首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen peroxide reacts with 2-thio-FAD-reconstituted p-hydroxybenzoate hydroxylase to yield a long wavelength intermediate (lambda max = 360, 620 nm) which can be isolated in stable form on removal of excess H2O2. The blue flavin derivative slowly decays in a second peroxide-dependent reaction to yield a new flavin product lacking long wavelength absorbance (lambda max = 408, 472 nm). This final peroxide-modified enzyme binds p-hydroxybenzoate with a 10-fold lower affinity than does the native enzyme; furthermore, substrate binding leads to the inhibition of enzyme reduction by NADPH. Trichloroacetic acid treatment of the final peroxide-modified enzyme results in the quantitative conversion of the bound flavin to free FAD. However, gel filtration of the modified enzyme in guanidine hydrochloride at neutral pH leads to the co-elution of protein and modified flavin. The nondenatured peroxide product reacts rapidly with hydroxylamine to yield 2-NHOH-substituted FAD. These observations indicate that the secondary reaction of peroxide with the blue intermediate from 2-thio-FAD p-hydroxybenzoate hydroxylase results in the formation of an acid-labile covalent flavin-protein linkage within the enzyme active site, involving the flavin C-2 position.  相似文献   

2.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens, was replaced by 6-hydroxy-FAD (an extra hydroxyl group on the carbon at position 6 of the isoalloxazine ring of FAD). The catalytic cycle of this modified enzyme was analyzed and compared to the function of native (FAD) enzyme. Transient state kinetic analyses of the multiple changes in the chemical state of the flavin were the principal methods used to probe the mechanism. Four known substrates of the native enzyme were used to probe the reaction. With the natural substrate, p-hydroxybenzoate, the 6-hydroxy-FAD enzyme activity was 12-15% of native enzyme, due to a slower release of product from the enzyme, and less than one product molecule was formed per NADPH oxidized, due to an increased rate of nonproductive decomposition of the transient peroxyflavin essential to the catalytic pathway. More extensive changes in mechanism were observed with the substrates, 2,4-dihydroxybenzoate and p-aminobenzoate. The results suggest that, during catalysis, when the reduced state of FAD is ready for oxygen reaction, the substrate is located below and close to the C-4a/N-5 edge of the isoalloxazine ring. The nature of the high extinction, transient state of flavin, formed upon transfer of oxygen to substrate is discussed. It is not a flavin cation, and is unlikely to be an oxygen-substituted analogue of N-3/C-4 dihydroflavin.  相似文献   

3.
Oxygen reactivity of p-hydroxybenzoate hydroxylase containing 1-deaza-FAD   总被引:2,自引:0,他引:2  
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) was replaced by 1-deaza-FAD (carbon substituted for nitrogen at position 1). An improved method for production of apoenzyme by precipitation with acidic ammonium sulfate was developed. The modified enzyme, in the presence of p-hydroxybenzoate, catalyzed the oxidation of NADPH by oxygen, yielding NADP+ and H2O2, but the ability to hydroxylate p-hydroxybenzoate and other substrates was lost. An analysis of the mechanism of NADPH-oxidase catalysis showed a close analogy between the reaction pathways for native and modified enzymes. In the presence of p-hydroxybenzoate, the rate of NADPH consumption catalyzed by the 1-deaza-FAD form was about 11% that of the native enzyme. Both formed a stabilized flavin-C (4a)-OOH intermediate upon reaction of reduced enzyme with oxygen, but the 1-deaza-FAD enzyme could not utilize this peroxide to hydroxylate substrates, and the peroxide decomposed to oxidized enzyme and H2O2.  相似文献   

