首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lysine 234 is a residue highly conserved in all beta-lactamases, except in the carbenicillin-hydrolyzing enzymes, in which it is replaced by an arginine. Informational suppression has been used to create amino acid substitutions at this position in the broad spectrum Escherichia coli beta-lactamase TEM-1, in order to elucidate the role of this residue which lies on the wall at the closed end of the active site cavity. The mutants K234R and K234T were constructed and their kinetic constants measured. Replacement of lysine 234 by arginine yields an enzyme with similar activity toward cephalosporins and most penicillins, except toward the carboxypenicillins for which the presence of the guanidine group enhances the transition state binding. The removal of the basic group in the mutant K234T yields a protein variant which retains a low activity toward penicillins, but losts drastically its ability to hydrolyze cephalosporins. Moreover, these two mutations largely decreased the affinity of the enzyme for penicillins (10-fold for K234R and 50-fold for K234T). This can be correlated with the disruption of the predicted electrostatic binding between the C3 carboxylic group of penicillins and the amine function of the lysine. Therefore, lysine 234 in the E. coli beta-lactamase TEM-1 is involved both in the initial recognition of the substrate and in transition state stabilization.  相似文献   

3.
Site-saturation mutagenesis was performed on the class A ROB-1 beta-lactamase at conserved Ser130, which is centrally located in the antibiotic binding site where it can participate in both protein-protein and protein-substrate hydrogen bonding. Mutation Thr130 gave a beta-lactamase hydrolysing penicillins and cephalosporins but which showed a 3-fold lower affinity (Km) for ampicillin and cephalexin, and a 30-fold lower hydrolytic (Vmax) activity for ampicillin. In contrast, the hydrolytic activity for cephalexin was similar to the wild-type for the Thr130 mutation. Mutation Gly130 gave a beta-lactamase hydrolysing only penicillins with an affinity and hydrolysis activity for these compounds approximately 15-fold lower than the wild-type, but no detectable activity against cephalosporins. Mutation Ala130 produced an enzyme capable of hydrolysing penicillins only at a low rate. Modelling the ROB-1 active site was done from the refined 2 A X-ray structure of the homologous Bacillus licheniformis beta-lactamase. Ampicillin and cephalexin were docked into the active site and were energy minimized with the CVFF empirical force field. Dockings were stable only when Ser70 was made anionic and Glu166 was made neutral. Interaction energies and distances were calculated for fully hydrated pre-acylation complexes with the Ser, Thr, Gly and Ala130 enzymes. The catalytic data from all mutations and the computed interactions from modelling confirmed that the Ser130 has a structural as well as a functional role in binding and hydrolysis of penicillins. This highly conserved residue also plays a substrate specificity role by hydrogen binding the carboxylic acid group of cephalosporins more tightly than penicillins.  相似文献   

4.
Treponema pallidum, the causative agent of syphilis, is sensitive to penicillins. Yet, an abundant membrane-bound protein of this organism, Tp47, turns over penicillins. It is shown herein that the turnover process is a hydrolytic reaction that results in the corresponding penicilloates, products that have their beta-lactam bonds hydrolyzed. This is the reaction of beta-lactamases, bona fide resistance enzymes to beta-lactam antibiotics. Remarkably, the x-ray structure of Tp47 bears no resemblance to any other beta-lactamases or the related penicillin-binding proteins. Furthermore, evidence is presented that the reaction of Tp47 takes place in the absence of the zinc ion and does not involve intermediary acyl enzyme species. Hence, the beta-lactamase activity of Tp47 is the fifth known mechanism for turnover of beta-lactam antibiotics. Tp47 also exhibits a penicillin binding reaction, in the process of which the enzyme is covalently modified in the active site. The two reactions take place in two different active sites, and the events of the beta-lactamase activity are over 2,000-fold more rapid than the penicillin binding reaction. The level of beta-lactamase activity is high and is held back only by a strong product-inhibition component to the catalytic process. If natural selection would result in a mutant variant of Tp47 that overcomes product inhibition for the beta-lactamase activity, a novel bona fide resistance to penicillins will emerge in Treponema, which will be a disconcerting clinical development. The physiological functions of Tp47 are not known, but it is likely that this is at least a bifunctional enzyme involved in the processing of the Treponema peptidoglycan as a substrate.  相似文献   

