首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BET3 is a component of TRAPP, a complex involved in the tethering of transport vesicles to the cis-Golgi membrane. The crystal structure of human BET3 has been determined to 1.55-A resolution. BET3 adopts an alpha/beta-plait fold and forms dimers in the crystal and in solution, which predetermines the architecture of TRAPP where subunits are present in equimolar stoichiometry. A hydrophobic pocket within BET3 buries a palmitate bound through a thioester linkage to cysteine 68. BET3 and yeast Bet3p are palmitoylated in recombinant yeast cells, the mutant proteins BET3 C68S and Bet3p C80S remain unmodified. Both BET3 and BET3 C68S are found in membrane and cytosolic fractions of these cells; in membrane extractions, they behave like tightly membrane-associated proteins. In a deletion strain, both Bet3p and Bet3p C80S rescue cell viability. Thus, palmitoylation is neither required for viability nor sufficient for membrane association of BET3, which may depend on protein-protein contacts within TRAPP or additional, yet unidentified modifications of BET3. A conformational change may facilitate palmitoyl extrusion from BET3 and allow the fatty acid chain to engage in intermolecular hydrophobic interactions.  相似文献   

2.
Vesicle tethers are long coiled–coil proteins or multisubunit complexes that provide specificity to the membrane fusion process by linking cargo‐containing vesicles to target membranes. Transport protein particle (TRAPP) is a well‐characterized multisubunit tethering complex that acts as a GTP exchange factor and is present in two cellular forms: a 7 subunit TRAPP I complex required for ER‐to‐Golgi transport, and a 10 subunit TRAPP II complex that mediates post‐Golgi trafficking. In this work, we have identified Tca17, which is encoded by the non‐essential ORF YEL048c, as a novel binding partner of the TRAPP complex. Loss of Tca17 or any of the non‐essential TRAPP subunits (Trs33, Trs65 and Trs85) leads to defects in the Golgi‐endosomal recycling of Snc1. We show that Tca17, a Sedlin_N family member similar to the TRAPP subunit Trs20, interacts with the TRAPP complex in a Trs33‐ and Trs65‐dependent manner. Mutation of TCA17 or TRS33 perturbs the association of Trs65 with the rest of the TRAPP complex and alters the localization of the Rab GTPase Ypt31. These data support a model in which Tca17 acts with Trs33 and Trs65 to promote the assembly and/or stability of the TRAPP complex and regulate its activity in post‐Golgi trafficking events.  相似文献   

3.
The transport protein particle (TRAPP) complexes are involved in the tethering process at different trafficking steps of vesicle transport. We here present the crystal structure of a human Bet3-Tpc6B heterodimer, which represents a core sub-complex in the assembly of TRAPP. We describe a conserved patch of Tpc6 with uncharged pockets, forming a putative interaction interface for an anchoring moiety at the Golgi. The structural and functional comparison of the two paralogs Tpc6A and Tpc6B, only found in some organisms, indicates redundancy and added complexity of TRAPP architecture and function. Both iso-complexes, Bet3-Tpc6A and Bet3-Tpc6B, are able to recruit Mum2, a further TRAPP subunit, and we identify the alpha1-alpha2 loop regions as a binding site for Mum2. Our study reveals similar stability of the iso-complexes and similar expression patterns of the tpc6 variants in different mouse organs. These findings raise the possibility that the Tpc6 paralogs might contribute to the formation of two distinct TRAPP complexes that differ in function.  相似文献   

4.
TRAPP is a multi-subunit complex that acts as a Ypt/Rab activator at the Golgi apparatus. TRAPP exists in two forms: TRAPP I is comprised of five essential and conserved subunits and TRAPP II contains two additional essential and conserved subunits, Trs120 and Trs130. Previously, we have shown that Trs65, a nonessential fungi-specific TRAPP subunit, plays a role in TRAPP II assembly. TRS33 encodes another nonessential but conserved TRAPP subunit whose function is not known. Here, we show that one of these two subunits, nonessential individually, is required for TRAPP II assembly. Trs33 and Trs65 share sequence, intracellular localization and interaction similarities. Specifically, Trs33 interacts genetically with both Trs120 and Trs130 and physically with Trs120. In addition, trs33 mutant cells contain lower levels of TRAPP II and exhibit aberrant localization of the Golgi Ypts. Together, our results indicate that in yeast, TRAPP II assembly is an essential process that can be accomplished by either of two related TRAPP subunits. Moreover, because humans express two Trs33 homologues, we propose that the requirement of Trs33 for TRAPP II assembly is conserved from yeast to humans.  相似文献   