4.
The oxidation-reduction potential of p-hydroxybenzoate hydroxylase (4-hydroxybenzoate, NADPH: oxygen oxidoreductase (3-hydroxylating), EC 1.14.13.2) from Pseudomonas fluorescens has been measured in the presence and absence of p-hydroxybenzoate using spectrocoulometry. The native enzyme demonstrated a two-electron midpoint potential of -129 mV during the initial reductive titration. The midpoint potential observed during subsequent oxidative and reductive titrations was -152 mV. This marked hysteresis is proposed to arise from the oxidation and reduction of the known air-sensitive thiol group on the enzyme (Van Berkel, W.J.H. and Müller, F. (1987) Eur. J. Biochem. 167, 35-46). Redox titrations of the enzyme in the presence of substrate showed a two-electron midpoint potential of -177 mV. No spectral or electrochemical evidence for the thermodynamic stabilization of any flavin semiquinone was observed in the titrations performed. These data show that the affinity of the apoenzyme for the hydroquinone form of FAD is 150-fold greater than for the oxidized flavin and that the substrate is bound to the reduced enzyme with a 3-fold lower affinity than to the oxidized enzyme. These data are consistent with the view that the stimulatory effect of substrate binding on the rate of enzyme reduction by NADPH is due to the respective geometries of the bound FAD and NADPH rather than to a large perturbation of the oxidation-reduction potential of the bound flavin coenzyme.  相似文献   

5.
In the crystal structure of native p-hydroxybenzoate hydroxylase, Ser212 is within hydrogen bonding distance (2.7 A) of one of the carboxylic oxygens of p-hydroxybenzoate. In this study, we have mutated residue 212 to alanine to study the importance of the serine hydrogen bond to enzyme function. Comparisons between mutant and wild type (WT) enzymes with the natural substrate p-hydroxybenzoate showed that this residue contributes to substrate binding. The dissociation constant for this substrate is 1 order of magnitude higher than that of WT, but the catalytic process is otherwise unchanged. When the alternate substrate, 2,4-dihydroxybenzoate, is used, two products are formed (2,3,4-trihydroxybenzoate and 2,4, 5-trihydroxybenzoate), which demonstrates that this substrate can be bound in two orientations. Kinetic studies provide evidence that the intermediate with a high extinction coefficient previously observed in the oxidative half-reaction of the WT enzyme with this substrate is composed of contributions from both the dienone form of the product and the C4a-hydroxyflavin. During the reduction of the enzyme-2,4-dihydroxybenzoate complex by NADPH with 2, 4-dihydroxybenzoate, a rapid transient increase in flavin absorbance is observed prior to hydride transfer from NADPH to FAD. This is direct evidence for movement of the flavin before reduction occurs.  相似文献   

6.
p-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor FAD by NADPH in response to binding p-hydroxybenzoate to the enzyme and reaction of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. Three different reactions, each with specific requirements, are achieved by moving the position of the isoalloxazine ring in the protein structure. In this paper, we examine the operation of protein conformational changes and the significance of charge-transfer absorption bands associated with the reduction of FAD by NADPH when the substrate analogue, 5-hydroxypicolinate, is bound to the enzyme. It was discovered that the enzyme with picolinate bound was reduced at a rate similar to that with p-hydroxybenzoate bound at high pH. However, there was a large effect of pH upon the rate of reduction in the presence of picolinate with a pK(a) of 7.4, identical to the pK(a) of picolinate bound to the enzyme. The intensity of charge-transfer bands observed between FAD and NADPH during the reduction process correlated with the rate of flavin reduction. We conclude that high rates of reduction of the enzyme require (a) the isoalloxazine of the flavin be held by the protein in a solvent-exposed position and (b) the movement of a loop of protein so that the pyridine ring of NADPH can move into position to form a complex with the isoalloxazine that is competent for hydride transfer and that is indicated by a strong charge-transfer interaction.  相似文献   

