首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
Flavivirus proteins are produced by co- and posttranslational proteolytic processing of a large polyprotein by both host- and virus-encoded proteinases. The viral serine proteinase, which consists of NS2B and NS3, is responsible for cleavage of at least four dibasic sites (2A/2B, 2B/3, 3/4A, and 4B/5) in the nonstructural region. Since the amino acid sequence preceding NS4B shares characteristics with signal peptides used for translocation of nascent polypeptides into the lumen of the endoplasmic reticulum, it has been proposed that cleavage at the 4A/4B site is mediated by a cellular signal peptidase. In this report, cell-free translation and in vivo transient expression assays were used to study processing in the NS4 region of the yellow fever virus polyprotein. With a construct which contained NS4B preceded by 17 residues constituting the putative signal peptide (sig4B), membrane-dependent cleavage at the 4A/4B site was demonstrated in vitro. Surprisingly, processing of NS4A-4B was not observed in cell-free translation studies, and in vivo expression of several yellow fever virus polyproteins revealed that the 4A/4B cleavage occurred only during coexpression of NS2B and the proteinase domain of NS3. Examination of mutant derivatives of the NS3 proteinase domain demonstrated that cleavage at the 4A/4B site correlated with expression of an active NS2B-3 proteinase. From these results, we propose a model in which the signalase cleavage generating the N terminus of NS4B requires a prior NS2B-3 proteinase-mediated cleavage at a novel site (called the 4A/2K site) which is conserved among flaviviruses and located 23 residues upstream of the signalase site. In support of this model, mutations at the 4A/4B signalase site did not eliminate processing in the NS4 region. In contrast, substitutions at the 4A/2K site, which were engineered to block NS2B-3 proteinase-mediated cleavage, eliminated signalase cleavage at the 4A/4B site. In addition, the size of the 3(502)-4A product generated by trans processing of a truncated polyprotein, 3(502)-5(356), was consistent with cleavage at the 4A/2K site rather than at the downstream 4A/4B signalase site.  相似文献   

2.
Several of the cleavages required to generate the mature nonstructural proteins from the flaviviral polyprotein are known to be mediated by a complex consisting of NS2B and a serine proteinase domain located in the N-terminal one-third of NS3. These cleavages typically occur after two basic residues followed by a short side chain residue. Cleavage at a similar dibasic site in the structural region is believed to produce the C terminus of the virion capsid protein. To study this cleavage, we developed a cell-free trans cleavage assay for yellow fever virus (YF)-specific proteolytic activity by using a substrate spanning the C protein dibasic site. Cleavage at the predicted site was observed when the substrate was incubated with detergent-solubilized lysates from YF-infected BHK cells. NS2B and the NS3 proteinase domain were the only YF-specific proteins required for this cleavage. Cell fractionation studies demonstrated that the YF-specific proteolytic activity was membrane associated and that activity could be detected only after detergent solubilization. Previous cell-free studies led to a hypothesis that processing in the C-prM region involves (i) translation of C followed by translocation and core glycosylation of prM by using an internal signal sequence, (ii) signalase cleavage to produce a membrane-anchored form of the C protein (anchC) and the N terminus of prM, and (iii) NS2B-3-mediated cleavage at the anchC dibasic site to produce the C terminus of the virion C protein. However, the results of in vivo transient-expression studies do not support this temporal cleavage order. Rather, expression of a YF polyprotein extending from C through the N-terminal one-third of NS3 revealed that C-prM processing, but not translocation, was dependent on an active NS2B-3 proteinase. This suggests that signalase-mediated cleavage in the lumen of the endoplasmic reticulum may be dependent on prior cleavage at the anchC dibasic site. Possible pathways for processing in the C-prM region are outlined and discussed.  相似文献   

