首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Leaf extracts of two plants, Magnolia kobus and Diopyros kaki, were used for ecofriendly extracellular synthesis of metallic gold nanoparticles. Stable gold nanoparticles were formed by treating an aqueous HAuCl4 solution using the plant leaf extracts as reducing agents. UV–visible spectroscopy was used for quantification of gold nanoparticle synthesis. Only a few minutes were required for >90% conversion to gold nanoparticles at a reaction temperature of 95 °C, suggesting reaction rates higher or comparable to those of nanoparticle synthesis by chemical methods. The synthesized gold nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and particle analysis using a particle analyzer. SEM and TEM images showed that a mixture of plate (triangles, pentagons, and hexagons) and spherical structures (size, 5–300 nm) were formed at lower temperatures and leaf broth concentrations, while smaller spherical shapes were obtained at higher temperatures and leaf broth concentrations.  相似文献   

2.
Only tail tendon (TT) collagen has a sharp X-ray diffraction pattern, so that packing models for the equatorial arrangement of molecules in collagen fibrils have been developed primarily for TT collagen. A more general structure is developed applicable to all type I collagen tissues. Comparison of water content-equatorial diffraction spacing plots of several collagens shows all have essentially the same dry state diffraction spacing but differ as water content increases. TT collagen has the least spacing and the sharpest pattern. The interplanar spacing of the Hulmes-Miller quasi-hexagonal model for TT collagen was used to calculate the intermolecular spacing, which matched the observed diffraction spacing for bone matrix collagen. It is inferred that wet bone matrix collagen packs in a rectangular pattern because of the interaction between the many intermolecular crosslinks and the water absorbed on the collagen molecules. This argument also indicates that TT collagen packs into a quasi-hexagonal scheme because there are fewer intermolecular crosslinks than in bone matrix collagen.  相似文献   

3.
Cortical bone is a composite material composed of hydroxyapatite (HAp) and collagen. As HAp is a crystalline structure, an X-ray diffraction method is available to measure the strain of HAp crystals. However, HAp crystals in bone tissue have been known to have the low degree of crystallization. Authors have proposed an X-ray diffraction method to measure the lattice strain of HAp crystals from the diffusive intensity profile due to low crystallinity. The precision of strain measurement was greatly improved by this method. In order to confirm the possibility of estimating the bone tissue strain with measurements of the strain of HAp crystals, this work investigates the relationship between bone tissue strain on a macroscopic scale and the lattice strain of HAp crystals on a microscopic scale. The X-ray diffraction experiments were performed under tensile loading. Strip bone specimens of 40x6x0.8mm in size were cut from the cortical region of a shaft of bovine femur. A stepwise tensile load was applied in the longitudinal direction of the specimen. By detecting the diffracted X-ray beam transmitted through the specimen, the lattice strain was directly measured in the loading direction. As a result, the lattice strain of HAp crystals showed lower value than the bone tissue strain measured by a strain gage. The bone tissue strain was described with the mean lattice strain of the HAp crystals and the elastic modulus.  相似文献   

4.
Clustering of acetylcholine receptors (AChR) at the postsynaptic membrane is a crucial step in the development of neuromuscular junctions (NMJ). During development and after denervation, aneural AChR clusters form on the sarcolemma. Recent studies suggest that these receptors are critical for guiding and initiating synaptogenesis. The aim of this study is to investigate the effect of agrin and laminin‐1; agents with known AChR clustering activity; on NMJ formation and muscle maturation. Primary myoblasts were differentiated in vitro on collagen, laminin or collagen and laminin‐coated surfaces in the presence or absence of agrin and laminin. The pretreated cells were then subject to innervation by PC12 cells. The number of neuromuscular junctions was assessed by immunocytochemical co‐localization of AChR clusters and the presynaptic marker synaptophysin. Functional neuromuscular junctions were quantitated by analysis of the level of spontaneous as well as neuromuscular blocker responsive contractile activity and muscle maturation was assessed by the degree of myotube striation. Agrin alone did not prime muscle for innervation while a combination of agrin and laminin pretreatment increased the number of neuromuscular junctions formed and enhanced acetylcholine based neurotransmission and myotube striation. This study has direct clinical relevance for treatment of denervation injuries and creating functional neuromuscular constructs for muscle tissue repair. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 551–565, 2016  相似文献   