5.
The modular TRAPP complex acts as a guanine‐nucleotide exchange factor (GEF) for Ypt/Rab GTPases. Whereas TRAPP I and TRAPP II regulate the exocytic pathway, TRAPP III functions in autophagy. The TRAPP subunit Trs20 is not required for assembly of core TRAPP or its Ypt1 GEF activity. Interestingly, mutations in the human functional ortholog of Trs20, Sedlin, cause spondyloepiphyseal dysplasia tarda (SEDT), a cartilage‐specific disorder. We have shown that Trs20 is required for TRAPP II assembly and identified a SEDT‐linked mutation, Trs20‐D46Y, which causes a defect in this process. Here we show that Trs20 is also required for assembly of TRAPP III at the pre‐autophagosomal structure (PAS). First, recombinant Trs85, a TRAPP III‐specific subunit, associates with TRAPP only in the presence of Trs20, but not Trs20‐D46Y mutant protein. Second, a TRAPP complex with Ypt1 GEF activity co‐precipitates with Trs85 from wild type, but not trs20ts mutant, cell lysates. Third, live‐cell colocalization analysis indicates that Trs85 recruits core TRAPP to the PAS via the linker protein Trs20. Finally, trs20ts mutant cells are defective in selective and non‐selective autophagy. Together, our results show that Trs20 plays a role as an adaptor in the assembly of TRAPP II and TRAPP III complexes, and the SEDT‐linked mutation causes a defect in both processes.   相似文献   

6.
Uemura T  Sato MH  Takeyasu K 《FEBS letters》2005,579(13):2842-2846
SNAREs (soluble N-ethyl-maleimide sensitive factor attachment protein receptors) which locate on the specific organelle membrane assure the correct vesicular transport by mediating specific membrane fusions. SNAREs are referred to as R- or Q-SNAREs on the basis of the amino acid sequence similarities and specific conserved residues. All of the Arabidopsis R-SNAREs have a N-terminal domain, called the longin domain (LD). In this study, we investigated the vacuolar targeting mechanism of Arabidopsis R-SNAREs. The vacuolar localized AtVAMP711 was used as the mother protein of GFP-tagged chimeric proteins joined to several domains such as the LD, the SNARE motif (SNM) and the transmembrane domain (TMD) of other organelle-localized R-SNAREs. The results showed that, whereas the TMD is not relevant for the vacuolar targeting, a complete LD is essential for the vacuolar and subcellular targeting.  相似文献   

7.
TRAPP complexes, which are large multimeric assemblies that function in membrane traffic, are guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1p. Here we measured rate and equilibrium constants that define the interaction of Ypt1p with guanine nucleotide (guanosine 5'-diphosphate and guanosine 5'-triphosphate/guanosine 5′-(β,γ-imido)triphosphate) and the core TRAPP subunits required for GEF activity. These parameters allowed us to identify the kinetic and thermodynamic bases by which TRAPP catalyzes nucleotide exchange from Ypt1p. Nucleotide dissociation from Ypt1p is slow (∼ 10− 4 s− 1) and accelerated > 1000-fold by TRAPP. Acceleration of nucleotide exchange by TRAPP occurs via a predominantly Mg2+-independent pathway. Thermodynamic linkage analysis indicates that TRAPP weakens nucleotide affinity by < 80-fold and vice versa, in contrast to most other characterized GEF systems that weaken nucleotide binding affinities by 4-6 orders of magnitude. The overall net changes in nucleotide binding affinities are small because TRAPP accelerates both nucleotide binding and dissociation from Ypt1p. Weak thermodynamic coupling allows TRAPP, Ypt1p, and nucleotide to exist as a stable ternary complex, analogous to strain-sensing cytoskeleton motors. These results illustrate a novel strategy of guanine nucleotide exchange by TRAPP that is particularly suited for a multifunctional GEF involved in membrane traffic.  相似文献   

