首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adaptive value of autumn colours is still a puzzle for evolutionary biology. It has been suggested that autumn colours are a warning signal to insects that use the trees as a host. I show that aphids (Dysaphis plantaginea) avoid apple trees (Malus pumila) with red leaves in autumn and that their fitness in spring is lower on these trees, which suggests that red leaves are an honest signal of the quality of the tree as a host. Autumn colours are common in wild populations but not among cultivated apple varieties, which are no longer under natural selection against insects. I show that autumn colours remain only in the varieties that are very susceptible to the effects of a common insect-borne disease, fire blight, and therefore are more in need of avoiding insects. Moreover, varieties with red leaves have smaller fruits, which shows that they have been under less effective artificial selection. This suggests a possible trade off between fruit size, leaf colour and resistance to parasites. These results are consistent with the hypothesis that autumn colours are a warning signal to insects, but not with other hypotheses.  相似文献   

2.
The adaptive value of the bright colours of leaves in autumn is still debated. It is possible that autumn colours are an adaptation to protect the tree against photoinibition and photooxidation, which allows a more efficient recovery of nutrients. It has been proposed that the preference of aphids for trees that retranslocate nitrogen more efficiently can explain the high diversity of aphids on tree species with bright autumn colours. This scenario however does not take into account the impact of insects on the fitness of the trees and has not been analysed theoretically. Its assumptions and predictions, therefore, remain uncertain. I show with a model of insect-tree interaction that the system can actually evolve under particular conditions. I discuss the differences with the coevolution theory of autumn colours, available evidence and possible tests.  相似文献   

3.
The coevolution theory of autumn colours   总被引:6,自引:0,他引:6  
According to the coevolution theory of autumn colours, the bright colours of leaves in autumn are a warning signal to insects that lay their eggs on the trees in that season. If the colour is linked to the level of defensive commitment of the tree and the insects learn to avoid bright colours, this may lead to a coevolutionary process in which bright trees reduce their parasite load and choosy insects locate the most profitable hosts for the winter. We try to clarify what the theory actually says and to correct some misunderstandings that have been put forward. We also review current research on autumn colours and discuss what needs to be done to test the theory.  相似文献   

4.
AkiSinkkonen 《Oikos》2006,113(3):557-562
Although autumn leaf colours of deciduous trees have been shown to protect against photo-oxidative damage, they are sometimes seen as signals to pests and predators. Here I modify the coevolution hypothesis of autumn leaf colours. I suggest that much of the within-population variation in autumn leaf colours can be explained by differences in the allocation of resources to sexual reproduction. According to the novel hypothesis, reproductively active woody plants produce early and intense autumn leaf colours in order to protect seeds and other reproductive tissues from pests that lay eggs in the autumn. If many seeds mature at times of leaf senescence or during the next summer, a woody plant will reallocate plenty of nitrogen to seeds. If sucking insects reproduce on such hosts, their flightless offspring will suffer poor-quality food after the ripening of seeds. Before this, however, insects will probably concentrate around the ripening seeds to forage on nitrogen-rich veins. This will decline the quality and quantity of developing seeds. If, on the other hand, insects are able to recognize reproductively active plants while laying eggs in the autumn, both the insects and the plants benefit. The flightless offspring of insects feeds on plants that supply sufficiently nitrogen for longer than reproducing plants do, while these optimise their reproduction by avoiding pests, which also contributes to the abundance of specialist pests. Hence, I suppose that while physiological factors are the origin of autumnal colour changes of deciduous leaves, the visible cue utilized by insects has evolved several times to an honest signal that reveals the unsuitability of the potential host in the near future. The reproductive insurance hypothesis may help us to understand why bright autumn leaf colours are rare among herbaceous plants, and why plants at high altitudes and latitudes are often brightly coloured in autumn.  相似文献   