5.
PCR was performed to analyze the beta-lactamase genes carried by ampicillin-resistant Vibrio spp. strains isolated from marine environments in Korea between 2006 and 2009. All 36 strains tested showed negative results in PCR with the primers designed from the nucleotide sequences of various known beta-lactamase genes. This prompted us to screen new beta-lactamase genes. A novel beta-lactamase gene was cloned from Vibrio alginolyticus KV3 isolated from the aquaculture water of Geoje Island of Korea. The determined nucleotide sequence (VAK-3 beta-lactamase) revealed an open reading frame (ORF) of 852 bp, encoding a protein of 283 amino acids (aa), which displayed low homology to any other beta-lactamase genes reported in public databases. The deduced 283 aa sequence of VAK-3, consisting of a 19 aa signal peptide and a 264 aa mature protein, contained highly conserved peptide segments specific to class A beta-lactamases including the specific amino acid residues STFK (62-65), SDN (122-124), E (158), and RTG (226-228). Results from PCR performed with primers specific to the VAK-3 beta-lactamase gene identified 3 of the 36 isolated strains as V. alginolyticus, Vibrio cholerae, and Photobacterium damselae subsp. damselae, indicating the utilization of various beta-lactamase genes including unidentified ones in ampicillin-resistant Vibrio spp. strains from the marine environment. In a mating experiment, none of the isolates transfered the VAK-3 beta-lactamase gene to the Escherichia coli recipient. This lack of mobility, and the presence of a chromosomal acyl-CoA flanking sequence upstream of the VAK-3 beta- lactamase gene, led to the assumption that the location of this new beta-lactamase gene was in the chromosome, rather than the mobile plasmid. Antibiotic susceptibility of VAK-3 beta-lactamase was indicated by elevated levels of resistance to penicillins, but not to cephalosporins in the wild type and E. coli harboring recombinant plasmid pKV-3, compared with those of the host strain alone. Phylogenetic analysis showed that VAK-3 beta-lactamase is a new and separate member of class A beta-lactamases.  相似文献   

6.
A series of penicillins characterized by the presence of a sulfoamino or a modified sulfoamino group in the side chain was subjected to in vitro antimicrobial screening tests. Although the most potent members of the series were less active than benzylpenicillin against gram-positive bacteria and comparably active against most gram-negative bacteria, they were, on the average, 8 to 16 times more effective against strains of Pseudomonas aeruginosa. In other comparative laboratory tests against P. aeruginosa, these compounds were about as active as carbenicillin and four to eight times more active than ampicillin. An examination of structure-activity relationships indicated that maximal potency was obtained with penicillins having an alpha-(aromatic or heteroaromatic)-alpha-sulfoaminoacetamido side chain. The compound with an alpha-phenyl group was comparable in activity to those having an alpha-(2- or 3-thienyl) group, whereas any modification in position or structure of the alpha-sulfoamino group reduced activity. Results of studies with a cell-free P. aeruginosa beta-lactamase suggest that the marked inhibitory effects of alpha-sulfoamino penicillins for P. aeruginosa can be attributed, at least in part, to their high degree of resistance to this enzyme. Some derivatives, however, had weak antipseudomonal activity, despite possessing a high degree of beta-lactamase resistance.  相似文献   

7.
Bacillus anthracis contains a class A (Bla1) and class B (Bla2) beta-lactamase, which confer resistance to beta-lactam antibiotics when expressed in Escherichia coli. In an effort to find new beta-lactamase inhibitors, several penicillin derivatives have been evaluated including experimental compounds incorporating a 6-mercaptomethyl group or a 6-pyridylmethylidene group, along with clavulanate and tazobactam, as inhibitors against Bla1 and Bla2. The 6-mercaptomethyl-substituted penicillins showed much greater activity against the zinc-containing Bla2 than Bla1. The compound that incorporated a 6-pyridylmethylidene substituent and a catecholic substituent at the 2' position was the most effective inhibitor of Bla1 with Ki=0.057 microM. Inhibitors containing iron-chelating functional groups have previously been shown to work in combination with antibiotics to inhibit growth of antibiotic-resistant bacteria expressing beta-lactamase. The development of similar compounds, incorporating these types of substituents, may help overcome resistance to currently used antibiotics.  相似文献   

