首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parthenocarpic peach fruit (Prunus persica L. Batsch., cv. Redhaven) were induced with 1-(3-chlorophthalimide)-cyclohexane carboxamide (AC 94377). The activities of soluble, and ionically and covalently bound peroxidase and indole-3-acetic acid (IAA) oxidase in the pericarp of both seeded and parthenocarpic fruit were determined from 21–43 days after anthesis. Seedless fruit grew faster during early stage I and ceased growth earlier than seeded fruit. Total peroxidase and IAA oxidase activities increased with development on both types of fruit, but higher values were found in seedless fruit. The ionic fraction showed the greatest increase for both enzyme activities. Isoperoxidase profile showed new cationic isoenzymes and higher levels of the less anionic isoenzymes in the pericarp of seedless fruit, whereas the seeded fruit contained higher levels of the more acidic isoperoxidases.  相似文献   

2.
Ke D  Saltveit ME 《Plant physiology》1988,88(4):1136-1140
Russet spotting (RS) is a physiological disorder induced in iceberg lettuce (Lactuca sativa L.) by exposure to parts per million levels of ethylene at 5 ± 2°C. Ethylene induced phenylalanine ammonia-lyase and ionically bound peroxidase activities that correlated with development of RS symptoms. The ethylene-treated tissue had significantly higher lignin content than air control tissue with lignification localized in walls of RS-affected cells. Ethylene also caused the accumulation of the flavonoids (+)catechin and (−)epicatechin and the chlorogenic acid derivatives 3-caffeoyl-quinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid. These soluble phenolic compounds were readily oxidized to brown substances by polyphenol oxidase isolated from RS tissue. Ethylene substantially increased ionically bound indole-3-acetic acid (IAA) oxidase activity, while IAA application greatly reduced ethylene-induced phenylalanine ammonia-lyase, peroxidase, and IAA oxidase activities, soluble phenolic content, and RS development.  相似文献   

3.
Changes in indole-3-acetic acid (IAA) content of peach (Prunus persica L. Batsch cv. Merry) seeds were followed during fruit development. The highest concentration of IAA, 2.7 g/g fresh weight, was found at the beginning of Stage III of fruit development, approximately 50–60 days after anthesis. The IAA-decarboxylating capacity of crude extracts of seeds was also greatest at 55–60 days after anthesis. Four soluble peroxidase isoenzymes were found on anionic electrophoresis. There were no marked changes in two isoenzymes (R f 0.23 and 0.51), which were present in all three stages of fruit growth. There was a marked increase in a band atR f 0.59 between Stages II and III, and a decrease in a band atR f 0.68 from Stages II to III. Neither band (R f 0.59 and 0.68) was present at Stage I.  相似文献   

4.
The indole-3-acetic acid (IAA) content in peach pericarp (Prunus persica L. Batsch cv. Merry) was highest at early stage I of development (~200 ng/g fresh wt), decreased to the lowest level during stage II, and rose again at stage III to 60–70 ng/g fresh wt. High activity of glutamine synthetase was found in the pericarp during stage I. The soluble peroxidase activity was highest in the meso- and exocarp at stage II, and isoenzymatic changes in this fraction corresponded to the transition from cationic isoenzymes, predominant at stage I, to anionic isoenzymes at stage III. The ionically bound peroxidase activity in these tissues was highest at stage I. The three developmental stages showed marked differences in auxin content and enzyme activities; for peroxidases these changes reflect a developmental expression pattern for the isoenzymes.  相似文献   

5.
The indole-3-acetic acid (IAA) content in peach pericarp (Prunus persica L. Batsch cv. Merry) was highest at early stage I of development (200 ng/g fresh wt), decreased to the lowest level during stage II, and rose again at stage III to 60–70 ng/g fresh wt. High activity of glutamine synthetase was found in the pericarp during stage I. The soluble peroxidase activity was highest in the meso- and exocarp at stage II, and isoenzymatic changes in this fraction corresponded to the transition from cationic isoenzymes, predominant at stage I, to anionic isoenzymes at stage III. The ionically bound peroxidase activity in these tissues was highest at stage I. The three developmental stages showed marked differences in auxin content and enzyme activities; for peroxidases these changes reflect a developmental expression pattern for the isoenzymes.  相似文献   