5.
The evolutionary explanation for the change in leaf colour during autumn is still debated. Autumn colours could be a signal of defensive commitment towards insects (coevolution) or an adaptation against physical damage because of light at low temperatures (photoprotection). These two hypotheses have different predictions: (1) under the coevolution hypothesis, insects should not prefer red leaves in autumn and grow better in spring on trees with green autumn leaves; and (2) under the photoprotection hypothesis, insects should prefer and grow better on trees with red leaves because they provide better nutrition. Studying colour preference in autumn and growth rates in spring of a southern beech aphid species (Neuquenaphis staryi) on Nothofagus alessandrii, we found preference for green leaves in autumn but no differential performance of aphids in spring. We suggest that aphid preference for green might have evolved to exploit better their host during the autumn rather than to improve their performance in spring.  相似文献   

6.
Autumnal change in leaf colour of deciduous trees is one of the most fascinating displays in nature. Current theories suggest that autumn leaf colours are adaptations to environmental stress. Here I report that the number of ripening female catkins altered timing of yellow autumn leaf colours in mountain birch. The tree's autumnal colour change was brought forward if the tree matured plenty of female catkins. Since yellow colour pigments in leaves are unmasked as leaf nitrogen is re-translocated, sexual reproduction may alter resource allocation at times of leaf senescence. Thus, our current view on the reasons for leaf senescence has to be re-examined, and a novel evolutionary explanation is needed for the appearance of yellow autumn leaf colours.  相似文献   

7.
Red autumn colouration of trees is the result of newly synthesized anthocyanin pigments in senescing autumn leaves. As anthocyanin accumulation is costly and the trait is not present in all species, anthocyanins must have an adaptive significance in autumn leaves. According to the coevolution hypothesis of autumn colours, red autumn leaves warn herbivorous insects – especially aphids that migrate to reproduce in trees in the autumn – that the tree will not be a suitable host for their offspring in spring due to a high level of chemical defence or lack of nutrients. The signalling allows trees to avoid herbivores and herbivores to choose better host trees. In this study the coevolution hypothesis was tested with four deciduous tree species that have red autumn leaf colouration – European aspen (Populus tremula L.) (Salicaceae), rowan (Sorbus aucuparia L.) (Rosaceae), mountain birch [Betula pubescens ssp. czerepanovii (NI Orlova) Hämet‐Ahti], and dwarf birch (Betula nana L.) (Betulaceae), and with two generalist herbivores, the autumnal moth [Epirrita autumnata (Borkhausen)] and the winter moth [Operophtera brumata (L.)] (both Lepidoptera: Geometridae). Anthocyanin concentrations of autumn leaves were determined from leaf samples and the growth performance parameters of the moth larvae on the study trees were measured in the spring. Trees with higher anthocyanin concentration in the autumn were predicted to be low‐quality food for the herbivores. Our results clearly showed that anthocyanin concentration was not correlated with the growth performance of the moths in any of the studied tree species. Thus, our study does not support the coevolution hypothesis of autumn colours.  相似文献   

8.
We propose an alternative hypothesis to the handicap-signalling hypothesis, to explain the high number of specialist aphids on tree species having bright autumn colour. Since birch aphids actively seek the first yellowing leaves for breeding in autumn, it is obvious that autumn colour of foliage does not repel migrating aphids. We suggest that aphids use bright colours as a cue to detect individual trees and leaves that are good sources of nitrogen in the form of amino acids in autumn. The active formation of bright-coloured pigments in leaves is needed to protect them from photo inhibition during energy consuming nutrient retranslocation under cold autumn conditions. During nutrient export from leaves, nitrogen is in the form of amino acids in the sieve elements and easily available for aphids. Therefore, bright colours may act as a signal of easily available high-quality food for viviparous aphid migrants that are selecting suitable trees for their sexual offspring reproduction. The females of sexual generation grown on the better quality food probably can oviposit the over-wintering eggs to the twigs in higher numbers, which may have an adaptive advantage in competition with conspecific females.  相似文献   