5.
Collagen-phosphate composites (COL/β-TCP) are novel materials that have the potential to be used as bone analogues. The aim of our study was to develop a porous bioactive material composed of type I collagen, the main bone protein and tricalcium phosphate, the mineral phase of natural bone, and investigate their in vitro biocompatibility in a human dermal fibroblast culture system. In order to obtain the bioactive materials, type I collagen was isolated from bovine tendon and characterized by physicochemical methods. β-TCP was obtained from calcium carbonate by thermal decomposition at 900 °C temperature. The powder was examined with X-ray diffraction. Two variants of COL/β-TCP scaffolds (P1 and P2) were prepared and examined by scanning electron microscopy. Our results revealed a microporous structure with small white aggregates of β-TCP, non-homogenous scattered in the collagen framework without any preferential orientation. The biocompatibility of the obtained scaffolds was tested by biochemical and histological methods on human fibroblast cultures. Both materials acted as good subtrates for human dermal fibroblast proliferation and migration.  相似文献   

6.
Bone tissue is a composite material composed of hydroxyapatite (HAp) and collagen matrix. As HAp is a crystalline structure, an X-ray diffraction method is available to measure the lattice strain of HAp crystals. However, mineral particles of HAp in bone have much lower crystallinity than usual crystalline materials, which show a diffusive intensity profile of X-ray diffraction. It is not easy to determine quantitatively an infinitesimal strain of HAp from the peak position of diffusive profile. In order to improve the accuracy of strain measurement of HAp in bone tissue and to obtain reproducible results, this paper proposes an X-ray diffraction method applied to a diffusive profile for low crystallinity. This method is to estimate the lattice strain of HAp using not a peak position but a whole diffraction profile. In this experiment, a strip specimen of 28 x 8 x 2 mm was made from bone axial, outside circumferential and cross-sectional circumferential region in the cortical bone of bovine femur. The X-ray diffraction measurements were carried out before and after applying an external load. As a result, the precision of strain measurement was much improved by this method. Although a constant value of macroscopic strain was applied in the specimen, the lattice strain had a lower value than the macroscopic strain and had a different value in each specimen.  相似文献   

7.
The major resolution of the study was to develop a dynamic form of natural biopolymer material to improve the wound healing by inhibition of biofilm formation on the surface. The extraction of collagen was effectively prepared from Scomberomorus lineolatus fish skin. Lyophilized collagen sheet was liquefied in 0.5M acetic acid to form acidic solubilized collagen (ASC) for further analysis. Physicochemical characterization of ASC was performed by various techniques using a standard protocol. The yield of ASC form S.lineolatus is higher (21.5%) than the previous reported studies. The effect of collagen solubility is gradually decreases with increasing concentration of NaCl and collagen is mostly soluble in acidic pH conditions. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of ASC contains α chain composition of α1 and α2 subunits and was characterized as type I collagen. Ultraviolet absorption was regulated as the appropriate wavelength to optimize the collagen. Fourier-transform infrared spectroscopy and X-ray diffraction confirmed that the isolated collagen is a triple-helical structure. The biofilm formation of Pseudomonas aeruginosa was significantly reduced by collagen incorporated with isolated 3,5,7-trihydroxyflavone (collagen-TF) sheet up to 70%. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay executed on fibroblast cell lines (L929) shows that the collagen-TF sheet was 100% compatible to enrich the cell adhesion and proliferation. The current study was the first report to extract, purify, and characterize ASC from S. lineolatus fish skin and characterize as type I collagen. Based on the result, we design the natural biodegradable collagen loaded with TF compound (collagen-TF) for antibiofilm properties. Compared with different sources of polymer, fish skin collagen is more effective and can be used as a biopolymer sheet for wound healing, food, drug delivery, tissue engineering, and pharmaceutical application.  相似文献   

8.
Force constant values for thermal vibrational motion of a collagen molecule along the helix axis in tendon, completely demineralized bone (CDB), and partially demineralized bone (PDB) were estimated by determining the Debye–Waller factor (DW factor) for the diffracted X-ray intensity from these specimens. The DW factor for nominal value of 0.286 nm meridional diffraction representing a period along the helical axis of a collagen molecule was measured. As the atomic scattering factor of mineral constituents is much larger than that of collagen, it is difficult to detect the diffraction from collagen in bone specimen. Therefore, PDB was used in this study. In order to compare obtained force constant value for CDB with mechanical properties of collagen in the literature, the value was translated into Young's modulus value using the cross-sectional area of a collagen molecule. In the case of collagen in PDB, i.e., collagen with the close presence of HAp mineral particles, as the DW factor of the diffracted intensity by hydroxyapatite (HAp) was considered to be negligible compared with that of collagen, the DW factor determined was interpreted as that of collagen molecule in PDB specimen. The force constant value obtained for collagen in PDB was significantly larger than that of collagen in CDB. This result was thought to be a manifestation of the hardening of collagen matrix in bone by HAp mineral particles and the first straightforward evidence for a difference in collagen properties depending on the presence of HAp mineral particles. The method employed in this study can be utilized for detecting mechanical properties of the individual constituents of composite materials.  相似文献   

