首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast sterol mutants were subjected to ESR analysis in an attempt to elucidate how altered sterol composition correlates with membrane permeability. The technique requires spin labeling the intact yeast cells with a small, water-soluble nitroxide probe (2,2,5,5 tetramethyl-3-pyrrolin-1-oxyl-3-carboxylic acid, PCA), suspending cells in a NiCl2 solution, and measuring the extent of Ni2+ entry through the membrane by its magnetic dipolar line broadening effect on the PCA signal. The wild type, A184D, was found to be impermeable to Ni2+ during all growth phases while the sterol mutant erg 62 was readily permeable to Ni2+. Other sources of line broadening such as increased rotational correlation time and cell nonviability are shown to be negligible. Internal Ni2+ concentrations for erg 62 and kinetics of Ni2+ entry were determined.  相似文献   

2.
Ni2+ toxicity was evaluated in Triticum aestivum L. by its effects on root and shoot length, dry matter production and water content. Over a threshold value of 20 mmol m?3 Ni2+ the degree of toxicity increases as a function of the Ni2+ concentration in the medium. Ni2+-treated roots show enhanced lipid peroxidation; the higher Ni2+ treatment (40mmol m?3) also increases leakage of K+. In roots and shoots, Ni2+ enhances both guaiacol and syringaldazine extracellular peroxidase activity. The increase in extracellular peroxidase activity is also associated with an increase in the phenolic contents of roots and shoots. The observed growth inhibition might be partly the result of the effect of Ni2+ on cell turgor and cell-wall extensibility. Intracellular soluble peroxidases are also stimulated by Ni2+; such effects, independently of the substrate, were detected in extracts of Ni2+-treated shoots at a lower Ni2+ concentration than in the roots. Intracellular peroxidases might act as scavengers of peroxide radicals produced as a result of nickel toxicity.  相似文献   

3.
Copper toxicity has been studied in three nickel-resistant strains ofNeurospora crassa (NiR1, NiR2, and NiR3). NiR1 and NiR2, but not NiR3, were two-to threefold more sensitive than the parent wild strain (N. crassa EM 5297a) to Cu2+ on a normal N medium. On a nitrate N medium, Cu2+ was 16-fold more toxic to NiR3 because of reduced synthesis of nitrite reductase; NiR1 and NiR2 were only fivefold more sensitive to Cu2+, and nitrite reductase synthesis was unaffected. Mn2+ reversed Cu2+ toxicity on normal N medium only, in all strains. Fe3+ counteracted Cu2+ toxicity on nitrate N medium also. It was shown that Cu2+ affected Fe3+ utilization for nitrite reductase synthesis in NiR3 only and that in these Ni2+-resistant strains, Fe3+ antagonized effects of Cu2+, but not of other toxic metal ions.  相似文献   

4.
Essential metal ion homeostasis is based on regulated uptake of metal ions, both during its scarcity and abundance.Pseudomonas putida strain S4, a multimetal resistant bacterium, was employed to investigate Ni2+ entry into cells. It was observed that Mg2+ regulates the entry of Ni2+ and by this plays a protective role to minimize Ni2+ toxicity in this strain. This protection was evident in both growth as well as viability. Intracellular accumulation of Ni2+ varied in accordance with Mg2+ concentrations in the medium. It was hypothesized that Ni2+ enters the cell using a broad Mg2+ pump, i.e. the CorA system, as the CorA inhibitor, i.e. Co(III) Hex, also inhibits Ni2+ uptake. This led to the inference that Mg2+-based protection was basically due to competitive inhibition of Ni2+ uptake. We also show that Zn2+ can further regulate the entry of Ni2+  相似文献   