9.
The adaptive significance of autumn leaf colours   总被引:6,自引:0,他引:6  
Recently W.D. Hamilton and colleagues proposed a provocative new theory to explain the adaptive significance of autumnal leaf colours. They suggested that these colours were signals produced by the trees to warn potential insect herbivores of their defensive ability and tested this theory by an analysis of data on aphid species richness on different tree species. Here we argue that the principal assumptions of their theory do not match current knowledge of plant pigment biochemistry and aphid ecology. We therefore present further adaptive explanations for autumn leaf colours and suggest alternative reasons for the reported relationship between tree leaf colour and aphid species richness.  相似文献   

10.
? It has been suggested that autumn-migrating insects drive the evolution of autumn leaf colours. However, evidence of genetic variation in autumn leaf colours in natural tree populations and the link between the genetic variation and herbivore abundances has been lacking. ? Here, we measured the size of the whole aphid community and the development of green-yellow leaf colours in six replicate trees of 19 silver birch (Betula pendula) genotypes at the beginning, in the middle and at the end of autumn colouration. We also calculated the difference between green leaf and leaf litter nitrogen (N) and estimated the changes in phloem sap N loading. ? Autumn leaf colouration had significant genetic variation. During the last survey, genotypes that expressed the strongest leaf reflectance 2-4 wk earlier had an abundance of egg-laying Euceraphis betulae females. Surprisingly, the aphid community size during the first surveys explained N loss by the litter of different birch genotypes. ? Our results are the first evidence at the tree intrapopulation genotypic level that autumn-migrating pests have the potential to drive the evolution of autumn leaf colours. They also stress the importance of recognizing the role of late-season tree-insect interactions in the evolution of herbivory resistance.  相似文献   

11.
According to the coevolution theory, autumn colours are a warning signal to insects, signalling the level of chemical defences or availability of nutrients. Because in the original model tree vigour and defences were positively correlated, it is not clear whether signalling would still be stable when they are decoupled, and the fact that weak trees often display bright autumn colours is usually presented as evidence against the coevolution theory. I show that in a theoretical model of insect-tree coevolution, signalling is still stable when vigour and defences are decoupled. Weak trees can signal. Moreover, partial cheating is possible. The different equilibria depend on the importance of vigour and defences against insect attack, of vigour in the production of the signal, and of pleiotropic effects between colour and defences. These results provide precise predictions that can be used for planning future empirical test.  相似文献   

12.
Marco Archetti 《Oikos》2009,118(3):328-333
I review the hypotheses that have been proposed to explain the adaptive value of autumn leaf colours. The available adaptive hypotheses can be reduced to the following. Photoprotection: pigments protect against photoinhibition or photooxidation allowing a more efficient recovery of nutrients. Drought resistance: pigments decrease osmotic potential allowing leaves to tolerate water stress. Leaf warming: pigments convert light into heat and warm leaves. Fruit flag: colour attracts animals that help disperse seeds. Coevolution: colour signals that the tree is not a suitable host for insects. Camouflage: colour makes leaves less detectable to herbivores. Anticamouflage: colour enhances conspicuousness of parasites dwelling on leaves to predators or parasitoids. Unpalatability: pigments act as direct anti-feedants against herbivores. Reduced nutrient loss: yellow leaves have less to lose against herbivory. Tritrophic mutualism: colour attracts aphids which attract ants that defend the trees from other insects. For each hypothesis I mention the original references, I define assumptions and predictions, and I discuss briefly conceptual problems and available evidence.  相似文献   

13.
Sinkkonen A 《Annals of botany》2008,102(3):361-366

Background and Aims

Physiological data suggest that autumn leaf colours of deciduous trees are adaptations to environmental stress. Recently, the evolution of autumn colouration has been linked to tree condition and defence. Most current hypotheses presume that autumn colours vary between tree individuals. This study was designed to test if within-tree variation should be taken into account in experimental and theoretical research on autumn colouration.

Methods

Distribution of red autumn leaf colours was compared between partially dead and vigorous specimens of Norway maple (Acer platanoides) in a 3-year study. In August, the amount of reddish foliage was estimated in pairs of partially dead and control trees. Within-tree variation in the distribution of reddish leaves was evaluated. Leaf nitrogen and carbon concentrations were analysed.