7.
The flavoprotein p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was modified by several arginine-specific reagents. Modifications by 2,3-butanedione led to the loss of activity of the enzyme, but the binding of p-hydroxybenzoate and NADPH to the enzyme was little or not at all affected. However the formation of the enzyme-substrate complex of the modified enzyme was accompanied by an increase of the fluorescence of protein-bound FAD, in contrast to that of native enzyme which leads to quenching of the fluorescence. Enzyme modified by phenylglyoxal did not bind p-hydroxybenzoate nor NADPH. Quantification and protection experiments showed that two arginine residues are essential and a model is described which accounts for the results. Modification by 4-hydroxy-3-nitrophenylglyoxal reduced the affinity of the enzyme for the substrate and NADPH. The ligands offered no protection against inactivation. From this it is concluded that one arginine residue is essential at some stage of the catalysis. This residue is not associated with the substrate- or NADPH-binding site of the enzyme. Time-resolved fluorescence studies showed that the average fluorescence lifetime and the mobility of protein-bound FAD are affected by modification of the enzyme.  相似文献   

8.
para-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyses a reaction in two parts: reduction of the flavin adenine dinucleotide (FAD) in the enzyme by reduced nicotinamide adenine dinucleotide phosphate (NADPH) in response to binding p-hydroxybenzoate to the enzyme and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. These different reactions are coordinated through conformational rearrangements of the protein and isoalloxazine ring during catalysis. Earlier research showed that reduction of FAD occurs when the isoalloxazine of the FAD moves to the surface of the protein to allow hydride transfer from NADPH. This move is coordinated with protein rearrangements that are triggered by deprotonation of buried p-hydroxybenzoate through a H-bond network that leads to the surface of the protein. In this paper, we examine the involvement of this same H-bond network in the oxygen reactions-the initial formation of a flavin-C4a-hydroperoxide from the reaction between oxygen and reduced flavin, the electrophilic attack of the hydroperoxide upon the substrate to form product, and the elimination of water from the flavin-C4a-hydroxide to form oxidized enzyme in association with product release. These reactions were measured through absorbance and fluorescence changes in the FAD during the reactions. Results were collected over a range of pH for the reactions of wild-type enzyme and a series of mutant enzymes with the natural substrate and substrate analogues. We discovered that the rate of formation of the flavin hydroperoxide is not influenced by pH change, which indicates that the proton required for this reaction does not come from the H-bond network. The rate of the hydroxylation reaction increases with pH in a manner consistent with a pK(a) of 7.1. We conclude that the H-bond network abstracts the phenolic proton from p-hydroxybenzoate in the transition state of oxygen transfer. The rate of formation of oxidized enzyme increases with pH in a manner consistent with a pK(a) of 7.1, indicating the involvement of the H-bond network. We conclude that product deprotonation enhances the rate of a specific conformational change required for both product release and the elimination of water from C4a-OH-FAD.  相似文献   

9.
Proline 293 of p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa is in a highly conserved region of the flavoprotein aromatic hydroxylases. It is thought to impart rigidity to the backbone, as it partially cradles the FAD in these hydroxylases. Thus, this residue has been substituted with serine by site-directed mutagenesis to investigate the importance of flexibility of the peptide segment in catalysis. Differential scanning calorimetry demonstrated that the mutation has decreased the stability of the folded mutant protein compared to the wild-type PHBH. The increased flexibility in the protein backbone enhanced the accessibility of the flavin hydroperoxide intermediate to the solvent, causing an increase in the elimination of H(2)O(2) from this labile intermediate and, consequently, a decrease in the efficiency of substrate hydroxylation. Additionally, the increased accessibility of this mutant form of the enzyme makes it more susceptible than the wild-type enzyme to being trapped in the hydroxyflavin intermediate form in the presence of high levels of p-hydroxybenzoate. The mutation also lowers the pK(a) of the phenolic oxygen of bound p-hydroxybenzoate, and eliminates the pH dependence of the rate constant for flavin reduction by NADPH. These experimental observations lead to a model that explains how the wild-type protein can sense the charge of the 4-substituent of the aromatic ligand and link this charge to a flavin conformational change that is required for reaction with NADPH: (i) The peptide oxygen of Pro 293 is repelled by the negative charge of the phenolic oxygen of p-hydroxybenzoate. (ii) This repulsion is transmitted through the peptide backbone, causing the movement of Asn 300. (iii) The change in the position of Asn 300 triggers the movement of the flavin from the largely buried "in" conformation to the exposed, reactive "out" conformation.  相似文献   

