首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vertebrates, the induction of the three germ layers (ectoderm, mesoderm and endoderm) has been extensively studied, but less is known about how they segregate. Here, we investigated whether Delta-Notch signaling is involved in this process. Activating the pathway in the marginal zone with NotchICD resulted in an expansion of endodermal and neural ectoderm precursors, leaving a thinner mesodermal ring around the blastopore at gastrula stage, when germ layers are segregated. On the other hand, when the pathway was blocked with Delta-1STU or with an antisense morpholino oligonucleotide against Notch, the pan-mesodermal brachyury (bra) domain was expanded and the neural border was moved animalwards. Strikingly, the suprablastoporal endoderm was either expanded when Delta-1 signaling was blocked, or reduced after the general knock-down of Notch. In addition, either activating or blocking the pathway delays the blastopore closure. We conclude that the process of delimiting the three germ layers requires Notch signaling, which may be finely regulated by ligands and/or involve non-canonical components of the pathway. Moreover, Notch activity must be modulated at appropriate levels during this process in order to keep normal morphogenetic movements during gastrulation.  相似文献   

2.
3.
In arthropods, annelids and chordates, segmentation of the body axis encompasses both ectodermal and mesodermal derivatives. In vertebrates, trunk mesoderm segments autonomously and induces segmental arrangement of the ectoderm-derived nervous system. In contrast, in the arthropod Drosophila melanogaster, the ectoderm segments autonomously and mesoderm segmentation is at least partially dependent on the ectoderm. While segmentation has been proposed to be a feature of the common ancestor of vertebrates and arthropods, considering vertebrates and Drosophila alone, it is impossible to conclude whether the ancestral primary segmented tissue was the ectoderm or the mesoderm. Furthermore, much of Drosophila segmentation occurs before gastrulation and thus may not accurately represent the mechanisms of segmentation in all arthropods. To better understand the relationship between segmented germ layers in arthropods, we asked whether segmentation is an intrinsic property of the ectoderm and/or the mesoderm in the crustacean Parhyale hawaiensis by ablating either the ectoderm or the mesoderm and then assaying for segmentation in the remaining tissue layer. We found that the ectoderm segments autonomously. However, mesoderm segmentation requires at least a permissive signal from the ectoderm. Although mesodermal stem cells undergo normal rounds of division in the absence of ectoderm, they do not migrate properly in respect to migration direction and distance. In addition, their progeny neither divide nor express the mesoderm segmentation markers Ph-twist and Ph-Even-skipped. As segmentation is ectoderm-dependent in both Parhyale and holometabola insects, we hypothesize that segmentation is primarily a property of the ectoderm in pancrustacea.  相似文献   

4.
Conserved patterns of cell movements during vertebrate gastrulation   总被引:1,自引:0,他引:1  
Vertebrate embryogenesis entails an exquisitely coordinated combination of cell proliferation, fate specification and movement. After induction of the germ layers, the blastula is transformed by gastrulation movements into a multilayered embryo with head, trunk and tail rudiments. Gastrulation is heralded by formation of a blastopore, an opening in the blastula. The axial side of the blastopore is marked by the organizer, a signaling center that patterns the germ layers and regulates gastrulation movements. During internalization, endoderm and mesoderm cells move via the blastopore beneath the ectoderm. Epiboly movements expand and thin the nascent germ layers. Convergence movements narrow the germ layers from lateral to medial while extension movements elongate them from head to tail. Despite different morphology, parallels emerge with respect to the cellular and genetic mechanisms of gastrulation in different vertebrate groups. Patterns of gastrulation cell movements relative to the blastopore and the organizer are similar from fish to mammals, and conserved molecular pathways mediate gastrulation movements.  相似文献   

5.
6.
7.
The regionalisation of cell fate in the embryonic ectoderm was studied by analyzing the distribution of graft-derived cells in the chimaeric embryo following grafting of wheat germ agglutinin--gold-labelled cells and culturing primitive-streak-stage mouse embryos. Embryonic ectoderm in the anterior region of the egg cylinder contributes to the neuroectoderm of the prosencephalon and mesencephalon. Cells in the distal lateral region give rise to the neuroectoderm of the rhombencephalon and the spinal cord. Embryonic ectoderm at the archenteron and adjacent to the middle region of the primitive streak contributes to the neuroepithelium of the spinal cord. The proximal-lateral ectoderm and the ectodermal cells adjacent to the posterior region of the primitive streak produce the surface ectoderm, the epidermal placodes and the cranial neural crest cells. Some labelled cells grafted to the anterior midline are found in the oral ectodermal lining, whereas cells from the archenteron are found in the notochord. With respect to mesodermal tissues, ectoderm at the archenteron and the distal-lateral region of the egg cylinder gives rise to rhombencephalic somitomeres, and the embryonic ectoderm adjacent to the primitive streak contributes to the somitic mesoderm and the lateral mesoderm. Based upon results of this and other grafting studies, a map of prospective ectodermal tissues in the embryonic ectoderm of the full-streak-stage mouse embryo is constructed.  相似文献   