Key Results

Reddish leaf colours were more frequent in partially dead trees than in control trees. Reddish leaves were evenly distributed in control trees, while patchiness of red leaf pigments was pronounced in partially dead trees. Large patches of red leaves were found beneath or next to dead tree parts. These patches reoccurred every year. Leaf nitrogen concentration was lower in reddish than in green leaves but the phenomenon seemed similar in both partially dead and control trees.

Conclusions

The results suggest that red leaf colouration and branch condition are interrelated in Norway maple. Early reddish colours may be used as an indication of leaf nitrogen and carbon levels but not as an indication of tree condition. Studies that concentrate on entire trees may not operate at an optimal level to detect the evolutionary mechanisms behind autumnal leaf colour variation.Key words: Acer platanoides, Norway maple, branch die-back, coevolution hypothesis, leaf senescence, patchy distribution, red leaf pigments, tree condition, within-tree variation  相似文献   

14.
In 2001, Hamilton and Brown proposed a controversial hypothesis of handicap signalling to potential insect parasites as an adaptive explanation for autumn leaf colouration. In subsequent studies there has been little attention to the costs and benefits of early autumnal colour change. Yet, in an observational study by Hagen et al. (2003) it was demonstrated that birch trees [Betula pubescens ssp. czerepanovii Ehrhart (Betulaceae)] turning yellow early in autumn had less damage from insects chewing on leaves the subsequent summer. Here, two experiments are presented which test the mechanisms in this model. The first addresses the proposed defence of leaves of B. pubescens ssp. czerepanovii by letting caterpillars of Epirrita autumnata Borkhausen (Lepidoptera: Geometridae), the birches’ most common insect parasites, choose between leaves from trees that either turned yellow late or early the foregoing autumn. The second experiment addresses whether adult female E. autumnata choose between early or late senescent (i.e., yellow or green) ‘twigs’ when ovipositing in autumn. We could not find evidence of preferences in either larvae or females, suggesting that timing of colour change in B. pubescens ssp. czerepanovii is not a warning signal that elicits a response in E. autumnata.  相似文献   

15.
Data on the distribution and frequency of hymenopterous parasites of leaf-mining insects on deciduous trees show that Chalcidoidea of the family Eulophidae are the chief component of the parasite faunas. The regular parasite complement of a leaf-mining species is in the order of 10 to 20 species of parasitic Hymenoptera. Many of these are polyphagous, but in almost all instances a preference for a particular type of host is evident. The parasite faunas of tree leaf-mining Lepidoptera, Coleoptera and Hymenoptera are shown to be qualitatively similar, but those of Diptera are rather different. The parasite faunas of tree leaf-miners are different also from those of leaf gall-forming insects on trees and, to a lesser degree, from those of leaf-miners on herbaceous plants. The parasite fauna associated with a tree genus is quantitatively and qualitatively characteristic and, in general, it most resembles that found on allied tree genera. Congeneric leaf miners attacking the same tree species are attacked by very similar parasite faunas, although mine situation and season of development may exert some influence. These latter factors are considered especially in relation to leaf-miners of the genus Phyllonorycter for which most data are available.  相似文献   

16.
According to the coevolution theory of autumn colours, the bright colours of trees evolved as a warning signal towards parasites colonizing the plant in autumn. We monitored colonization of the aphid Rhopalosiphum padi on individual tress of Prunus padus in autumn and observed a strong preference of aphids for trees with green leaves. This is the first direct observation of a key assumption of the theory, that parasites avoid bright colours. Moreover our observations, compared with previous data gathered on the same species, suggest that aphids colonizing trees with green leaves develop better in spring than aphids colonizing trees with bright autumn colours, which is consistent with the second main assumption of the coevolution theory.  相似文献   