8.
'Beta-lactams' as beta-lactamase inhibitors   总被引:2,自引:0,他引:2  
The application of inhibitors to block the beta-lactamase destruction of penicillins and cephalosporins by resistant bacteria is a potentially useful way of improving the efficacy of established compounds. Certain semi-synthetic penicillins and cephalosporins have been found to be competitive inhibitors of selected beta-lactamases but an examination of streptomycete culture fluids has revealed two new types of beta-lactam compound: clavulanic acid, which is a progressive inactivator of a wide range of beta-lactamases, and the olivanic acids, which are both broad-spectrum antibiotics and potent beta-lactamase inhibitors. Penicillanic acid sulphone and 6-beta-bromopenicillanic acid have been shown to be significant inhibitors of beta-lactamase. The chemotherapeutic application of these compounds is discussed.  相似文献   

9.
Treatment options for extended-spectrum beta-lactamase-producers   总被引:2,自引:0,他引:2  
A review of antibiotic options for the treatment of infections caused by extended-spectrum beta-lactamase-producing isolates is presented. The use of the third-generation cephalosporin, cefotaxime, for infections caused by isolates producing ceftazidimase-type extended-spectrum beta-lactamases is controversial, despite in vitro susceptibility to the antibiotic in many instances. The fourth-generation cephalosporin, cefipime, although active against most extended-spectrum beta-lactamases, is reported to show a marked inoculum effect. The cephamycins, such as cefoxitin. are generally effective against Enterobacteriaceae producing TEM- and SHV-derived extended-spectrum beta-lactamases, but Klebsella pneumoniae strains are prone to cephamycin resistance as a result of porin loss. The use of beta-lactamase inhibitor combinations is variable. Sulbactam is less effective than clavulanate for the inhibition of SHV-derived extended-spectrum beta-lactamases and a marked inoculum effect has been noted, while the efficacy of tazobactam against SHV-derived extended-spectrum beta-lactamase producers is controversial. Furthermore, extended-spectrum beta-lactamases are often encoded by multi-resistant plasmids carrying genes conferring resistance to aminoglycosides, chloramphenicol, sulfonamides, trimethoprim and other antimicrobials, severely limiting even alternative therapies. Extensive susceptibility testing before the institution of antibiotic therapy is thus vital.  相似文献   

10.
I G Shvidenko 《Antibiotiki》1978,23(3):223-227
beta-Lactamases of Proteus and their role in the mechanism of the microbe resistance to penicillins and ceporin were studied. It was found that the beta-lactamase of Proteus had low activity and were produced by both beta-lactamide resistant and sensitive clinical strains of Proteus. The resistant cultures of Proteus produced enzymes more frequently (3.4--5 times) than the sensitive ones. The synthesis of beta-lactamase in the clinical Proteus strains was inducable. The high induction coefficient was achieved only in the presence of high concentrations of the inductor. No significant dependence of the culture sensitivity level of ampicillin and ceporin on the induction level was observed. The most significant part of the constitutive enzyme in Proteus was intracellular, while that of the inducable enzyme was extracellular. No correlative dependence between the culture resistance levels to penicillins and ceporin and the enzyme activity was noted. The beta-lactamase activity was not found in the transconjugants with the in vitro acquired R-factor controlling the ampicillin and ceporin resistance, as well as in the resistant mutants selected on the media with increasing concentrations of the above antibiotics. Induction of beta-lactamase synthesis was not found in these strains either. The ability of Proteus to synthesize beta-lactamase can be lost on the strain storage under laboratory conditions which was not always accompanied by reduction of the culture sensitivity to ampicillin and ceporin. The enzymatic destruction of beta-lactamides was not the main mechanism of Proteus resistance to the above antibiotics.  相似文献   

11.
Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants.  相似文献   

12.
Bacterial beta-lactamases hydrolyze beta-lactam antibiotics such as penicillins and cephalosporins. The TEM-type class A beta-lactamase SHV-2 is a natural variant that exhibits activity against third-generation cephalosporins normally resistant to hydrolysis by class A enzymes. SHV-2 contains a single Gly238Ser change relative to the wild-type enzyme SHV-1. Crystallographic refinement of a model including hydrogen atoms gave R and R(free) of 12.4% and 15.0% for data to 0.91 A resolution. The hydrogen atom on the O(gamma) atom of the reactive Ser70 is clearly seen for the first time, bridging to the water molecule activated by Glu166. Though hydrogen atoms on the nearby Lys73 are not seen, this observation of the Ser70 hydrogen atom and the hydrogen bonding pattern around Lys73 indicate that Lys73 is protonated. These findings support a role for the Glu166-water couple, rather than Lys73, as the general base in the deprotonation of Ser70 in the acylation process of class A beta-lactamases. Overlay of SHV-2 with SHV-1 shows a significant 1-3 A displacement in the 238-242 beta-strand-turn segment, making the beta-lactam binding site more open to newer cephalosporins with large C7 substituents and thereby expanding the substrate spectrum of the variant enzyme. The OH group of the buried Ser238 side-chain hydrogen bonds to the main-chain CO of Asn170 on the Omega loop, that is unaltered in position relative to SHV-1. This structural role for Ser238 in protein-protein binding makes less likely its hydrogen bonding to oximino cephalosporins such as cefotaxime or ceftazidime.  相似文献   