6.
The growth substances of the seeds of Cassia fistula were studied and the changes in the relative levels in the endosperm and embryo (plus cotyledons) with development of the seed were noted. Indoleacetic acid was found to be the major auxin component of the seed almost throughout its growth and development, while acidic inhibitors possibly belonging to β-complex were also noted in bioassay tests. The main source of the IAA in the seed is the endosperm, although measurable amounts are also present in the embryo. While this IAA activity in the endosperm is detectable till maturity of the fruit, it decreases relatively in the embryo to fall to insignificance at maturity of the seed. However, there is indication of the binding of such IAA in the embryo or the cotyledon, which can be released by alkaline hydrolysis but not before the seeds are matured. No such bound auxin could be detected in the endosperm. The inhibitors, on the other hand, are more prominent in the embryo than in the endosperm, particularly with ageing of the fruit. The possible significance of these changes in the growth factors has been discussed in relation to the age of the seed and the development of the embryo inside it.  相似文献   

7.
Auxins and auxin inhibitors from tissue extracts of normal Nicotiana plants, Nicotiana glauca, N. langsdorffii and their hybrid (which spontaneously produces tumors) were separated by ascending paper chromatography with n-butanol-distilled water. An Avena curvature test was used for demonstrating growth-promoting and growth-inhibiting substances. IAA could be found in extracts of the parents and the hybrid (RF 0.75). Hybrid tissue yielded the highest amount (37.1°), N. glauca tissue less (30.8°), and N. langsdorffii tissue the least amount (8.5°) of IAA. A second growth promoter (RF 0.35) could be separated from the tissue extracts of the parents and the hybrid, but it showed only low activity in the Avena test. Three inhibitors were present in extracts from N. langsdorffii and the hybrid at RF 0.25, 0.45, and 0.85, whereas N. glauca showed only two of them (RF 0.25 and 0.85). The inhibitor with an RF of 0.45 seemed to be identical with the acidic, benzene-insoluble “inhibitor β” of Bennet-Clark and Kefford (1953). The inhibitor (neutral, benzene-soluble) at RF 0.85 could be found in some tissue extracts of the parents and the hybrid, but showed only little activity in the curvature tests. From neutral and from acidic plant extracts within a pH range of 4.4 to 5.8 a third inhibitor with an RF of 0.25 could be separated. It seems that the high concentration of natural IAA in the hybrid is regulated by a variety of inhibitors with different specificities in the growth-regulating process. Nicotiana langsdorffii tissue has much less auxin but the same variety of inhibitors as the hybrid, whereas N. glauca tissue contains less auxin than the hybrid and only two of the three inhibitors found in N. langsdorffii and hybrid extracts.  相似文献   

8.
Hypocotyl explants of Linum usitatissimum were induced to form roots without an intermediate eallus phase by incubation on a defined medium. Loosely bound and ionically bound surface-associated proteins were extracted from the explants during root development by sequential vacuum infiltration using distilled water and 100 mM calcium chloride solution. The ionically extracted samples generally had higher peroxidase activity than the secreted samples, but both had reached maxima after 28 days culture. In contrast, the secreted samples were more able to oxidise indole-3-acetic acid (IAA) than the ionically-extracted samples. After 14 days culture the peroxidase and IAA-oxidase activities of the two samples were approximately equal, but by 35 days the secreted sample was twice as effective in oxidising IAA as the ionically extracted sample. The results suggest an accumulation of a loosely associated IAA-oxidase/peroxidase on the surfaces of the explants during root growth and development. Five anionic (A1–A5) and five cationic (C1–C5) isozymes were identified using non-denaturing PAGE. All five anionic isozymes were present throughout the development of roots and became more abundant from 14 days to 35 days culture. In contrast, root development was accompanied by a reduction in the levels of cationic isozymes that are characteristic of hypocotyl tissue. Two cationic isozymes (C3 and C4) were exclusively present during the early phases of root development (14 days) and the other three cationic isozymes were present at 14 days, dropped in abundance at 21 days and then recovered to higher levels after 35 days.The possible roles and consequence of these cationic isozymes and the significance of their removal from the explant surface during root development is discussed.Abbreviations NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - TMB tetramethylbenzidine - o-D bar-dianisidine - SYR syringaldazine - MES 2[morpholino]ethane sulfonic acid - BSA Bovine Serum Albumin  相似文献   