17.
Deciduous trees remobilize the nitrogen in senescing leaves during the process of autumn colouration, which in many species is associated with increased concentrations of anthocyanins. Archetti and Hamilton and Brown observed that autumn colouration is stronger in tree species facing a high diversity of specialist aphids. They proposed a coevolution theory that the bright colours in autumn might provide an honest signal of defence commitment, thus deterring migrant aphids from settling on the leaves. So far, there have been very few experimental results to support the hypothesis, and tree commitment to phenolics-based defences has not shown direct protection against aphids. Predators and parasitoids have been found to be the major controllers of arboreal aphids. Indirect defences involve the emission of attractive volatile compounds that enhance the effectiveness of carnivorous enemies. The indirect defence hypothesis is presented to explain low aphid diversity on tree species that are green during autumn. The hypothesis suggests that green foliage can continue to produce herbivore-inducible plant volatiles and maintain volatile-based indirect plant defences against aphids until leaf abscission.  相似文献   

18.
Red colouration is common in young and old leaves of broadleaf woody species. Assuming that leaf colours are adaptive, we examined, by comparing the colouration in young versus old leaves, the possibility that different selection agents may have operated on spring versus autumn leaf colouration. We observed spring versus autumn colouration in three very different woody floras (Finland, Japan and Israel) in order to allow for a broad ecological and evolutionary spectrum. The null hypothesis was that if the same selective agents operated in spring and autumn, it is expected that when spring leaves are red, they should always be red in autumn, and when spring leaves are green, they should be green or yellow in autumn. We found that green spring leaves are almost exclusively associated with yellow leaf colour at senescence in autumn. Species with red autumn leaves almost always have at least some red colouration in their spring leaves. However, about half of the species with red spring leaves have yellow autumn leaves. Brown autumn leaves were not common in the species we studied. As about half of the species with red spring leaves have yellow autumn leaves but not vice versa, we conclude that there are many cases in which the selecting agents for spring versus autumn leaf colour were not the same.  相似文献   

19.
Hamilton and Brown suggested that bright autumn coloration in trees is an energetically expensive and therefore honest (handicap) signal of defensive commitment against insects. If this is so, one should expect that the intensity of the proposed signal should depend strongly on tree health. However, to the best of our knowledge, the link between vigour and autumn colour has never been tested. We explored the relationship between autumn coloration and tree condition (i.e. leaf fluctuating asymmetry) in mountain birch (Betula pubescens). Our results indicate that bright autumn birches are in better condition and therefore consequently should be better at combating herbivores.  相似文献   

20.
Whole-tree sap flow is substantially diminished by leaf herbivory   总被引:1,自引:0,他引:1  
Ecohydrological models consider the relationship between tree size and structure (especially leaf area index) and water use but generally treat herbivory as a source of unwanted noise in the data. Little is known of how insect damage to leaves influences whole-plant water use in trees. Water use is driven by environmental demand and the total leaf area through which transpiration can occur, but the effects of insects are expected to be complex. Different kinds of insects could have different effects; for example, chewing insects reduce leaf area, whereas sucking and tissue mining insects reduce leaf function without reducing area. Further, plants respond to herbivory in a range of ways, such as by altering leaf production or abscising leaves. We examined the effect of insects on Eucalyptus blakelyi in a woodland near Canberra, Australia, using sap flow velocity as a measure of whole-plant water use. We applied insecticide to 16 trees matched to an untreated control group. After 6 months, we examined the effects on sap flow velocity and crown condition. There was a general increase in sap flow velocity as trees produced leaves over the growing season, but the increase in sap flow for trees without insecticide protection was half that of the protected trees (increase: 4.4 vs. 9.0 cm/h, respectively). This dramatic effect on sap flow was consistent with effects on crown condition. Unprotected trees had 20% less leaf mass per unit stem in the crown. In addition, unprotected trees had a 20% greater loss of leaf functional area from necrosis. It should be noted that these effects were detected in a year in which there was not an outbreak of the psyllids (Homoptera) that commonly cause severe leaf damage to this tree species. It is predicted that the effect in a psyllid outbreak year would be even more substantial. This result underscores the significant impact that insect herbivores can have on an ecological process of significance to the ecosystem, namely, the movement of water from the soil to the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号