10.
p-Hydroxybenzoate hydroxylase is extensively studied as a model for single-component flavoprotein monooxygenases. It catalyzes a reaction in two parts: (1) reduction of the FAD in the enzyme by NADPH in response to binding of p-hydroxybenzoate to the enzyme and (2) oxidation of reduced FAD with oxygen in an environment free from solvent to form a hydroperoxide, which then reacts with p-hydroxybenzoate to form an oxygenated product. These different reactions are coordinated through conformational rearrangements of the protein and the isoalloxazine ring during catalysis. Until recently, it has not been clear how p-hydroxybenzoate gains access to the buried active site. In 2002, a structure of a mutant form of the enzyme without substrate was published that showed an open conformation with solvent access to the active site [Wang, J., Ortiz-Maldonado, M., Entsch, B., Massey, V., Ballou, D., and Gatti, D. L. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 608-613]. The wild-type enzyme does not form high-resolution crystals without substrate. We hypothesized that the wild-type enzyme without substrate also forms an open conformation for binding p-hydroxybenzoate, but only transiently. To test this idea, we have studied the properties of two different mutant forms of the enzyme that are stabilized in the open conformation. These mutant enzymes bind p-hydroxybenzoate very fast, but with very low affinity, as expected from the open structure. The mutant enzymes are extremely inactive, but are capable of slowly forming small amounts of product by the normal catalytic pathway. The lack of activity results from the failure of the mutants to readily form the out conformation required for flavin reduction by NADPH. The mutants form a large fraction of an abnormal conformation of the reduced enzyme with p-hydroxybenzoate bound. This conformation of the enzyme is unreactive with oxygen. We conclude that transient formation of this open conformation is the mechanism for sequestering p-hydroxybenzoate to initiate catalysis. This overall study emphasizes the role that protein dynamics can play in enzymatic catalysis.  相似文献   

11.
The FAD of p-hydroxybenzoate hydroxylase (PHBH) is known to exist in two conformations. The FAD must be in the in-position for hydroxylation of p-hydroxybenzoate (pOHB), whereas the out-position is essential for reduction of the flavin by NADPH. In these investigations, we have used 8-mercapto-FAD and 8-hydroxy-FAD to probe the movement of the flavin in catalysis. Under the conditions employed, 8-mercapto-FAD (pK(a) = 3.8) and 8-hydroxy-FAD (pK(a) = 4.8) are mainly anionic. The spectral characteristics of the anionic forms of these flavins are very sensitive to their environment, making them sensitive probes for detecting movement of the flavin during catalysis. With these flavin analogues, the enzyme hydroxylates pOHB efficiently, but at a rate much slower than that of enzyme with FAD. Reaction of oxygen with reduced forms of these modified enzymes in the absence of substrate appears to proceed through the formation of the flavin-C4a-hydroperoxide intermediate, as with normal enzyme, but the decay of this intermediate is so fast compared to its formation that very little accumulates during the reaction. However, after elimination of H2O2 from the flavin-C4a-hydroperoxide, a perturbed oxidized enzyme spectrum is observed (Eox*), and this converts slowly to the spectrum of the resting oxidized form of the enzyme (Eox). In the presence of pOHB, PHBH reconstituted with 8-mercapto-FAD also shows the additional oxidized intermediate (Eox*) after the usual oxygenated C4a-intermediates have formed and decayed in the course of the hydroxylation reaction. This Eox* to Eox step is postulated to be due to flavin movement. Furthermore, binding of pOHB to resting (Eox) follows a three-step equilibrium mechanism that is also consistent with flavin movement being the rate-limiting step. The rate for the slowest step during pOHB binding is similar to that observed for the conversion of Eox* to Eox during the oxygen reaction in the absence or presence of substrate. Steady-state kinetic analysis of PHBH substituted with 8-mercapto-FAD demonstrated that the apparent k(cat) is also similar to the rate of Eox* conversion to Eox. Presumably, the protein environment surrounding the flavin in Eox* differs slightly from that of the final resting form of the enzyme (Eox).  相似文献   