9.
Changes in four peroxidase activity fractions (soluble, membrane-bound, as well as ionically and covalently bound) were studied during development of juvenile and adult avocado leaves. Greater differences were found in the soluble fraction with an increase in total activity at the end of the growth phase. In relation to the ontogenetic stages, there were significant variations in the soluble peroxidase activity of both stages, especially in leaves which have already detained their growth, 263 U/g fresh wt in adult leaves vs. 70 U/g fresh wt juvenile leaves. Moreover, the isozyme profile of this fraction revealed the appearance of an anionic band, Rf 0.35, at much earlier stages in juvenile than in adult leaves. Concerning the other three fractions, there were no marked changes in total activity of either membrane-bound or ionically and covalently bound peroxidases. However, in the isoenzyme profiles of the ionically bound fraction of juvenile leaves, three highly cationic bands appeared at much earlier stages than in adult leaves. In avocado, attempts to use leaf peroxidase activity as marker of ontogenetic age must be taken with caution, since great fluctuations related with developmental stages occur in juvenile and adult leaves.  相似文献   

10.
 A genetic model is proposed for the analysis of embryo and endosperm effects as well as GE interaction effects. An investigation of three malting quality traits in grains of seven parents and their F2s was undertaken in a half-diallel cross of barley (Hordeum distichum L.) over 2 years. The results indicated that the malt Kolbach index (KI), alpha-amylase activity (αAA) and wort soluble nitrogen (Wort-N) are controlled by both embryo genetic effects and endosperm genetic effects. Variance of the endosperm additive effects was obviously larger than that of the embryo additive effects. In the contribution of the embryo genetic effects to variation in malt αAA and Wort-N, the dominance effects were considerably larger than the additive effects. The endosperm dominance effects constituted a major part of the total genetic effect on the KI. Significant endosperm GE interactions were also detected in the malt traits concerned. Endosperm general heritability (h 2 e ) tended to be larger than interaction heritability (h 2 oE or h 2 eE ) for all the traits. Endosperm heterosis was observed to be significantly positive for αAA but negative for Wort-N in the F2 seed generation. Prediction of main gene effects for seven parents showed that ‘Ganmu 2’ and ‘Supi1’ were suitable parental varieties for malt αAA and Wort-N improvement. Our genetic model for malting quality traits and its application in breeding are discussed. Received: 5 August 1997 / Accepted: 11 September 1997  相似文献   

11.
Four anionic peroxidase isoenzymes in main stem tissues of flax (Linum usitatissimum L.) were separated electrophoretically on acrylamide gels and their individual activities measured spectrophotometrically in the gels. Activities were expressed in terms of areas of optical density peaks corresponding to the locations of the isoenzymes. Four isoenzymes were assayed for activity in this way in two inbred genotypes and their F1, F2, and first backcross progeny. Crosses were made in all combinations between the two parental genotypes and their reciprocal F1 hybrids to produce 16 progenies of the generations above. Isoenzyme separations and assays for activity were carried out on individual plants of each of the 16 progenies. A model estimating cytoplasmic effects across segregating generations as differences between all progeny of the one compared to the other F1 reciprocal hybrid, either in a male or a female direction, was fitted to the activity data by weighted least-squares procedures. Cytoplasmic effects transmitted through male gametes from the F1 reciprocals were demonstrable for three of the four anionic peroxidase isoenzymes.Supported in part by the National Research Council of Canada.  相似文献   

12.
Summary Genetic analyses were conducted on peroxidase of the embryo and endosperm of seeds of one open pollinated and six inbred lines of cultivated rye (Secale cereale L.), and one line of Secale vavilovii Grossh. The analyses of the individual parts of the S. cereale seed yield a total of 14 peroxidase isozymes. Isozymes m, a, b, c, d, e, f and g (in order from faster to slower migration) were found in the embryo plus scutellum, while isozymes 1, 2, 3, 4, 5 and 6 (also from faster to slower migration) were peculiar of the endosperm. S. vavilovii has isozymes m, c1, d, e, f and g in its embryo plus scutellum, and isozyme 2 in the endosperm. Segregation data indicated that at least 13 different loci would be controlling the peroxidase of S. cereale. Isozymes a and b are controlled by alleles of the same locus, all the other loci have one active and dominant allele coding for one isozyme, and other null and recessive allele. The estimation of linkage relationships shows that five endosperm loci are linked, and tentative maps are shown. A possible dosage effect and the existence of controlling gene(s) for endosperm isozyme 4 is reported. All these data and the high frequency of null alleles found are discussed in relation to recent reports.  相似文献   