9.
Resting cyst formation of Eutreptiella gymnastica Throndsen was observed during a mesocosm experiment, where nutrient enrichment had induced almost a unialgal bloom. Cells and resting cysts of E. gymnastica were examined in scanning (SEM) and transmission electron microscopy (TEM) and light microscopy. Mature cysts were spherical, with a smooth thick mucilaginous cover that appeared layered when observed with the TEM. Intermediate forms were spherical and lacking flagella and a mucilaginous cover; the euglenoid pellicular striation and canal opening were easily visible. The volume of these intermediate spherical cells and mature cysts was estimated to have increased threefold compared to flagellated cells and contained many paramylon grains. When the cells were grazed by zooplankton, the paramylon grains passed the gut intact and were packed into fecal pellets. Intact undigested paramylon grains were observed in SEM after the breaking up of the pellets.  相似文献   

10.
The in situ supermolecular structure of type I collagen.   总被引:1,自引:0,他引:1  
BACKGROUND: The proteins belonging to the collagen family are ubiquitous throughout the animal kingdom. The most abundant collagen, type I, readily forms fibrils that convey the principal mechanical support and structural organization in the extracellular matrix of connective tissues such as bone, skin, tendon, and vasculature. An understanding of the molecular arrangement of collagen in fibrils is essential since it relates molecular interactions to the mechanical strength of fibrous tissues and may reveal the underlying molecular pathology of numerous connective tissue diseases. RESULTS: Using synchrotron radiation, we have conducted a study of the native fibril structure at anisotropic resolution (5.4 A axial and 10 A lateral). The intensities of the tendon X-ray diffraction pattern that arise from the lateral packing (three-dimensional arrangement) of collagen molecules were measured by using a method analogous to Rietveld methods in powder crystallography and to the separation of closely spaced peaks in Laue diffraction patterns. These were then used to determine the packing structure of collagen by MIR. CONCLUSIONS: Our electron density map is the first obtained from a natural fiber using these techniques (more commonly applied to single crystal crystallography). It reveals the three-dimensional molecular packing arrangement of type I collagen and conclusively proves that the molecules are arranged on a quasihexagonal lattice. The molecular segments that contain the telopeptides (central to the function of collagen fibrils in health and disease) have been identified, revealing that they form a corrugated arrangement of crosslinked molecules that strengthen and stabilize the native fibril.  相似文献   

11.
The application of transmission electron microscopy (TEM) and atomic-force microscopy (AFM) aid the acquisition of detailed structural information on the process of hard tissue formation. The sutural mineralization of rat calvaria is taken as a model for a collagen-related mineralization system. After cryofixation or chemical fixation an anhydrous tissue preparation technique with no staining procedures is used. The atomic-force microscope and the transmission electron microscope are used for structural analysis of the mineralizing region of the sutural tissue. With the application of AFM the collagen macroperiod is shown to be well represented in the unmineralized sutural tissue. At the mineralization front the collagen fibrils are found to be thickened and to change to a characteristic stacked platelet structure. Using TEM the macroperiod is faintly visible before mineral crystallites have formed and is more prominent after the apatite crystallization has started in the fibrils. In this step a needle-like structure of the newly formed apatitic crystals is visible.  相似文献   

12.
The ability of seeds to withstand dehydration indicates that their membranes may maintain structural integrity even when dry. Analysis of polar lipids (the principal lipidic constituents of the membranes) from soybean seeds (Glycine-max (L.) Merr.) by X-ray diffraction indicated that even in the dehydrated state the lipids retained a lamellar (bilayer) configuration. As the degree of hydration was raised, evidence of some structural alteration (apparent as an abrupt increase in bilayer spacing) was obtained from diffraction patterns of both the extracted lipid and particles of seed tissue. In seed tissue this increase in bilayer spacing occurred at a hydration level just above that at which free water could be detected by nuclear-magnetic-resonance analysis. The water content at which the increase in bilayer spacing occurred was higher in the seed tissue than in the extracted polar lipids, probably because other cell components restricted the availability of free water in the seed.Abbreviation NMR nuclear-magnetic resonance  相似文献   