8.
After completion of gastrulation, typical vertebrate embryos consist of three cell sheets, called germ layers. The outer layer, the ectoderm, which produces the cells of the epidermis and the nervous system; the inner layer, the endoderm, producing the lining of the digestive tube and its associated organs (pancreas, liver, lungs etc.) and the middle layer, the mesoderm, which gives rise to several organs (heart, kidney, gonads), connective tissues (bone, muscles, tendons, blood vessels), and blood cells. The formation of the germ layers is one of the earliest embryonic events to subdivide multicellular embryos into a few compartments. In Xenopus laevis, the spatial domains of three germ layers are largely separated along the animal-vegetal axis even before gastrulation; ectoderm in the animal pole region; mesoderm in the equatorial region and endoderm in the vegetal pole region. In this review, we summarise the recent advances in our understanding of the formation of the germ layers in Xenopus laevis.  相似文献   

9.
During blastula and gastrula stages of Xenopus development, cells become progressively and asynchronously committed to a particular germ layer. We have analysed the expression of genes normally expressed in ectoderm, mesoderm or endoderm in individual cells from early and late gastrula embryos, by both in situ hybridization and single-cell RT-PCR. We show that at early gastrula stages, individual cells in the same region may express markers of two or more germ layers, and 'rogue' cells that express a marker outside its canonical domain are also observed at these stages. However, by the late gastrula stage, individual cells express markers that are more characteristic of their position in the embryo, and 'rogue' cells are seen less frequently. These observations exemplify at the gene expression level the observation that cells of the early gastrula are less committed to one germ layer than are cells of the late gastrula embryo. Ectodermal cells induced to form mesendoderm by the addition of Activin respond by activating expression of different mesodermal and endodermal markers in the same cell, recapitulating the response of marginal zone cells in the embryo.  相似文献   

10.
In vertebrate somitogenesis, “segmentation clock” genes (her in zebrafish, hes in mouse, and hairy in chick) show oscillation, synchronized over nearby cells through intercellular interaction. In zebrafish, neighboring cells interact by Delta-Notch signaling to realize synchronization. Under Delta-Notch, however, a cell with a high expression of the segmentation clock gene tends to suppress its expression in adjacent cells, which might produce spatial heterogeneity instead of synchronized oscillation. Here we studied the conditions under which pre-somitic mesoderm cells show synchronized oscillation of gene expression mathematically. We adopted a model that explicitly considers the kinetics of the mRNA and proteins of the segmentation clock gene and cell–cell interaction via Delta-Notch signaling. From statistical study of a model with randomly generated parameters, we revealed how the likelihood that the system generates stable synchronized oscillation depends on the rate of each reaction in the gene–protein kinetics.  相似文献   

11.
Summary The development of abdominal segments in Spirorbis moerchi (Polychaeta: Annelida) was studied by light and electron microscopy. Abdominal segments develop in strict succession from anterior to posterior. Segmentation is initiated in the mesoderm and is followed by segmentation of the ectoderm. The mesoderm of the abdominal segments arises entirely from pygidial residual mesoderm; inward migration of cells from the pygidial ectoderm to give rise to mesoderm does not occur. The primordial germ cells remain distinct from the residual mesoderm of the pygidial growth region. After several abdominal segments have developed, the primordial germ cells migrate posteriorly from the achaetous region, invade the abdominal segments, and give rise to the retroperitoneal gonads. Abdominal segment formation is discussed in terms of heteronomy, primordial germ cell origin, gonad formation, and development of the circulatory system.  相似文献   