13.
Arabidopsis APETALA2 (AP2) controls seed mass maternally, with ap2 mutants producing larger seeds than wild type. Here, we show that AP2 influences development of the three major seed compartments: embryo, endosperm, and seed coat. AP2 appears to have a significant effect on endosperm development. ap2 mutant seeds undergo an extended period of rapid endosperm growth early in development relative to wild type. This early expanded growth period in ap2 seeds is associated with delayed endosperm cellularization and overgrowth of the endosperm central vacuole. The subsequent period of moderate endosperm growth is also extended in ap2 seeds largely due to persistent cell divisions at the endosperm periphery. The effect of AP2 on endosperm development is mediated by different mechanisms than parent-of-origin effects on seed size observed in interploidy crosses. Seed coat development is affected; integument cells of ap2 mutants are more elongated than wild type. We conclude that endosperm overgrowth and/or integument cell elongation create a larger postfertilization embryo sac into which the ap2 embryo can grow. Morphological development of the embryo is initially delayed in ap2 compared with wild-type seeds, but ap2 embryos become larger than wild type after the bent-cotyledon stage of development. ap2 embryos are able to fill the enlarged postfertilization embryo sac, because they undergo extended periods of cell proliferation and seed filling. We discuss potential mechanisms by which maternally acting AP2 influences development of the zygotic embryo and endosperm to repress seed size.  相似文献   

14.
Summary A relationship between height genes (dw locus) and perioxidase was demonstrated by extracting and determining peroxidase specific activity in internode tissue from different height isogenic lines of sorghum Sorghum bicolor (L.) Moench]. Tall plants (2 dwarf) had less peroxidase per gram tissue than their short counterparts (3 dwarf); their F1 offspring internodes were closer but had more peroxidase than the tall parent. Peroxidase in the F2 offspring was inversely related to their height and followed a simply-inherited pattern similar to that for height.Among different tissues analyzed, peroxidase concentration in roots was higher than in leaves and internodes, whole internode higher than in pith, and seed embryo higher than in endosperm. Peroxidase activity of nonviable seeds was negligible.Isoelectric focusing provided a more detailed peroxidase zymogram than did gel electrophoresis. Differences in peroxidase bands among tall and short parental plants, F1 and F2 segregating groups all appear to be reflected by intensity differences rather than by position or number of bands.Activities of nitrate reductase and acid phosphatase did not correlate with height. That finding provides a control and suggests that peroxidase activity is not associated with height by chance but may have a functional relationship.Contribution no. 1628-j, Dept. of Agronomy and no. 188-j, Dept. of Biochemistry, and no. 962-j, Dept. of Grain Science and Industry, Kansas State University, Kansas Agricultural Experiment Station, Manhattan, Kansas 66506.  相似文献   

15.
Summary Lysine is a limiting amino acid for optimal nutritional quality in rice grain. In vitro selections using inhibitory levels of lysine plus threonine or s-aminoethylcysteine allow the predictable recovery of variants with elevated levels of lysine and protein. These methods may generate useful starting germplasm for plant breeders. This study was conducted to define the genetics of lysine mutants in progeny from crosses of mutants derived from cells cultured in vitro in the presence of inhibitory levels of lysine plus threonine and s-(2-aminoethyl)-cysteine. In vitro selections produce a wide range of mutants, including endosperm mutants with elevated lysine and protein levels as well as mutants for high and low seed weights. Mutants were analyzed for lysine content by the endosperm half-seed method in which the halves without the embryo were ground and acid hydrolyzed for amino acid determinations. The halves with the embryos were preserved for later germination. In two different F2 populations derived from a cross of a selected mutant x M-101, a parental marker, there was an inverse relationship between seed weight and percent lysine in endosperm protein (R2 0.52 and 0.56). The F2 segregation patterns show that elevated lysine is inherited as a recessive gene and that increased lysine is correlated with decreased seed size. F3 and F4 data provide evidence for the transmission of high lysine genes to advanced germplasm in rice. This work supports our earlier conclusions that high lysine phenotypes can be recovered predictably from in vitro selections. The elevated lysine phenotypes are frequently, but not exclusively, associated with opaque seed. Some segregants from crosses produced increased lysine in plants with near normal seed weight and good fertility.Research done under the auspices of the USDA, ARS, Plant Sciences Institute, Plant Molecular Biology Laboratory, Beltsville, MD 20705, USA  相似文献   