3.
The determinants of cleavage site specificity of the yellow fever virus (YF) NS3 proteinase for its 2B/3 cleavage site have been studied by using site-directed mutagenesis. Mutations at residues within the GARR decreases S sequence were tested for effects on cis cleavage of an NS2B-3(181) polyprotein during cell-free translation. At the P1 position, only the conservative substitution R-->K exhibited significant levels of cleavage. Conservative and nonconservative substitutions were tolerated at the P1' and P2 positions, resulting in intermediate levels of cleavage. Substitutions at the P3 and P4 positions had no effects on cleavage efficiency in the cell-free assay. Processing at other dibasic sites was studied by using transient expression of a sig2A-5(356) polyprotein. Cleavage at the 2B/3 site was not required for processing at downstream sites. However, increased accumulation of high-molecular-weight viral polyproteins was generally observed for mutations which reduced cleavage efficiency at the 2B/3 site. Several mutations were also tested for their effects on viral replication. Virus was not recovered from substitutions which blocked or substantially reduced cleavage in the cell-free assay, suggesting that efficient cleavage at the 2B/3 site is required for flavivirus replication.  相似文献   

4.
B Falgout  R H Miller    C J Lai 《Journal of virology》1993,67(4):2034-2042
Most proteolytic cleavages in the nonstructural protein (NS) region of the flavivirus polyprotein are effected by a virus-encoded protease composed of two viral proteins, NS2B and NS3. The N-terminal 180-amino-acid-region of NS3 includes sequences with homology to the active sites of serine proteases, and there is evidence that this portion of NS3 can mediate proteolytic cleavages. In contrast, nothing is known about required sequences in NS2B. We constructed a series of deletion mutations in the NS2B portion of plasmid pTM/NS2B-30% NS3, which expresses dengue virus type 4 (DEN4) cDNA encoding NS2B and the N-terminal 184 residues of NS3 from the T7 RNA polymerase promoter. Mutant or wild-type plasmids were transfected into cells that had been infected with a recombinant vaccinia virus expressing T7 RNA polymerase, and the protease activities of the expressed polyproteins were assayed by examining the extent of self-cleavage at the NS2B-NS3 junction. The results identify a 40-amino-acid segment of NS2B (DEN4 amino acids 1396 to 1435) essential for protease activity. A hydrophobicity profile of DEN4 NS2B predicts this segment constitutes a hydrophilic domain surrounded by hydrophobic regions. Hydrophobicity profiles of the NS2B proteins of other flaviviruses show similar patterns. Amino acid sequence alignment of this domain of DEN4 NS2B with comparable regions of other proteins of flaviviruses indicates significant sequence conservation, especially at the N-terminal end. These observations suggest that the central hydrophilic domain of NS2B of these other flaviviruses will also prove to be essential for protease activity.  相似文献   

5.
We have tested the hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins by using an efficient in vitro expression system and monospecific antisera directed against the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed by using T7 RNA polymerase, and the RNA was translated in reticulocyte lysates. The resulting protein patterns indicated that proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain within NS3 to the first 184 amino acids but did not eliminate the possibility that sequences within NS2B were also required for proper cleavage. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well.  相似文献   

6.
Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain. Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease activation by NS3 are poorly understood. Here, we report the identification of a conserved hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue within this surface region is also critical for RNA replication and NS5A hyperphosphorylation, two processes known to depend on functional replicase assembly. This dual function of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prerequisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to replicase assembly. Based on our data, we propose a sequential cascade of molecular events: in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this surface region becomes available for functional replicase assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA replication. According to our model, the hydrophobic surface patch on NS3 represents a module critically involved in the temporal coordination of HCV replicase assembly.  相似文献   