12.
The crystal structure of the reduced form of the enzyme p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens, complexed with its substrate p-hydroxybenzoate, has been obtained by protein X-ray crystallography. Crystals of the reduced form were prepared by soaking crystals of the oxidized enzyme-substrate complex in deaerated mother liquor containing 300-400 mM NADPH. A rapid bleaching of the crystals indicated the reduction of the enzyme-bound FAD by NADPH. This was confirmed by single crystal spectroscopy. X-ray data to 2.3 A were collected on oscillation films using a rotating anode generator as an X-ray source. After data processing and reduction, restrained least squares refinement using the 1.9 A structure of the oxidized enzyme-substrate complex as a starting model, yielded a crystallographic R-factor of 14.8% for 11,394 reflections. The final model of the reduced complex contains 3,098 protein atoms, the FAD molecule, the substrate p-hydroxybenzoate and 322 solvent molecules. The structures of the oxidized and reduced forms of the enzyme-substrate complex were found to be very similar. The root-mean-square discrepancy for all atoms between both structures was 0.38 A. The flavin ring is almost completely planar in the final model, although it was allowed to bend or twist during refinement. The observed angle between the benzene and the pyrimidine ring is 2 degrees. This value should be compared with observed values of 10 degrees for the oxidized enzyme-substrate complex and 19 degrees for the enzyme-product complex. The position of the substrate is virtually unaltered with respect to its position in the oxidized enzyme. No trace of a bound NADP+ or NADPH molecule was found.  相似文献   

13.
Meneely KM  Lamb AL 《Biochemistry》2007,46(42):11930-11937
Pyoverdin is the hydroxamate siderophore produced by the opportunistic pathogen Pseudomonas aeruginosa under the iron-limiting conditions of the human host. This siderophore includes derivatives of ornithine in the peptide backbone that serve as iron chelators. PvdA is the ornithine hydroxylase, which performs the first enzymatic step in preparation of these derivatives. PvdA requires both flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) for activity; it was found to be a soluble monomer most active at pH 8.0. The enzyme demonstrated Michaelis-Menten kinetics in an NADPH oxidation assay, but a hydroxylation assay indicated substrate inhibition at high ornithine concentration. PvdA is highly specific for both substrate and coenzyme, and lysine was shown to be a nonsubstrate effector and mixed inhibitor of the enzyme with respect to ornithine. Chloride is a mixed inhibitor of PvdA with respect to ornithine but a competitive inhibitor with respect to NADPH, and a bulky mercurial compound (p-chloromercuribenzoate) is a mixed inhibitor with respect to ornithine. Steady-state experiments indicate that PvdA/FAD forms a ternary complex with NADPH and ornithine for catalysis. PvdA in the absence of ornithine shows slow substrate-independent flavin reduction by NADPH. Biochemical comparison of PvdA to p-hydroxybenzoate hydroxylase (PHBH, from Pseudomonas fluorescens) and flavin-containing monooxygenases (FMOs, from Schizosaccharomyces pombe and hog liver microsomes) leads to the hypothesis that PvdA catalysis proceeds by a novel reaction mechanism.  相似文献   