5.
Earlier studies have demonstrated that a high (mM) extracellular Ca2+ concentration triggers intracellular [Ca2+] signals with a consequent inhibition of bone resorptive activity. We now report that micromolar concentrations of the divalent cation, Ni2+, elicited rapid and concentration-dependent elevations of cytosolic [Ca2+]. The peak change in cytosolic [Ca2+] increased monotonically with the application of [Ni2+] in the 50–5,000 μM range in solutions containing 1.25 mM-[Ca2+] and 0.8 mM-[Mg2+]. The resulting concentration-response function suggested Ni2+-induced activation of a single class of binding site (Hill coefficient = 1). The triggering process also exhibited a concentration-dependent inactivation in which conditioning Ni2+ applications in the range 5–1,500 μM-[Ni2+] inhibited subsequent responses to a maximally effective [Ni2+] of 5,000 μM. Ni2+-induced cytosolic [Ca2+] responses were not dependent on extracellular [Ca2+]. Thus, when 5,000 μM-[Ni2+] was applied to osteoclasts in Ca2+-free, ethylene glycol bis-(aminoethyl ether) tetraacetic acid (EGTA)-containing medium (≤5 nM-[Ca2+] and 0.8 mM-[Mg2+]), cytosolic [Ca2+] responses resembled those obtained in the presence of 1.25 mM-[Ca2+]. Prior depletion of intracellular Ca2+ stores by ionomycin prevented Ni2+-induced cytosolic [Ca2+] responses, suggesting a major role for intracellular Ca2+ redistribution in the response to Ni2+. The effects of Ni2+ were also modulated by the extracellular concentration of the divalent cations, Ca2+ and Mg2+. When these cations were not added to the culture medium (0 μM-[Ca2+] and [Mg2+]), even low [Ni2+] ranging between 5 pM and 50 μM elicited progressively larger cytosolic [Ca2+] transients. However, the response magnitude decreased at higher, 250–5,000 μM-[Ni2+], resulting in a “hooked” concentration-response curve. Furthermore, increasing extracellular [Mg2+] or [Ca2+] (0–1 mM) diminished the response to 50 μM-[Ni2+], a concentration on the rising phase of the “hook.” Similar increases (0–10 mM) in extracellular [Mg2+] or [Ca2+] increased the response to 5,000 μM-[Ni2+], a concentration on the falling phase of the “hook”. These findings are consistent with the existence of a membrane receptor strongly sensitive to Ni2+ as well as the divalent cations, Ca2+ and Mg2+. Receptor occupancy apparently activates intracellular Ca2+ release followed by inactivation. Furthermore, repriming is independent of intracellular Ca2+ stores, suggesting that such inactivation operates at a transduction step between receptor occupancy and intracellular Ca2+ release. © 1993 Wiley-Liss, Inc.  相似文献   

6.
The influence of HCl pretreatment (0.1 mM) on sorption ofCu2+ and Ni2+ by Chlorella vulgariswas tested using single and binary metal solutions. The optimal initial pH forsorption was 3.5 for Cu2+ and 5.5 for Ni2+. Second orderrate kinetics described well sorption by untreated and acid-pretreated cells.The kinetic constant qe (metal sorption at equilibrium) for sorptionof test metals from single and binary metal solutions was increased afterpretreatment of the biomass with HCl. The Langmuir adsorption isotherm wasdeveloped for describing the various results for metal sorption. In single metalsolution, acid pretreatment enhanced qmax for Cu2+ andNi2+ sorption by approximately 70% and 65%, respectively.Cu2+ and Ni2+ mutually interfered with sorption of theother metal in the binary system. The combined presence of Cu2+ andNi2+ led to their decreased sorption by untreated biomass by 19% and88%, respectively. However, acid-pretreated biomass decreased Cu2+and Ni2+ sorption by 15 and 22%, respectively, when both the metalswere present in the solution. The results suggest a reduced mutual interferencein sorption of Cu2+ and Ni2+ from the binary metal systemdue to the acid pretreatment. Acid-pretreated cells sorbed twice the amount ofCu2+ and ten times that of Ni2+ than the untreated biomassfrom the binary metal system. Acid pretreatment more effectively enhanced thesorption of Ni2+ form the binary metal solution. The total metalsorption by untreated and acid-pretreated biomass depended on theCu2+ : Ni2+ ratio in the binary metal system. Acidpretreatment of C. vulgaris could be an effective andinexpensive strategy for enhancing Cu2+ and Ni2+ sorptionfrom single and binary metal solutions.  相似文献   