7.
Members of the Flaviviridae encode a serine proteinase termed NS3 that is responsible for processing at several sites in the viral polyproteins. In this report, we show that the NS3 proteinase of the pestivirus bovine viral diarrhea virus (BVDV) (NADL strain) is required for processing at nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B but not for cleavage at the junction between NS2 and NS3. Cleavage sites of the proteinase were determined by amino-terminal sequence analysis of the NS4A, NS4B, NS5A, and NS5B proteins. A conserved leucine residue is found at the P1 position of all four cleavage sites, followed by either serine (3/4A, 4B/5A, and 5A/5B sites) or alanine (4A/4B site) at the P1' position. Consistent with this cleavage site preference, a structural model of the pestivirus NS3 proteinase predicts a highly hydrophobic P1 specificity pocket. trans-Processing experiments implicate the 64-residue NS4A protein as an NS3 proteinase cofactor required for cleavage at the 4B/5A and 5A/5B sites. Finally, using a full-length functional BVDV cDNA clone, we demonstrate that a catalytically active NS3 serine proteinase is essential for pestivirus replication.  相似文献   

8.
C Lin  J A Thomson    C M Rice 《Journal of virology》1995,69(7):4373-4380
A virus-encoded serine proteinase mediates four site-specific cleavages in the hepatitis C virus polyprotein. In addition to the catalytic domain, which is located in the N-terminal one-third of nonstructural protein NS3, the 54-residue NS4A protein is required for cleavage at some but not all sites. Here, we provide evidence for a non-ionic detergent-stable interaction between NS4A and the NS3 serine proteinase domain and demonstrate that the central region of NS4A plays a key role in NS4A-dependent processing. Hydrophobic residues, in particular Ile-29, were shown to be important for NS4A activity, and a synthetic peptide, spanning NS4A residues 22 to 34, could substitute for intact NS4A in a cell-free trans cleavage assay. Furthermore, NS4A mutations, which abolished or inhibited processing, correlated with destabilization of the NS3-NS4A complex. These results suggest that a stable interaction exists between the central region of NS4A and the NS3 catalytic domain which is required for NS4A-dependent processing. Since NS4A is required for processing at certain serine proteinase-dependent cleavage sites, this interaction may represent a new target for development of antiviral compounds.  相似文献   

9.
C Lin  J W Wu  K Hsiao    M S Su 《Journal of virology》1997,71(9):6465-6471
Hepatitis C virus encodes a large polyprotein precursor that is proteolytically processed into at least 10 distinct products, in the order NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. A serine proteinase encoded in the N-terminal 181 residues of the NS3 nonstructural protein is responsible for cleavage at four sites (3/4A, 4A/4B, 4B/5A, and 5A/5B) in the nonstructural region. NS4A, a 54-residue nonstructural protein which forms a stable complex with the NS3 proteinase, is required as a cofactor for cleavage at the 3/4A and 4B/5A sites and enhances processing at the 4A/4B and 5A/5B sites. Recently reported crystal structures demonstrated that NS4A forms an integral part of the NS3 serine proteinase. In this report, we present evidence that NS4A forms a nonionic-detergent-stable complex with the NS4B5A polyprotein substrate, which may explain the requirement of NS4A for the 4B/5A cleavage. Isoleucine-29 of NS4A, which has been previously shown to be essential for its proteinase cofactor activity and formation of the NS3 complex, was found to be important for the interaction between NS4A and the NS4B5A substrate. In addition, two more hydrophobic residues in the NS4A central region (valine-23 and isoleucine-25) were also shown to be essential for the cofactor activity and for the interaction with either the NS3 proteinase or the NS4B5A polyprotein substrate. Finally, the possible mechanisms by which these viral proteins interact with each other are discussed.  相似文献   