14.
Apo-p-hydroxybenzoate hydroxylase was reconstituted using 2'-fluoro-2'-deoxy-arabino-FAD, a synthetic flavin in which the hydroxyl of the 2'-center of the ribityl chain was replaced with fluorine in an inverted configuration. The absorbance spectral changes caused by the binding of either p-hydroxybenzoate (pOHB) or 2,4-dihydroxybenzoate (2,4-diOHB) indicated that the isoalloxazine of the artificial flavin adopts the more solvent-exposed "out" conformation rather than the partially buried "in" conformation near the aromatic substrate. In contrast, the flavin of the natural enzyme adopts the in conformation when pOHB is bound. Much of the behavior of the artificial enzyme can be rationalized in light of the preference of the flavin for the out conformation, including the weaker binding of pOHB, the tighter binding of 2,4-diOHB, and the slower reactions involved in the hydroxylation of pOHB and 2,4-diOHB. Particularly noteworthy is the enhancement of the reduction of the flavin by NADPH when pOHB is bound to the active site, consistent with the recent finding that the reaction occurs when the flavin adopts the out conformation (Palfey, B. A., Moran, G. R., Entsch, B., Ballou, D. P., and Massey, V. (1999) Biochemistry 38, 1153-1158). Thus, whereas the change that induces the out conformation is detrimental to the oxidative half-reaction, it improves the reductive half-reaction, showing that the control of the flavin position in p-hydroxybenzoate hydroxylase represents a compromise between the conflicting needs of two chemically disparate half-reactions, and demonstrating that the 2'-hydroxyl of FAD can serve as a critical control element in flavoenzyme catalysis.  相似文献   

15.
2-Thio-FAD (oxygen substituent at position 2 is replaced by sulfur) was used to reconstitute the apoenzyme of p-hydroxybenzoate hydroxylase. The 2-thio-FAD enzyme differs from native enzyme in several respects. While the native enzyme catalyzes the fully coupled hydroxylation of p-hydroxybenzoate, the 2-thio-FAD enzyme shows no hydroxylation of this substrate, instead reducing molecular oxygen to hydrogen peroxide. The rate of reduction of 2-thio-FAD p-hydroxybenzoate hydroxylase by NADPH in the presence of substrate was 7-fold faster than with the native enzyme. However, the oxygen reactivity of the reduced 2-thio-FAD enzyme was less than 1% that of native enzyme. This slow oxygen reaction results in the very high KmO2 observed in steady state kinetic studies of the modified enzyme. Stopped flow studies of the oxygen reaction of the reduced 2-thio-FAD enzyme in the presence of substrate confirmed the formation of a transient intermediate. The spectrum of this intermediate is very similar to those of the flavin-C(4a) adducts obtained with 2-thio-FMN lactate oxidase. This evidence suggests that reduced 2-thio-FAD p-hydroxybenzoate hydroxylase forms a flavin-C(4a)-hydroperoxide on reaction with oxygen in a reaction analogous to that with native enzyme, but that the resulting peroxyflavin is incompetent as an oxygenating species, breaking down instead to oxidized 2-thio-FAD enzyme and hydrogen peroxide.  相似文献   

16.
p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.  相似文献   

17.
Phe161 and Arg166 of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens belong to a newly discovered sequence motif in flavoprotein hydroxylases with a putative dual function in FAD and NADPH binding [1]. To study their role in more detail, Phe161 and Arg166 were selectively changed by site-directed mutagenesis. F161A and F161G are catalytically competent enzymes having a rather poor affinity for NADPH. The catalytic properties of R166K are similar to those of the native enzyme. R166S and R166E show impaired NADPH binding and R166E has lost the ability to bind FAD. The crystal structure of substrate complexed F161A at 2.2 A is indistinguishable from the native enzyme, except for small changes at the site of mutation. The crystal structure of substrate complexed R166S at 2.0 A revealed that Arg166 is important for providing an intimate contact between the FAD binding domain and a long excursion of the substrate binding domain. It is proposed that this interaction is essential for structural stability and for the recognition of the pyrophosphate moiety of NADPH.  相似文献   

