to be a second messengerin many signaling pathways. I investigated the effect of volatileanesthetics on the cADPR signaling system, using sea urchin egghomogenates as a model of intracellular Ca2+ stores.Ca2+ uptake and release were monitored in sea urchin egghomogenates by using the fluo-3 fluorescence technique. Activity of theADP-ribosyl cyclase was monitored by using a fluorometricmethod using nicotinamide guanine dinucleotide as a substrate.Halothane in concentrations up to 800 µM did not induceCa2+ release by itself in sea urchin egg homogenates.However, halothane potentiates the Ca2+ release mediated byagonists of the ryanodine channel, such as ryanodine. Furthermore,other volatile anesthetics such as isoflurane and sevoflurane had noeffect. Halothane also potentiated the activation of the ryanodinechannel mediated by the endogenous nucleotide cADPR. The half-maximalconcentration for cADPR-induced Ca2+ release was decreasedabout three times by addition of 800 µM halothane. The reverse wasalso true: addition of subthreshold concentrations of cADPR sensitizedthe homogenates to halothane. In contrast, all the volatile anestheticsused had no effect on the activity of the enzyme that synthesizescADPR. I propose that the complex effect of volatile anesthetics onintracellular Ca2+ homeostasis may involve modulation ofthe cADPR signaling system.

  相似文献   

16.
Mouse neuroblastoma cells (clone NB2a) were cultured in the presence of 0.3–2.1% halothane in the gas phase for up to 72 h. Halothane inhibited neurite extension dose dependently and virtually abolished microspike formation even at the lowest concentration tested. These effects were completely reversible. Electron microscopy demonstrated that microfilaments measuring 40–80 Å in diameter are the only fibrous organelles visible within microspikes. When the cells were exposed to halothane, no microfilamentous complexes could be identified in any cells and the subcortical regions of neurites often appeared devoid of individual microfilaments. Microtubules were still present in neurites after exposure to halothane concentrations at which microfilaments disappeared. However, at concentrations above 1.0%, microtubules gradually appeared to decrease in number. Short-term experiments showed that existing neurites and microspikes rapidly retracted when suddenly exposed to culture medium equilibrated with 1.0% halothane and quickly reformed when the halothane was removed. The inhibition of neuroblastoma cell differentiation by halothane appears to be mediated by disruption of 40–80 Å diameter microfilaments.  相似文献   

17.
To document the changes in serum serotonin, adrenocorticotrophic hormone (ACTH), corticosterone levels and select biochemical parameters in response to inhalant anaesthesia, 20 New Zealand White (NZW) rabbits were assigned to two treatment groups: halothane and isoflurane. Induction of anaesthesia was achieved using a face mask (3.5% halothane and 4.5% isoflurane in oxygen) followed by endotracheal intubation and maintenance of anaesthesia for 30 min (1.5% halothane and 2.5% isoflurane in oxygen). Blood samples were obtained before anaesthetic induction, and at 1, 10, 30, 60, 120 min and 24, 48 and 72 h after endotracheal intubation. Serum serotonin and corticosterone levels were measured by competitive enzyme immunoassay, ACTH by radioimmunoassay. Serum glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), blood urea nitrogen (BUN) and creatinine levels were measured using an automated analyser. Significant increases in serum ACTH and corticosterone levels occurred after halothane administration while serum serotonin levels did not change. An increase in serum corticosterone and serotonin levels occurred in the isoflurane group but no changes in ACTH concentrations were detected. Administration of halothane significantly increased serum glucose, ALT, AST, BUN and creatinine levels. After isoflurane administration, there was a significant increase in serum glucose, AST, BUN and creatinine levels. Based on these results, halothane stimulates the hypothalamic-pituitary-adrenal axis to a greater extent than isoflurane, but isoflurane increases serum serotonin levels. Both anaesthetic agents alter select biochemical parameters. These results should be taken into account when blood samples are evaluated in treated isoflurane or halothane anaesthetized rabbits.  相似文献   

18.
Since genetic damage induced by ethanol exposure is controversial and incomplete and because germ and somatic cells constitute bioindicators for monitoring reproductive toxicity and genotoxic actions of ethanol consumption, the purpose of the present investigation was to evaluate morphological sperm, oocyte alterations and parental genotoxic effects after sub-chronic ethanol intake in the CF-1 outbred mouse strain. Ethanol 10% was administered to CF-1 adult male (treated males, TM) and female (treated females, TF) mice for 27 days, whereas water was given to controls from both sexes too (CM and CF). Post-treatment micronucleus frequency (MN-PCE/1,000/mouse) and gamete morphology were evaluated. To test whether change of female reproductive status results in maternal genotoxicity, CF-1 females received ethanol 10% (exposed group, periconceptionally treated females (PTF)) or water (control group, pregnant control females (PCF)) in drinking water for 17 days previous and up to 10 days of gestation. TM had a high percentage of abnormal spermatozoa vs CM (p < 0.001) and elevated parthenogenetic activated oocyte frequency appeared in TF vs CF (p < 0.001). Sub-chronic ethanol ingestion induced increased MN frequency in TM and TF (p < 0.01). In PTF, where blood alcohol concentrations were between 19–28 mg/dl, very significantly increased MN frequency was found vs PCF (p < 0.01), whereas MN values were similar to TF. These results show that sub-chronic alcohol ingestion in CF-1 mice produces sperm head dysmorphogenesis and oocyte nuclear anomalies, suggesting that morphological abnormalities in germ cells are probably related to parental genotoxicity after ethanol consumption.  相似文献   

19.
To assess the effects of halothane, isoflurane, and sevoflurane on cross bridges in intact cardiac muscle, electrically stimulated (0.25 Hz, 25 degrees C) right ventricular ferret papillary muscles (n = 14) were subjected to sinusoidal load oscillations (37-182 Hz, 0.2-0.5 mN peak to peak) at the instantaneous self-resonant frequency of the muscle-lever system. At resonance, stiffness is proportional to m * omega(2) (where m is equivalent moving mass and omega is angular frequency). Dynamic stiffness was derived by relating total stiffness to values of passive stiffness at each length during shortening and lengthening. Shortening amplitude and dynamic stiffness were decreased by halothane > isoflurane > or = sevoflurane. At equal peak shortening, dynamic stiffness was higher in halothane or isoflurane in high extracellular Ca(2+) concentration than in control. Halothane and isoflurane increased passive stiffness. The decrease in dynamic stiffness and shortening results in part from direct effects of volatile anesthetics at the level of cross bridges. The increase in passive stiffness caused by halothane and isoflurane may reflect an effect on weakly bound cross bridges and/or an effect on passive elastic elements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号