13.
Clavulanic acid is only a modestly effective antibiotic against bacterial infections in humans, but a potent inhibitor/inactivator of beta-lactamase enzymes that confer bacterial resistance. The biosynthetic pathway to clavulanic acid is considerably more complex than that to the structurally related penicillins and cephalosporins and has revealed several interesting reactions.  相似文献   

14.
A novel beta-lactamase (beta-lactam-hydrolase, EC 3.5.2.6) was detected in a culture of Pseudomonas C, an obligatory methylotroph. This is the first beta-lactamase discovered in a methylotrophic organism. The inducible cell-bound enzyme with broad-spectrum activity against penicillins, was purified 77-fold from cell extracts of the methanol-grown bacterium, and its molecular weight was estimated to be 30,000. As a group, the isoxazolyl penicillins are the favored substrates, while cephalosporins are resistant to hydrolysis and act as mild competitive inhibitors. The activity of this M-OXA beta-lactamase focused as a single band at an acidic pI value (5.5) similar to that of PSE- and TEM-type enzymes, but can be clearly distinguished from other OXA-type beta-lactamases, all of which focus in the alkaline region. The enzyme is coded by a non-transferable gene. Based on the sum of its physical and biochemical properties, the M-OXA beta-lactamase is distinguishable from all previously described beta-lactamases, although immunological studies revealed some cross reactivity with the plasmid mediated OXA-2 enzyme.  相似文献   

15.
Thomson JM  Distler AM  Bonomo RA 《Biochemistry》2007,46(40):11361-11368
Amino acid changes at Ambler position R244 in class A TEM and SHV beta-lactamases confer resistance to ampicillin/clavulanate, a beta-lactam/beta-lactamase inhibitor combination used to treat serious infections. To gain a deeper understanding of this resistance phenotype, we investigated the activities of sulbactam and two novel penem beta-lactamase inhibitors with sp2 hybridized C3 carboxylates and bicyclic R1 side chains against a library of SHV beta-lactamase variants at the 244 position. Compared to SHV-1 expressed in Escherichia coli, all 19 R244 variants exhibited increased susceptibility to ampicillin/sulbactam, an important difference compared to ampicillin/clavulanate. Kinetic analyses of SHV-1 and three SHV R244 (-S, -Q, and -L) variants revealed the Ki for sulbactam was significantly elevated for the R244 variants, but the partition ratios, kcat/kinact, were markedly reduced (13 000 --> 相似文献   

16.
A substantial proportion of infections caused by drug-resistant Gram-negative bacteria (GNB) in community and health care settings are recognized to be caused by evolutionarily related GNB strains. Their global spread has been suggested to occur due to human activities, such as food trade and travel. These multidrug-resistant GNB pathogens often harbor mobile drug resistance genes that are highly conserved in their sequences. Because they appear across different GNB species, these genes may have origins other than human pathogens. We hypothesized that saprophytes in common human food products may serve as a reservoir for such genes. Between July 2007 and April 2008, we examined 25 batches of prepackaged retail spinach for cultivatable GNB population structure by 16S rRNA gene sequencing and for antimicrobial drug susceptibility testing and the presence of extended-spectrum beta-lactamase (ESBL) genes. We found 20 recognized GNB species among 165 (71%) of 231 randomly selected colonies cultured from spinach. Twelve strains suspected to express ESBLs based on resistance to cefotaxime and ceftazidime were further examined for bla(CTX-M) and bla(TEM) genes. We found a 712-bp sequence in Pseudomonas teessidea that was 100% identical to positions 10 to 722 of an 876-bp bla(CTX-M-15) gene of an E. coli strain. Additionally, we identified newly recognized ESBL bla(RAHN-2) sequences from Rahnella aquatilis. These observations demonstrate that saprophytes in common fresh produce can harbor drug resistance genes that are also found in internationally circulating strains of GNB pathogens; such a source may thus serve as a reservoir for drug resistance genes that ultimately enter pathogens to affect human health.  相似文献   