10.
T J Chambers  A Grakoui    C M Rice 《Journal of virology》1991,65(11):6042-6050
The vaccinia virus-T7 transient expression system was used to further examine the role of the NS3 proteinase in processing of the yellow fever (YF) virus nonstructural polyprotein in BHK cells. YF virus-specific polyproteins and cleavage products were identified by immunoprecipitation with region-specific antisera, by size, and by comparison with authentic YF virus polypeptides. A YF virus polyprotein initiating with a signal sequence derived from the E protein fused to the N terminus of NS2A and extending through the N-terminal 356 amino acids of NS5 exhibited processing at the 2A-2B, 2B-3, 3-4A, 4A-4B, and 4B-5 cleavage sites. Similar results were obtained with polyproteins whose N termini began within NS2A (position 110) or with NS2B. When the NS3 proteinase domain was inactivated by replacing the proposed catalytic Ser-138 with Ala, processing at all sites was abolished. The results suggest that an active NS3 proteinase domain is necessary for cleavage at the diabasic nonstructural cleavage sites and that cleavage at the proposed 4A-4B signalase site requires prior cleavage at the 4B-5 site. Cleavages were not observed with a polyprotein whose N terminus began with NS3, but cleavage at the 4B-5 site could be restored by supplying the the NS2B protein in trans. Several experimental results suggested that trans cleavage at the 4B-5 site requires association of NS2B and the NS3 proteinase domain. Coexpression of different proteinases and catalytically inactive polyprotein substrates revealed that trans cleavage at the 2B-3 and 4B-5 sites was relatively efficient when compared with trans cleavage at the 2A-2B and 3-4A sites.  相似文献   

11.
C Lin  B M Prgai  A Grakoui  J Xu    C M Rice 《Journal of virology》1994,68(12):8147-8157
The hepatitis C virus H strain (HCV-H) polyprotein is cleaved to produce at least 10 distinct products, in the order of NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. An HCV-encoded serine proteinase activity in NS3 is required for cleavage at four sites in the nonstructural region (3/4A, 4A/4B, 4B/5A, and 5A/5B). In this report, the HCV-H serine proteinase domain (the N-terminal 181 residues of NS3) was tested for its ability to mediate trans-processing at these four sites. By using an NS3-5B substrate with an inactivated serine proteinase domain, trans-cleavage was observed at all sites except for the 3/4A site. Deletion of the inactive proteinase domain led to efficient trans-processing at the 3/4A site. Smaller NS4A-4B and NS5A-5B substrates were processed efficiently in trans; however, cleavage of an NS4B-5A substrate occurred only when the serine proteinase domain was coexpressed with NS4A. Only the N-terminal 35 amino acids of NS4A were required for this activity. Thus, while NS4A appears to be absolutely required for trans-cleavage at the 4B/5A site, it is not an essential cofactor for serine proteinase activity. To begin to examine the conservation (or divergence) of serine proteinase-substrate interactions during HCV evolution, we demonstrated that similar trans-processing occurred when the proteinase domains and substrates were derived from two different HCV subtypes. These results are encouraging for the development of broadly effective HCV serine proteinase inhibitors as antiviral agents. Finally, the kinetics of processing in the nonstructural region was examined by pulse-chase analysis. NS3-containing precursors were absent, indicating that the 2/3 and 3/4A cleavages occur rapidly. In contrast, processing of the NS4A-5B region appeared to involve multiple pathways, and significant quantities of various polyprotein intermediates were observed. NS5B, the putative RNA polymerase, was found to be significantly less stable than the other mature cleavage products. This instability appeared to be an inherent property of NS5B and did not depend on expression of other viral polypeptides, including the HCV-encoded proteinases.  相似文献   

12.
Processing of the hepatitis C virus (HCV) H strain polyprotein yields at least nine distinct cleavage products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. As described in this report, site-directed mutagenesis and transient expression analyses were used to study the role of a putative serine proteinase domain, located in the N-terminal one-third of the NS3 protein, in proteolytic processing of HCV polyproteins. All four cleavages which occur C terminal to the proteinase domain (3/4A, 4A/4B, 4B/5A, and 5A/5B) were abolished by substitution of alanine for either of two predicted residues (His-1083 and Ser-1165) in the proteinase catalytic triad. However, such substitutions have no observable effect on cleavages in the structural region or at the 2/3 site. Deletion analyses suggest that the structural and NS2 regions of the polyprotein are not required for the HCV NS3 proteinase activity. NS3 proteinase-dependent cleavage sites were localized by N-terminal sequence analysis of NS4A, NS4B, NS5A, and NS5B. Sequence comparison of the residues flanking these cleavage sites for all sequenced HCV strains reveals conserved residues which may play a role in determining HCV NS3 proteinase substrate specificity. These features include an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position.  相似文献   