12.
The paraxial mesoderm of the neck and trunk of mouse embryos undergoes extensive morphogenesis in forming somites. Paraxial mesoderm is divided into segments, it elongates along its anterior posterior axis, and its cells organize into epithelia. Experiments were performed to determine if these processes are autonomous to the mesoderm that gives rise to the somites. Presomitic mesoderm at the tailbud stage was cultured in the presence and absence of its adjacent tissues. Somite segmentation occurred in the absence of neural tube, notochord, gut and surface ectoderm, and occurred in posterior fragments in the absence of anterior presomitic mesoderm. Mesodermal expression of Dll1 and Notch1, genes with roles in segmentation, was largely independent of other tissues, consistent with autonomous segmentation. However, surface ectoderm was found to be necessary for elongation of the mesoderm along the anterior-posterior axis and for somite epithelialization. To determine if there is specificity in the interaction between ectoderm and mesoderm, ectoderm from different sources was recombined with presomitic mesoderm. Surface ectoderm from only certain parts of the embryo supported somite epithelialization and elongation. Somite epithelialization induced by ectoderm was correlated with expression of the basic-helix-loop-helix gene Paraxis in the mesoderm. This is consistent with the genetically defined requirement for Paraxis in somite epithelialization. However, trunk ectoderm was able to induce somite epithelialization in the absence of strong Paraxis expression. We conclude that somitogenesis consists of autonomous segmentation patterned by Notch signaling and nonautonomous induction of elongation and epithelialization by surface ectoderm.  相似文献   

13.
In Xenopus, ectodermal patterning depends on a mediolateral gradient of BMP signaling, higher in the epidermis and lower in the neuroectoderm. Neural crest cells are specified at the border between the neural plate and the epidermis, at intermediate levels of BMP signaling. We recently described a novel secreted protein, Tsukushi (TSK), which works as a BMP antagonist during chick gastrulation. Here, we report on the Xenopus TSK gene (X-TSK), and show that it is involved in neural crest specification. X-TSK expression accumulates after gastrulation at the anterior-lateral edges of the neural plate, including the presumptive neural crest region. In gain-of-function experiments, X-TSK can strongly enhance neural crest specification by the dorsolateral mesoderm or X-Wnt8 in ectodermal explants, while the electroporation of X-TSK mRNA in the lateral ectoderm of embryos after gastrulation can induce the expression of neural crest markers in vivo. By contrast, depletion of X-TSK in explants or embryos impairs neural crest specification. Similarly to its chick homolog, X-TSK works as a BMP antagonist by direct binding to BMP4. However, X-TSK can also indirectly regulate BMP4 mRNA expression at the neural plate border via modulation of the Delta-Notch signaling pathway. We show that X-TSK directly binds to the extracellular region of X-delta-1, and modulates Delta-dependent Notch activity. We propose that X-TSK plays a key role in neural crest formation by directly regulating BMP and Delta activities at the boundary between the neural and the non-neural ectoderm.  相似文献   

14.
BMPRIA is a receptor for bone morphogenetic proteins with high affinity for BMP2 and BMP4. Mouse embryos lacking Bmpr1a fail to gastrulate, complicating studies on the requirements for BMP signaling in germ layer development. Recent work shows that BMP4 produced in extraembryonic tissues initiates gastrulation. Here we use a conditional allele of Bmpr1a to remove BMPRIA only in the epiblast, which gives rise to all embryonic tissues. Resulting embryos are mosaics composed primarily of cells homozygous null for Bmpr1a, interspersed with heterozygous cells. Although mesoderm and endoderm do not form in Bmpr1a null embryos, these tissues are present in the mosaics and are populated with mutant cells. Thus, BMPRIA signaling in the epiblast does not restrict cells to or from any of the germ layers. Cells lacking Bmpr1a also contribute to surface ectoderm; however, from the hindbrain forward, little surface ectoderm forms and the forebrain is enlarged and convoluted. Prechordal plate, early definitive endoderm, and anterior visceral endoderm appear to be expanded, likely due to defective morphogenesis. These data suggest that the enlarged forebrain is caused in part by increased exposure of the ectoderm to signaling sources that promote anterior neural fate. Our results reveal critical roles for BMP signaling in endodermal morphogenesis and ectodermal patterning.  相似文献   

15.
Summary The cell division pattern of the germ band of Cherax destructor is described from gastrulation to segmentation, limb bud formation, and early neurogenesis. The naupliar segments are formed almost simultaneously from scattered ectoderm cells arranged in a V-shaped germ disc, anterior to the blastopore. No specific cell division pattern is recognisable. The post-naupliar segments are formed successively from front to rear. Most post-naupliar material is budded by a ring of about 39 to 46 ectoteloblasts, which are differentiated successively and in situ in front of the telson ectoderm. The ectoteloblasts give rise to 15 descendant cell rows by unequal divisions in an anterior direction, following a mediolateral mitotic wave. Scattered blastoderm cells of non-ectoteloblastic origin in front of the ectoteloblast descendants and behind the mandibular region are also arranged in rows. Despite their different origins, teloblastic and non-teloblastic rows cleave twice by mediolateral mitotic waves to form 4 regular descendant rows each. Thereafter, the resulting grid-like pattern is dissolved by stereotyped differential cleavages. Neuroblasts are formed during these differential cleavages and segmentation becomes visible. Each ectoderm row represents a parasegmental unit. Therefore, the segmental boundary lies within the area covered by the descendants of 1 row. Segmental structures (limbs, ganglia) are composed of derivatives of 2 ectoderm rows. The results are compared with the early development of other crustaceans and insects in relation to mechanisms of germ band formation, segmentation, neurogenesis, and evolution.  相似文献   