17.
Thirteen strains of the gram-negative, facultative phototrophic bacterium Rhodobacter sphaeroides were examined fro susceptibility to beta-lactam antibiotics. All strains were sensitive to the semisynthetic penicillins ampicillin, carbenicillin, oxacillin, cloxacillin, and methicillin, but 10 of the 13 strains were resistant to penicillin G, as well as a number of cephalosporins, such as cephalothin, cephapirin, and cephalosporin C. A beta-lactamase (EC 3.5.2.6) with strong cephalosporinase activity was detected in all of the resistant strains of R. sphaeroides. With strain Y-1 as a model, it was shown that the beta-lactamase was inducible by penicillin G, cephalosporin C, cephalothin, and to some minor extent, cephapirin. The beta-lactamase was located in the periplasmic space, from which it could be extracted by osmotic shock disruption. By using this fraction, the beta-lactamase was purified 34-fold to homogeneity by steps involving batch adsorption to and elution from DEAE-Sephadex A50, chromatography on Q-Sepharose, and preparative polyacrylamide gel electrophoresis. The molecular masses of the native and denatured enzymes were determined to be 38.5 kilodaltons by gel filtration and 40.5 kilodaltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively, indicating a monomeric structure. The isoelectric point was estimated to be at pH 4.3. In Tris hydrochloride buffer, optimum enzyme activity was measured at pH 8.5. The beta-lactamase showed high activity in the presence of the substrates cephalothin, cephapirin, cephalosporin C, and penicillin G, for which the apparent Km values were 144, 100, 65, and 110 microM, respectively. Cephalexin, cepharidine, and cephaloridine were poor substrates. The beta-lactamase was strongly inhibited by cloxacillin and oxacillin but only slightly inhibited by phenylmethylsulfonyl fluoride or thiol reagents such as iodoacetate and p-chloromercuribenzoate.  相似文献   

18.
19.
Beta-lactamases from Yersinia enterocolitica.   总被引:4,自引:0,他引:4  
Two beta-lactamases, A and B, have been shown to be present in a strain of Yersinia enterocolitica (w222). Beta-Lactamase A hydrolyses a variety of penicillins and cephalosporins. This enzyme is sensitive to thiol reagents, is only partially inhibited by 0-1 mM-cloxacillin and has a molecular weight of approximatley 20,000.beta-Lactamase B shows strong cephalosporinase activity but does not hydrolyse some of the penicillins. It is more resistant than beta-lactamase A to thiol reagents, is completely inhibited by 0-1 mM-cloxacillin and has a molecular weight of about 34,000. With cephaloridine as a substrate, which is readily hydrolysed by both enzymes, about 85% of the total activity of a cell extract is due to beta-lactamase A and 15% to B. Addition of 6-aminopenicillanic acid to the culture during growth results in a 2-to4-fold selective increase in the amount of beta-lactamase B. Two beta-lactamases similar to enzymes A and B have been found in five other strains of Y. enterocolitica. In contrast, only one beta-lactamase, similar to enzyme B, has been detected in a different strain of Y. enterocolitica (H66), which is abnormal in that it is sensitive to ampicillin. Addition of 6-aminopenicillanic acid to cultures of this strain results in an 8-to 10-fold increase in beta-lactamase production.  相似文献   

20.
1. The beta-lactamase (penicillin amido-beta-lactamhydrolase EC 3.5.2.6) appeared to be periplasmic rather than truly intracellular, since it was released by freeze-thawing without gross morphological changes in the cell. 2. The partially purified enzyme had pI between 5.0 and 5.5, mol. wt 32 000 and a broad pH vs activity profile with a maximum at pH 8. 3. The cephalosporins tested were hydrolysed less rapidly than most of the penicillins, and the Km values for penicillins were lower than for cephalosporins. However cloxacillin was hydrolysed very slowly although it was strongly bound. The substrate-induced inactivation common to many beta-lactamases was particularly marked with cephaloridine and cloxacillinmthe cloxacillin-induced inactivation was shown to be reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号