13.
Summary Cells from fetal or neonatal skeleton can synthesize bone-like tissue in vitro. In contrast, formation of bone-like tissue in vitro by cells derived from adult animals has rarely been reported and has not been achieved using cells from bone marrow. We have explored development of bone-like tissue in vitro by bone marrow stromal cells. Marrow stromal cells obtained from 40–43-day-old Wistar rats were grown in primary culture for 7 days and then subcultured for 20–30 days. Cells were cultured in either -minimal essential medium containing 15% fetal bovine serum, antibiotics, and 50 g/ml ascorbic acid, or the above medium supplemented with either 10 mM Na--glycerophosphate, 10-8 M dexamethasone, or a combination of both. Cultures were examined using phase-contrast microscopy, undemineralized and demineralized tissue histology, histochemistry (for alkaline phosphatase activity), immunohistochemistry (for collagen type, osteonectin, and bone Glaprotein), scanning and transmission electron microscopy, energy dispersive X-ray microanalysis, and X-ray diffraction. Collagenous, mineralized nodules exhibiting morphological and ultrastructural characteristics similar to bone were formed in the cultures, but only in the presence of both -glycerophosphate and dexamethasone. Cells associated with the nodules exhibited alkaline phosphatase activity. The matrix of the nodules was composed predominantly of type-I collagen and both osteonectin and Glaprotein were present. X-ray microanalysis showed the presence of Ca and P, and X-ray diffraction indicated the mineral to be hydroxyapatite. The nodules were also examined for bone morphogenetic protein-like activity. Paired diffusion chambers containing partly demineralized nodules and fetal muscle were implanted intraperitonealy in rats. Induction of cartilage in relation to muscle was observed histologically after 40 days in the chambers. This finding provided further support for the bone-like nature of the nodules. The observations show that bone-like tissue can be synthesized in vitro by cells cultured from young-adult bone marrow, provided that the medium contains both -glycerophosphate and, particularly, dexamethasone.  相似文献   

14.
The development of an eco-friendly and reliable process for the synthesis of gold nanomaterials (AuNPs) using microorganisms is gaining importance in the field of nanotechnology. In the present study, AuNPs have been synthesized by bio-reduction of chloroauric acid (HAuCl4) using the fungal culture filtrate (FCF) of Alternaria alternata. The synthesis of the AuNPs was monitored by UV–visible spectroscopy. The particles thereby obtained were characterized by UV, dynamic light scattering (DLS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM). Energy-dispersive X-ray study revealed the presence of gold in the nanoparticles. Fourier transform infrared spectroscopy confirmed the presence of a protein shell outside the nanoparticles which in turn also support their stabilization. Treatment of the fungal culture filtrate with aqueous Au+ ions produced AuNPs with an average particle size of 12 ± 5 nm. This proposed mechanistic principal might serve as a set of design rule for the synthesis of nanostructures with desired architecture and can be amenable for the large scale commercial production and technical applications.  相似文献   

15.
ABSTRACT The storage carbohydrate granules from Euglena and Pavlova were compared by light and electron microscopy. Freezeetch studies demonstrated that while both types of granules are crystalline, they have different structures. The elemental microfibril of the euglenoid granule measures 4 nm, and the elemental striation of the granule from Pavlova is 22 nm. The granules each have a unique X-ray diffraction pattern. The storage carbohydrate granules from Pavlova are not the same as paramyton, and the term “paramylon” should be reserved for the euglenoid storage carbohydrate.  相似文献   

16.
Fibrillogenesis, the formation of collagen fibrils, is a key factor in connective tissue morphogenesis. To understand to what extent cells influence this process, we systematically studied the physicochemistry of the self-assembly of type I collagen molecules into fibrils in vitro. We report that fibrillogenesis in solutions of type I collagen, in a high concentration range close to that of living tissues (40-300 mg/ml), yields strong gels over wide pH and ionic strength ranges. Structures of gels were described by combining microscopic observations (transmission electron microscopy) with small- and wide-angle X-ray scattering analysis, and the influence of concentration, pH, and ionic strength on the fibril size and organization was evaluated. The typical cross-striated pattern and the corresponding small-angle X-ray scattering 67-nm diffraction peaks were visible in all conditions in the pH 6 to pH 12 range. In reference conditions (pH 7.4, ionic strength = 150 mM, 20 °C), collagen concentration greatly influences the overall macroscopic structure of the resultant fibrillar gels, as well as the morphology and structure of the fibrils themselves. At a given collagen concentration, increasing the ionic strength from 24 to 261 mM produces larger fibrils until the system becomes biphasic. We also show that fibrils can form in acidic medium (pH ∼ 2.5) at very high collagen concentrations, beyond 150 mg/ml, which suggests a possible cholesteric-to-smectic phase transition. This set of data demonstrates how simple physicochemical parameters determine the molecular organization of collagen. Such an in vitro model allows us to study the intricate process of fibrillogenesis in conditions of molecular packing close to that which occurs in biological tissue morphogenesis.  相似文献   