8.
Duarte DT  Hul S  Sacher M 《FEBS letters》2011,585(17):2676-2681
The TRAPP vesicle-tethering complex consists of more than 10 distinct polypeptides and is involved in protein transport. Using the C2 subunit as bait we identified SPATA4, a spermatocyte-specific protein of unknown function, as an interacting partner in a yeast two hybrid screen. Further studies indicate SPATA4 interacts with the C2 portion of the TRAPP complex. SPATA4 fractionates with both cytosolic and nuclear fractions suggesting it may have several distinct functions. SPATA4 is one of only three human proteins that contain a DUF1042 domain and we show that C2 does not interact with another one of the DUF1042 domain-containing proteins. Our results suggest a role for SPATA4 in membrane traffic and a specialized function for TRAPP in spermatocytes.  相似文献   

9.
10.
The TRAPP (transport protein particle) complexes are tethering complexes that have an important role at the different steps of vesicle transport. Recently, the crystal structures of the TRAPP subunits SEDL and BET3 have been determined, and we present here the 1.7 Angstroms crystal structure of human TPC6, a third TRAPP subunit. The protein adopts an alpha/beta-plait topology and forms a dimer. In spite of low sequence similarity, the structure of TPC6 strikingly resembles that of BET3. The similarity is especially prominent at the dimerization interfaces of the proteins. This suggests heterodimerization of TPC6 and BET3, which is shown by in vitro and in vivo association studies. Together with TPC5, another TRAPP subunit, TPC6 and BET3 are supposed to constitute a family of paralogous proteins with closely similar three-dimensional structures but little sequence similarity among its members.  相似文献   

11.
The human pathogen mumps virus, like all paramyxoviruses, encodes a polymerase responsible for virally directed RNA synthesis. The template for the polymerase is the nucleocapsid, a filamentous protein-RNA complex harboring the viral genome. Interaction of the polymerase and the nucleocapsid is mediated by a small domain tethered to the end of the phosphoprotein (P), one of the polymerase subunits. We report the X-ray crystal structure of this region of mumps virus P (the nucleocapsid-binding domain, or NBD, amino acids 343-391). The mumps P NBD forms a compact bundle of three α-helices within the crystal, a fold apparently conserved across the Paramyxovirinae. In solution, however, the domain exists in the molten globule state. This is demonstrated through application of differential scanning calorimetry, circular dichroism spectroscopy, NMR spectroscopy, and dynamic light scattering. While the mumps P NBD is compact and has persistent secondary structure, it lacks a well-defined tertiary structure under normal solution conditions. It can, however, be induced to fold by addition of a stabilizing methylamine cosolute. The domain provides a rare example of a molten globule that can be crystallized. The structure that is stabilized in the crystal represents the fully folded state of the domain, which must be transiently realized during binding to the viral nucleocapsid. While the intermolecular forces that govern the polymerase-nucleocapsid interaction appear to be different in measles, mumps, and Sendai viruses, for each of these viruses, polymerase translocation involves the coupled binding and folding of protein domains. In all cases, we suggest that this will result in a weak-affinity protein complex with a short lifetime, which allows the polymerase to take rapid steps forward.  相似文献   

12.
TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport   总被引:9,自引:0,他引:9  
TRAPP is a conserved protein complex required early in the secretory pathway. Here, we report two forms of TRAPP, TRAPP I and TRAPP II, that mediate different transport events. Using chemically pure TRAPP I and COPII vesicles, we have reconstituted vesicle targeting in vitro. The binding of COPII vesicles to TRAPP I is specific, blocked by GTPgammaS, and, surprisingly, does not require other tethering factors. Our findings imply that TRAPP I is the receptor on the Golgi for COPII vesicles. Once the vesicle binds to TRAPP I, the small GTP binding protein Ypt1p is activated and other tethering factors are recruited.  相似文献   

13.
The C-terminal region of focal adhesion kinase (FAK) consists of a right-turn, elongated, four-helix bundle termed the focal adhesion targeting (FAT) domain. The structure of this domain is maintained by hydrophobic interactions, and this domain is also the proposed binding site for the focal adhesion protein paxillin. Paxillin contains five well-conserved LD motifs, which have been implicated in the binding of many focal adhesion proteins. In this study we determined that LD4 binds specifically to only a single site between the H2 and H3 helices of the FAT domain and that the C-terminal end of LD4 is oriented toward the H2-H3 loop. Comparisons of chemical-shift perturbations in NMR spectra of the FAT domain in complex with the binding region of paxillin and the FAT domain bound to both the LD2 and LD4 motifs allowed us to construct a model of FAK-paxillin binding and suggest a possible mechanism of focal adhesion disassembly.  相似文献   