16.
Summary The maize mutant defective endosperm-B18 (de *-B18), which is recessive to its wildtype, accumulates substantially less dry matter in the endosperm than its normal counterpart. Both free and bound indole-acetic acid (IAA) content has been measured at 5 different developmental stages. In endosperm tissue, the level of IAA is at least 15 times lower in the mutantde * -B18 than in the wildtype. The situation found in the diploid tissues is somewhat different: in the mature embryo the level of total IAA is lower in the mutant than in the wildtype, while in 4-day old seedlings the level of total IAA is, to some degree, similar in both genotypes. Naphthalene-acetic acid (NAA), a stable synthetic auxin which mimics IAA in its biochemical effects, is able to normalize the seed weight of the mutant when applied to developing grains. The results favor the conclusion that in maize endosperm the mutationde * -B18 is involved in IAA metabolism.  相似文献   

17.
-Cotyledons from 5-day germinated seed of Arachis hypogaea were heated in a moisturized chamber at temperatures from 25 to 121°. Proteins were extracted in phosphate buffer and analyzed with horizontal starch gel electrophoresis to determine the effect of heat on migration patterns of soluble proteins, malate dehydrogenase, glutamate dehydrogenase, leucine aminopeptidase, peroxidases and nonspecific esterases. The intensity of staining of soluble proteins from 5-day cotyledons began decreasing at 80–90°; very little staining occurred at 100° with the exception of a distinct band at Rf 1·0. Glutamate dehydrogenase and benzidine peroxidase retained some activity at 80° but other enzymes were inactivated at temperatures near 65°. Differential heat sensitivities of isoenzymes were obvious. Heat did not alter the Rf values of the bands of soluble proteins or enzymes but influenced the intensity of staining. Two-year storage at 4° of viable seed and 33-month storage at -10° of frozen extracts from dormant seed had no influence upon migration patterns of soluble proteins and enzymes assayed.  相似文献   

18.
Abstract

Seed formation involves not only the embryo and endosperm development, but also the formation of a series of either ephemeral or non-ephemeral structures. In this article, we study several of those structures in Cytisus multiflorus and Cytisus striatus. The endosperm development is first nuclear and later cellular, except for the chalazal area, whose development is always nuclear. It generates, in the early developmental stages, a sac-like haustorium. As the seed develops, two structures seem to be closely related to nutrient mobilization to the embryo sac: on the one hand, a group of cells and a channel, located in the chalazal area and closely related between them and to the endosperm haustorium, which could be interpreted as a hypostase and on the other hand, an endothelium, derived from the inner integument, which later degenerates leaving no trace in the mature seed. All of these structures would be associated with the directionality of assimilates from ovule tissues to embryo sac. In mature seed and surrounding the embryo appears a unicellular layer of cells rich in proteins (aleurone layer), which is the origin of the outermost layer of the cellular endosperm. The seed coat is made up only of the outer integument.  相似文献   

19.
Changes in IAA oxidase, and in cytoplasmic and ionically wall-bound peroxidase activities were studied in the developing fibres of three cotton cultivars ( Gossypium hirsutum L. cv. Gujarat-67, cv. Khandwa-2 and G. herbaceum L. cv. Digvijay), designated as long, medium and short staple cultivars, respectively. In all the three cultivars IAA oxidase activity was low during the fibre elongation phase, while the activity increased significantly during the secondary thickening phase. The increase in IAA oxidase activity in the three cultivars showed close correspondence with their respective total period of elongation. No relationship between cytoplasmic peroxidase activity and fibre development was discernible. The ionically bound wall peroxidase activity, however, recorded low levels during the elongation phase and higher levels during the secondary thickening phase. The role of wall peroxidase in cessation of elongation growth is discussed.  相似文献   

20.
Iaa oxidase and polyphenol oxidase activities of peanut peroxidase isozymes   总被引:1,自引:0,他引:1  
Four anionic isozymes (A1, A2, A4 and A5) from peanut cells in suspension medium possessed IAA oxidase and polyphenol oxidase activities. The specific activities of each of the enzymes differed among the 4 isozymes. The pH optima established in these assays for peroxidase was acidic, for IAA oxidase neutral and for polyphenol oxidase alkaline. All 4 isozymes had different Km and Vmax for the enzyme activities of peroxidase and polyphenol oxidase. The sigmoid kinetics from the IAA oxidase assays for the isozymes probably indicates an allosteric nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号