18.
H A Schreuder  W G Hol  J Drenth 《Biochemistry》1990,29(12):3101-3108
The flavoprotein p-hydroxybenzoate hydroxylase has been studied extensively by biochemical techniques by others and in our laboratory by X-ray crystallography. As a result of the latter investigations, well-refined crystal structures are known of the enzyme complexed (i) with its substrate p-hydroxybenzoate and (ii) with its reaction product 3,4-dihydroxybenzoate and (iii) the enzyme with reduced FAD. Knowledge of these structures and the availability of the three-dimensional structure of a model compound for the reactive flavin 4a-hydroperoxide intermediate has allowed a detailed analysis of the reaction with oxygen. In the model of this reaction intermediate, fitted to the active site of p-hydroxybenzoate hydroxylase, all possible positions of the distal oxygen were surveyed by rotating this oxygen about the single bond between the C4a and the proximal oxygen. It was found that the distal oxygen is free to sweep an arc of about 180 degrees in the active site. The flavin 4a-peroxide anion, which is formed after reaction of molecular oxygen with reduced FAD, might accept a proton from an active-site water molecule or from the hydroxyl group of the substrate. The position of the oxygen to be transferred with respect to the substrate appears to be almost ideal for nucleophilic attack of the substrate onto this oxygen. The oxygen is situated above the 3-position of the substrate where the substitution takes place, at an angle of about 60 degrees with the aromatic plane, allowing strong interactions with the pi electrons of the substrate. Polarization of the peroxide oxygen-oxygen bond by the enzyme may enhance the reactivity of flavin 4a-peroxide.  相似文献   

19.
Structural and kinetic studies have revealed two flavin conformations in p-hydroxybenzoate hydroxylase (PHBH), the in-position and the out-position. Conversion between these two conformations is believed to be essential during catalysis. Although substrate hydroxylation occurs while the flavin in PHBH is in the in-conformation, the position of the flavin during reduction by NADPH is uncertain. To investigate the catalytic importance of the out-conformation of the flavin and to clarify the mechanism of flavin reduction in PHBH, we report quantitative structure-reactivity relationships (QSAR) using PHBH substituted separately with nine derivatives of FAD modified in the 8-position and four dihydronicotinamide analogues as reducing agents. The 8-position of the FAD isoalloxazine ring was chosen for modification because in PHBH it has minimal interactions with the protein and is accessible to solvent. The chemical sequence of events during catalysis by PHBH was not altered when using any of the modified flavins, and normal products were obtained. Although the rate of reduction of PHBH reconstituted with flavin derivatives is expected to be dependent on the redox potential of the flavin, no strict correlation was observed. Instead, the rate of reduction correlated with the kappa-substituent constant, which is based on size and hydrophobicity of the 8-substituent on the FAD. Substituents that sterically hinder attainment of the out-conformation decreased the rate of flavin reduction much more than expected on the basis of the redox potential of the flavin. The results of this QSAR analysis are consistent with the hypothesis that the flavin in PHBH must move to the out-conformation for proper formation of the charge-transfer complex between NADPH and FAD that is necessary for rapid flavin reduction.  相似文献   

20.
Absolute stereochemistry of flavins in enzyme-catalyzed reactions   总被引:3,自引:0,他引:3  
The 8-demethyl-8-hydroxy-5-deaza-5-carba analogues of FMN and FAD have been synthesized. Several apoproteins of flavoenzymes were successfully reconstituted with these analogues. This and further tests established that these analogues could serve as general probes for flavin stereospecificity in enzyme-catalyzed reactions. The method used by us involved stereoselective introduction of label on one enzyme combined with transfer to and analysis on a second enzyme. Using as a reference glutathione reductase from human erythrocytes for which the absolute stereochemistry of catalysis is known from X-ray studies [Pai, E. F., & Schulz, G. E. (1983) J. Biol. Chem. 258, 1752-1758], we were able to determine the absolute stereospecificities of other flavoenzymes. We found that glutathione reductase (NADPH), general acyl-CoA dehydrogenase (acyl-CoA), mercuric reductase (NADPH), thioredoxin reductase (NADPH), p-hydroxybenzoate hydroxylase (NADPH), melilotate hydroxylase (NADH), anthranilate hydroxylase (NADPH), and glucose oxidase (glucose) all use the re face of the flavin ring when interacting with the substrates given in parentheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号