14.
Kim YG  Raunser S  Munger C  Wagner J  Song YL  Cygler M  Walz T  Oh BH  Sacher M 《Cell》2006,127(4):817-830
Transport protein particle (TRAPP) I is a multisubunit vesicle tethering factor composed of seven subunits involved in ER-to-Golgi trafficking. The functional mechanism of the complex and how the subunits interact to form a functional unit are unknown. Here, we have used a multidisciplinary approach that includes X-ray crystallography, electron microscopy, biochemistry, and yeast genetics to elucidate the architecture of TRAPP I. The complex is organized through lateral juxtaposition of the subunits into a flat and elongated particle. We have also localized the site of guanine nucleotide exchange activity to a highly conserved surface encompassing several subunits. We propose that TRAPP I attaches to Golgi membranes with its large flat surface containing many highly conserved residues and forms a platform for protein-protein interactions. This study provides the most comprehensive view of a multisubunit vesicle tethering complex to date, based on which a model for the function of this complex, involving Rab1-GTP and long, coiled-coil tethers, is presented.  相似文献   

15.
Identification and characterization of five new subunits of TRAPP   总被引:11,自引:0,他引:11  
TRAPP (transport protein particle), a multiprotein complex containing ten subunits, plays a key role in the late stages of endoplasmic reticulum to Golgi traffic in the yeast Saccharomyces cerevisiae. We previously described the identification of five TRAPP subunits (Bet5p, Trs20p, Bet3p, Trs23p and Trs33p). Now we report the identification of the remaining five subunits (Trs31p, Trs65p, Trs85p, Trs120p and Trs130p) as well as an initial characterization of the yeast complex and its human homologue. We find that three of the subunits are dispensable for growth and a novel sequence motif is found in Bet3p, Trs31p and Trs33p. Furthermore, biochemical characterization of both yeast and human TRAPP suggests that this complex is anchored to a Triton X-100 resistant fraction of the Golgi. Differences between yeast and human TRAPP as well as the relationship of TRAPP subunits to other docking/tethering factors are discussed.  相似文献   

16.
TRAPP is a multisubunit tethering complex implicated in multiple vesicle trafficking steps in Saccharomyces cerevisiae and conserved throughout eukarya, including humans. Here we confirm the role of TRAPPC2L as a stable component of mammalian TRAPP and report the identification of four novel components of the complex: C4orf41, TTC-15, KIAA1012, and Bet3L. Two of the components, KIAA1012 and Bet3L, are mammalian homologues of Trs85p and Bet3p, respectively. The remaining two novel TRAPP components, C4orf41 and TTC-15, have no homologues in S. cerevisiae. With this work, human homologues of all the S. cerevisiae TRAPP proteins, with the exception of the Saccharomycotina-specific subunit Trs65p, have now been reported. Through a multidisciplinary approach, we demonstrate that the novel proteins are bona fide components of human TRAPP and implicate C4orf41 and TTC-15 (which we call TRAPPC11 and TRAPPC12, respectively) in ER-to-Golgi trafficking at a very early stage. We further present a binary interaction map for all known mammalian TRAPP components and evidence that TRAPP oligomerizes. Our data are consistent with the absence of a TRAPP I-equivalent complex in mammalian cells, suggesting that the fundamental unit of mammalian TRAPP is distinct from that characterized in S. cerevisiae.  相似文献   