16.
In early embryogenesis of spiders, the cumulus is characteristically observed as a cellular thickening that arises from the center of the germ disc and moves centrifugally. This cumulus movement breaks the radial symmetry of the germ disc morphology, correlating with the development of the dorsal region of the embryo. Classical experiments on spider embryos have shown that a cumulus has the capacity to induce a secondary axis when transplanted ectopically. In this study, we have examined the house spider, Achaearanea tepidariorum, on the basis of knowledge from Drosophila to characterize the cumulus at the cellular and molecular level. In the cumulus, a cluster of about 10 mesenchymal cells, designated the cumulus mesenchymal (CM) cells, is situated beneath the epithelium, where the CM cells migrate to the rim of the germ disc. Germ disc epithelial cells near the migrating CM cells extend cytoneme-like projections from their basal side onto the surface of the CM cells. Molecular cloning and whole-mount in situ hybridization showed that the CM cells expressed a spider homolog of Drosophila decapentaplegic (dpp), which encodes a secreted protein that functions as a dorsal morphogen in the Drosophila embryo. Furthermore, the spider Dpp signal appeared to induce graded levels of the phosphorylated Mothers against dpp (Mad) protein in the nuclei of germ disc epithelial cells. Adding data from spider homologs of fork head, orthodenticle and caudal, we suggest that, in contrast to the Drosophila embryo, the progressive mesenchymal-epithelial cell interactions involving the Dpp-Mad signaling cascade generate dorsoventral polarity in accordance with the anteroposterior axis formation in the spider embryo. Our findings support the idea that the cumulus plays a central role in the axial pattern formation of the spider embryo.  相似文献   

17.
18.
Hensen's node is the gastrulation center in the avian embryo. It is the homologue of the amphibian dorsal blastopore lip and the zebrafish shield. It contains the progeny of all midline cells (floor plate of the neural tube, notochord and dorsal endoderm). However, microsurgical experiments on Hensen's node allow to think that organizer function is due to an extremely limited region situated in the caudal part of Hensen's node which corresponds to the boundary between prospective axial mesoderm rostrally and paraxial mesoderm caudally. This interface is essential for Hensen's node regression and organization of the caudal part of the body.  相似文献   

19.
SUMMARY Using the Hawaiian acorn worm, Ptychodera flava, we began molecular studies on the development of hemichordates, a phylum previously unstudied at this level. Here we review results garnered from the examination of a few specific genes selected to help understand the evolution of vertebrate structures. These studies suggest new ideas about the evolution of developmental mechanisms in the deuterostomes. In a seminal observation, we noted an unexpected zone of expression of the Brachyury gene in the early anterior embryonic ectoderm where the mouth will form. Typically, the Brachyury gene is closely linked to development of the notochord and is expressed around the blastopore and in the posterior mesoderm in most animals. This first expression of Brachyury at the blastopore may represent a regulatory program associated with organizing the original animal head and gut opening, as suggested by the expression of Brachyury during hypostome formation in hydra. We believe that the anterior expression of Brachyury in deuterostomes represents the cooption of the program for organizing the original animal gut opening to form the deuterostome mouth. Recent data from the trochophore larva of a polychaete show that an anterior zone of expression of Brachyury is produced in this protostome by splitting of the Brachyury field during the formation of a gut with a mouth and anus by the lateral fusion of the sides of the blastopore. The ability to initiate independently a secondary regulatory program to organize the new mouth leading to an anterior field of Brachyury expression may be a signal event in the evolution of the deuterostomes. We also noted that the P. flava homolog of T‐brain/Eomes, a gene closely related by sequence and expression around the blastopore to Brachyury and associated with development of the vertebrate brain, also exhibits early posterior expression around the blastopore and a field of de novo anterior ectoderm expression during later embryogenesis. The tissue in the zone of de novo anterior ectoderm expression of Pf‐Tbrain produces the apical organ, a larval neural structure that has been touted as an evolutionary precursor of the chordate dorsal brain. The gene regulatory mechanisms responsible for initiating the anterior zone of de novo expression of T‐brain may represent a cooption to specify early neuroectoderm of the regulatory program evolved first to drive anterior Brachyury expression for deuterostome mouth formation. It will be interesting to examine the possibilities that an ability to initiate the de novo anterior expression of the program that includes T‐brain may be a key event in the evolution of the developmental mechanisms leading to the chordate dorsal nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号