13.
Processing of the hepatitis C virus polyprotein is mediated by host cell signalases and at least two virally encoded proteinases. Of these, the serine-type proteinase encompassing the amino-terminal one-third of NS3 is responsible for cleavage at the four sites carboxy terminal of NS3. The activity of this proteinase is modulated by NS4A, a 54-amino-acid polyprotein cleavage product essential for processing at the NS3/4A, NS4A/4B, and NS4B/5A sites and enhancing cleavage efficiency between NS5A and NS5B. Using the vaccinia virus-T7 hybrid system to express hepatitis C virus polypeptides in BHK-21 cells, we studied the role of NS4A in proteinase activation. We found that the NS3 proteinase and NS4A form a stable complex when expressed as a single polyprotein or as separate molecules. Results from deletion mapping show that the minimal NS4A domain required for proteinase activation is located in the center of NS4A between amino acids 1675 and 1686 of the polyprotein. Amino acid substitutions within this domain destabilizing the NS3-NS4A complex also impair trans cleavage at the NS4A-dependent sites. Similarly, deletion of amino-terminal NS3 sequences impairs complex formation as well as cleavage at the NS4B/5A site but not at the NS4A-independent NS5A/5B site. These results suggest that a stable NS3-NS4A interaction is important for cleavage at the NS4A-dependent sites and that amino-terminal NS3 sequences and the central NS4A domain are directly involved in complex formation.  相似文献   

14.
Similar to many flavivirus types including Dengue and yellow fever viruses, the nonstructural NS3 multifunctional protein of West Nile virus (WNV) with an N-terminal serine proteinase domain and an RNA triphosphatase, an NTPase domain, and an RNA helicase in the C-terminal domain is implicated in both polyprotein processing and RNA replication and is therefore a promising drug target. To exhibit its proteolytic activity, NS3 proteinase requires the presence of the cofactor encoded by the upstream NS2B sequence. During our detailed investigation of the biology of the WNV helicase, we characterized the ATPase and RNA/DNA unwinding activities of the full-length NS2B-NS3 proteinase-helicase protein as well as the individual NS3 helicase domain lacking both the NS2B cofactor and the NS3 proteinase sequence and the individual NS3 proteinase-helicase lacking only the NS2B cofactor. We determined that both the NS3 helicase and NS3 proteinase-helicase constructs are capable of unwinding both the DNA and the RNA templates. In contrast, the full-length NS2B-NS3 proteinase-helicase unwinds only the RNA templates, whereas its DNA unwinding activity is severely repressed. Our data suggest that the productive, catalytically competent fold of the NS2B-NS3 proteinase moiety represents an essential component of the RNA-DNA substrate selectivity mechanism in WNV and, possibly, in other flaviviruses. Based on our data, we hypothesize that the mechanism we have identified plays a role yet to be determined in WNV replication occurring both within the virus-induced membrane-bound replication complexes in the host cytoplasm and in the nuclei of infected cells.  相似文献   