17.
Organization and assembly of the TRAPPII complex   总被引:1,自引:0,他引:1  
Current models suggest that TRAPP tethering complexes exist in two forms. Whereas the seven-subunit TRAPPI complex mediates ER-to-Golgi transport, TRAPPII contains three additional subunits (Trs65, Trs120 and Trs130) and is required for distinct tethering events at Golgi membranes. It is not clear how TRAPPII assembly is regulated. Here, we show that Tca17 is a fourth TRAPPII-specific component, and that Trs65 and Tca17 interact with distinct domains of Trs130 and make different contributions to complex assembly. Whereas Tca17 promotes the stable association of TRAPPII-specific subunits with the core complex, Trs65 stabilizes TRAPPII in an oligomeric form. We show that Trs85, which was previously reported to be a subunit of both TRAPPI and TRAPPII, is not associated with the TRAPPII complex in yeast. However, we find that proteins related to Trs85, Trs65 and Tca17 are part of the same TRAPP complex in mammalian cells. These findings have implications for models of TRAPP complex formation and suggest that TRAPP complexes may be organized differently in yeast and mammals.  相似文献   

18.
Vesicle-mediated transport is a process carried out by virtually every cell and is required for the proper targeting and secretion of proteins. As such, there are numerous players involved to ensure that the proteins are properly localized. Overall, transport requires vesicle budding, recognition of the vesicle by the target membrane and fusion of the vesicle with the target membrane resulting in delivery of its contents. The initial interaction between the vesicle and the target membrane has been referred to as tethering. Because this is the first contact between the two membranes, tethering is critical to ensuring that specificity is achieved. It is therefore not surprising that there are numerous 'tethering factors' involved ranging from multisubunit complexes, coiled-coil proteins and Rab guanosine triphosphatases. Of the multisubunit tethering complexes, one of the best studied at the molecular level is the evolutionarily conserved TRAPP complex. There are two forms of this complex: TRAPP I and TRAPP II. In yeast, these complexes function in a number of processes including endoplasmic reticulum-to-Golgi transport (TRAPP I) and an ill-defined step at the trans Golgi (TRAPP II). Because the complex was first reported in 1998 (1), there has been a decade of studies that have clarified some aspects of its function but have also raised further questions. In this review, we will discuss recent advances in our understanding of yeast and mammalian TRAPP at the structural and functional levels and its role in disease while trying to resolve some apparent discrepancies and highlighting areas for future study.  相似文献   

19.
The modular TRAPP complexes act as nucleotide exchangers to activate the Golgi Ypt/Rab GTPases, Ypt1 and Ypt31/Ypt32. In yeast, TRAPP I acts at the cis‐Golgi and its assembly and structure are well characterized. In contrast, TRAPP II acts at the trans‐Golgi and is poorly understood. Especially puzzling is the role of Trs20, an essential TRAPP I/II subunit required neither for the assembly of TRAPP I nor for its Ypt1‐exchange activity. Mutations in Sedlin, the human functional ortholog of Trs20, cause the cartilage‐specific disorder SEDT. Here we show that Trs20 interacts with the TRAPP II‐specific subunit Trs120. Furthermore, the Trs20‐Trs120 interaction is required for assembly of TRAPP II and for its Ypt32‐exchange activity. Finally, Trs20‐D46Y, with a single‐residue substitution equivalent to a SEDT‐causing mutation in Sedlin, interacts with TRAPP I, but the resulting TRAPP complex cannot interact with Trs120 and TRAPP II cannot be assembled. These results indicate that Trs20 is crucial for assembly of TRAPP II, and the defective assembly caused by a SEDT‐linked mutation suggests that this role is conserved .  相似文献   

20.
The degradation of ssrA(AANDENYALAA)-tagged proteins in the bacterial cytosol is carried out by the ClpXP protease and is markedly stimulated by the SspB adaptor protein. It has previously been reported that the amino-terminal zinc-binding domain of ClpX (ZBD) is involved in complex formation with the SspB-tail (XB: ClpX-binding motif). In an effort to better understand the recognition of SspB by ClpX and the mechanism of delivery of ssrA-tagged substrates to ClpXP, we have determined the structures of ZBD alone at 1.5, 2.0, and 2.5 A resolution in each different crystal form and also in complex with XB peptide at 1.6 A resolution. The XB peptide forms an antiparallel beta-sheet with two beta-strands of ZBD, and the structure shows a 1:1 stoichiometric complex between ZBD and XB, suggesting that there are two independent SspB-tail-binding sites in ZBD. The high-resolution ZBD:XB complex structure, in combination with biochemical analyses, can account for key determinants in the recognition of the SspB-tail by ClpX and sheds light on the mechanism of delivery of target proteins to the prokaryotic degradation machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号