17.
Advancement of biological process for the synthesis of bionanoparticles is evolving into a key area of research in nanotechnology. The present study deals with the biosynthesis, characterization of gold bionanoparticles by Nocardiopsis sp. MBRC-48 and evaluation of their antimicrobial, antioxidant and cytotoxic activities. The gold bionanoparticles obtained were characterized by UV–visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM). The synthesized gold bionanoparticles were spherical in shape with an average of 11.57 ± 1.24 nm as determined by TEM and dynamic light scattering (DLS) particle size analyzer, respectively. The biosynthesized gold nanoparticles exhibited good antimicrobial activity against pathogenic microorganisms. It showed strong antioxidant activity as well as cytotoxicity against HeLa cervical cancer cell line. The present study demonstrated the potential use of the marine actinobacterial strain of Nocardiopsis sp. MBRC-48 as an important source for gold nanoparticles with improved biomedical applications including antimicrobial, antioxidant as well as cytotoxic agent.  相似文献   

18.
A signature feature of collagen is its axial periodicity visible in TEM as alternating dark and light bands. In mature, type I collagen, this repeating unit, D, is 67 nm long. This periodicity reflects an underlying packing of constituent triple‐helix polypeptide monomers wherein the dark bands represent gaps between axially adjacent monomers. This organization is visible distinctly in the microfibrillar model of collagen obtained from fiber diffraction. However, to date, no atomistic simulations of this diffraction model under zero‐stress conditions have reported a preservation of this structural feature. Such a demonstration is important as it provides the baseline to infer response functions of physiological stimuli. In contrast, simulations predict a considerable shrinkage of the D‐band (11–19%). Here we evaluate systemically the effect of several factors on D‐band shrinkage. Using force fields employed in previous studies we find that irrespective of the temperature/pressure coupling algorithms, assumed salt concentration or hydration level, and whether or not the monomers are cross‐linked, the D‐band shrinks considerably. This shrinkage is associated with the bending and widening of individual monomers, but employing a force field whose backbone dihedral energy landscape matches more closely with our computed CCSD(T) values produces a small D‐band shrinkage of < 3%. Since this force field also performs better against other experimental data, it appears that the large shrinkage observed in earlier simulations is a force‐field artifact. The residual shrinkage could be due to the absence of certain atomic‐level details, such as glycosylation sites, for which we do not yet have suitable data. Proteins 2015; 83:1800–1812. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
20.
Tendon attaches to bone across a functionally graded interface, “the enthesis”. A gradient of mineral content is believed to play an important role for dissipation of stress concentrations at mature fibrocartilaginous interfaces. Surgical repair of injured tendon to bone often fails, suggesting that the enthesis does not regenerate in a healing setting. Understanding the development and the micro/nano-meter structure of this unique interface may provide novel insights for the improvement of repair strategies. This study monitored the development of transitional tissue at the murine supraspinatus tendon enthesis, which begins postnatally and is completed by postnatal day 28. The micrometer-scale distribution of mineral across the developing enthesis was studied by X-ray micro-computed tomography and Raman microprobe spectroscopy. Analyzed regions were identified and further studied by histomorphometry. The nanometer-scale distribution of mineral and collagen fibrils at the developing interface was studied using transmission electron microscopy (TEM). A zone (∼20 µm) exhibiting a gradient in mineral relative to collagen was detected at the leading edge of the hard-soft tissue interface as early as postnatal day 7. Nanocharacterization by TEM suggested that this mineral gradient arose from intrinsic surface roughness on the scale of tens of nanometers at the mineralized front. Microcomputed tomography measurements indicated increases in bone mineral density with time. Raman spectroscopy measurements revealed that the mineral-to-collagen ratio on the mineralized side of the interface was constant throughout postnatal development. An increase in the carbonate concentration of the apatite mineral phase over time suggested possible matrix remodeling during postnatal development. Comparison of Raman-based observations of localized mineral content with histomorphological features indicated that development of the graded mineralized interface is linked to endochondral bone formation near the tendon insertion. These conserved and time-varying aspects of interface composition may have important implications for the growth and mechanical stability of the tendon-to-bone attachment throughout development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号