15.
Zuo Z  Liew OW  Chen G  Chong PC  Lee SH  Chen K  Jiang H  Puah CM  Zhu W 《Journal of virology》2009,83(2):1060-1070
The NS2B cofactor is critical for proteolytic activation of the flavivirus NS3 protease. To elucidate the mechanism involved in NS2B-mediated activation of NS3 protease, molecular dynamic simulation, principal component analysis, molecular docking, mutagenesis, and bioassay studies were carried out on both the dengue virus NS3pro and NS2B-NS3pro systems. The results revealed that the NS2B-NS3pro complex is more rigid than NS3pro alone due to its robust hydrogen bond and hydrophobic interaction networks within the complex. These potent networks lead to remodeling of the secondary and tertiary structures of the protease that facilitates cleavage sequence recognition and binding of substrates. The cofactor is also essential for proper domain motion that contributes to substrate binding. Hence, the NS2B cofactor plays a dual role in enzyme activation by facilitating the refolding of the NS3pro domain as well as being directly involved in substrate binding/interactions. Kinetic analyses indicated for the first time that Glu92 and Asp50 in NS2B and Gln27, Gln35, and Arg54 in NS3pro may provide secondary interaction points for substrate binding. These new insights on the mechanistic contributions of the NS2B cofactor to NS3 activation may be utilized to refine current computer-based search strategies to raise the quality of candidate molecules identified as potent inhibitors against flaviviruses.  相似文献   

16.
A Cahour  B Falgout    C J Lai 《Journal of virology》1992,66(3):1535-1542
The cleavage mechanism utilized for processing of the NS3-NS4A-NS4B-NS5 domain of the dengue virus polyprotein was studied by using the vaccinia virus expression system. Recombinant vaccinia viruses vNS2B-NS3-NS4A-NS4B-NS5, vNS3-NS4A-NS4B-NS5, vNS4A-NS4B-NS5, and vNS4B-NS5 were constructed. These recombinants were used to infect cells, and the labeled lysates were analyzed by immunoprecipitation. Recombinant vNS2B-NS3-NS4A-NS4B-NS5 expressed the authentic NS3 and NS5 proteins, but the other recombinants produced uncleaved polyproteins. These findings indicate that NS2B is required for processing of the downstream nonstructural proteins, including the NS3/NS4A and NS4B/NS5 junctions, both of which contain a dibasic amino acid sequence preceding the cleavage site. The flavivirus NS4A/NS4B cleavage site follows a long hydrophobic sequence. The polyprotein NS4A-NS4B-NS5 was cleaved at the NS4A/NS4B junction in the absence of other dengue virus functions. One interpretation for this finding is that NS4A/NS4B cleavage is mediated by a host protease, presumably a signal peptidase. Although vNS3-NS4A-NS4B-NS5 expressed only the polyprotein, earlier results demonstrated that cleavage at the NS4A/NS4B junction occurred when an analogous recombinant, vNS3-NS4A-84%NS4B, was expressed. Thus, it appears that uncleaved NS3 plus NS5 inhibit NS4A/NS4B cleavage presumably because the putative signal sequence is not accessible for recognition by the responsible protease. Finally, recombinants that expressed an uncleaved NS4B-NS5 polyprotein, such as vNS4A-NS4B-NS5 or vNS4B-NS5, produced NS5 when complemented with vNS2B-30%NS3 or with vNS2B plus v30%NS3. These results indicate that cleavage at the NS4B/NS5 junction can be mediated by NS2B and NS3 in trans.  相似文献   

17.
A transient protein expression system in COS-1 cells was used to study the role of hepatitis C virus (HCV)-encoded NS4A protein on HCV nonstructural polyprotein processing. By analyzing the protein expression and processing of a deletion mutant polypeptide, NS delta 4A, which encodes the entire putative HCV nonstructural polyprotein except the region encoding NS4A, the versatile functions of NS4A were revealed. Most of the NS3 processed from NS delta 4A was localized in the cytosol fraction and was degraded promptly. Coproduction of NS4A stabilizes NS3 and assists in its localization in the membrane. NS4A was found to be indispensable for cleavage at the 4B/5A site but not essential for cleavage at the 5A/5B site in NS delta 4A. The functioning of NS4A as a cofactor for cleavage at the 4B/5A site was also observed when 30 amino acids around this site was used as a substrate and a serine proteinase domain of 167 amino acids, from Gly-1049 to Ser-1215, was used as an enzyme protein, suggesting that possible domains for the interaction of NS4A were in those regions of the enzyme protein (NS3) and/or the substrate protein. Two proteins, p58 and p56, were produced from NS5A. For the production of p58, equal or excess molar amounts of NS4A relative to NS delta 4A were required. Deletion analysis of NS4A revealed a minimum functional domain of NS4A of 10 amino acids, from Gly-1678 to Ile-1687.  相似文献   

18.
Processing of the hepatitis C virus polyprotein is accomplished by a series of cotranslational and posttranslational cleavages mediated by host cell signalases and two virally encoded proteinases. Of these the NS3 proteinase is essential for processing at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B junctions. Processing between NS3 and NS4A occurs in cis, implying an intramolecular reaction mechanism, whereas cleavage at the other sites can also be mediated in trans. Sequence analysis of the amino termini of mature cleavage products and comparisons of amino acid residues around the scissile bonds of various hepatitis C virus isolates identified amino acid residues which might contribute to substrate specificity and processing efficiency: an acidic amino acid at the P6 position, a Thr or Cys at the P1 position, and a Ser or Ala at the P1' position. To study the importance of these residues for NS3-mediated cleavage we have undertaken a mutational analysis using an NS3'-5B polyprotein expressed by recombinant vaccinia viruses in mammalian cells. For all NS3-dependent cleavage sites P1 substitutions had the most drastic effects on cleavage efficiency, showing that amino acid residues at this position are the most critical substrate determinants. Since less drastic effects were found for substitutions at the P1' position, these residues appear to be less important for proper cleavage. For all cleavage sites the P6 acidic residue was dispensable, suggesting that it is not essential for substrate recognition and subsequent cleavage. Analysis of a series of mutations at the NS3/4A site revealed great flexibility for substitutions compared with more stringent requirements at the trans cleavage sites. On the basis of these results we propose a model in which processing in cis is determined primarily by polyprotein folding, whereas cleavage in trans is governed not only by the structure of the polyprotein but also by specific interactions between the proteinase and the polyprotein substrate at or around the scissile bond.  相似文献   

19.
Cleavage at four sites (3/4A, 4A/4B, 4B/5A, and 5A/5B) in the hepatitis C virus polyprotein requires a viral serine protease activity residing in the N-terminal one-third of the NS3 protein. Sequence comparison of the residues flanking these cleavage sites reveals conserved features including an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position. In this study, we used site-directed mutagenesis to assess the importance of these and other residues for NS3 protease-dependent cleavages. Substitutions at the P7 to P2' positions of the 4A/4B site had varied effects on cleavage efficiency. Only Arg at the P1 position or Pro at P1' substantially blocked processing at this site. Leu was tolerated at the P1 position, whereas five other substitutions allowed various degrees of cleavage. Substitutions with positively charged or other hydrophilic residues at the P7, P3, P2, and P2' positions did not reduce cleavage efficiency. Five substitutions examined at the P6 position allowed complete cleavage, demonstrating that an acidic residue at this position is not essential. Parallel results were obtained with substrates containing an active NS3 protease domain in cis or when the protease domain was supplied in trans. Selected substitutions blocking or inhibiting cleavage at the 4A/4B site were also examined at the 3/4A, 4B/5A, and 5A/5B sites. For a given substitution, a site-dependent gradient in the degree of inhibition was observed, with a 3/4A site being least sensitive to mutagenesis, followed by the 4A/4B, 4B/5A, and 5A/5B sites. In most cases, mutations abolishing cleavage at one site did not affect processing at the other serine protease-dependent sites. However, mutations at the 3/4A site which inhibited cleavage also interfered with processing at the 4B/5A site. Finally, during the course of these studies an additional NS3 protease-dependent cleavage site has been identified in the NS4B region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号