7.
1. Preincubation with 1 or 2mM Ni2+ inhibited dose-dependently the ileal phasic response to K+ (60 mM) without appreciable effects on the tonic response. Ni2+ above 3mM inhibited the tonic response.2. Ni2+ inhibited the high affinity Ca2+ sites than the low affinity sites during K+ contraction.3. After treatment with Ni2+, the K+ response was fairly restored by a wash with normal medium. The nickel bound to the ileal cells was almost eliminated with the washing.4. This probably indicates that Ni2+ mainly inhibited the K+-induced phasic tension by reducing Ca2+ release rather than Ca2+ influx.  相似文献   

8.
To investigate the role of the Ca2+-binding protein calmodulin on histamine release in the rat peritoneal mast cell, we exposed cells to exogenous calmodulin in the presence of a variety of histamine secretagogues. Histamine release stimulated by compound , polymyxin B and ionophore A23187 was inhibited while concanavalin A-stimulated release was not affected. Calmodulin in the presence of the secretagogues did not affect cell viability and calmodulin alone had no effect on histamine release. No direct interaction between calmodulin and the secretagogues was observed. Exogenous calmodulin does not appear to be incorporated into the cell. The inhibition of histamine release by calmodulin can be explained as a labile interaction between the protein and the cell that requires externally-bound Ca2+. These experiments demonstrate the use of exogenous calmodulin as a probe in the study of the mechanism of histamine release.  相似文献   

9.
The nanogold reaction between HAuCl4 and trisodium citrate (TCA) proceeded very slowly at 60°C in a water bath. The as‐prepared graphene oxide nanoribbons (GONRs) exhibited strong catalysis during the reaction to form gold nanoparticles (Au NPs) and appeared as a strong surface‐enhanced Raman scattering (SERS) peak at 1616 cm?1 in the presence of the molecular probe Victoria blue 4R (VB4r). With increase in GONR concentration, the SERS peak increased due to increased formation of Au NPs. Upon addition of dimethylglyoxime (DMG) ligand, which was adsorbed onto the GONR surface to inhibit GONR catalysis, the SERS peak decreased. When Ni2+ was added, a coordination reaction between DMG and Ni2+ took place to form stable complexes of [Ni (DMG)2]2+ and the release of free GONR catalyst that resulted in the SERS peak increasing linearly. A SERS quantitative analysis method for Ni2+ was therefore established, with a linear range of 0.07–2.8 μM, and a detection limit of 0.036 μM Ni2+.  相似文献   

10.
Transport of Ni2+ has been studied in three Ni2+-resistant strains ofNeurospora crassa (NiR1, NiR3) and NiR3) and in the parent wild strainN. crassa Em 5297a. Several strainspecific differences have been found. Rates of Ni2+ uptake were NiR2>NiR1>Em>>NiR3. While Km for Ni2+ uptake was similar, Vmax values were sharply different, with NiR3 having the lowest value. Observed uptake was entirely due to transport into the intracellular phase. Transport was strongly pH dependent only in Em, NiR1, and NiR2, which had a pH optimum at 4; optimum was at pH 5 for NiR3. Mg2+ was powerfully inhibitory to Ni2+ uptake in NiR1 and NiR2, but was less efficient in NiR3; in contrast, Mn2+ was most inhibitory in NiR3. It has been suggested that Ni2+ resistance in NiR3 is specifically due to lowered levels of the Ni2+ transport system herein.  相似文献   

11.
《Process Biochemistry》2007,42(4):612-619
In this work, a new surface active site (SAS) adsorption equilibrium model was presented, which explicitly accounted for the H+ competitive adsorption with Ni2+ in adsorption equilibrium. Static adsorption experiments with Ni2+ as a model metal ion were carried out to determine the model parameters, those were, equilibrium constant for Ni2+ (Ka), for H+ (Ks), characteristic number of binding sites for Ni2+ (n), for H+ (a), and the non-imprinted factor (σ). It was found that those model parameters n and a were all constant, and that they all expressed that one active site bound two Ni2+ or two H+, while the non-imprinted factor, σ, was effected by Ni2+ concentration, H+ concentration in solution and imprinted Ni2+ concentration in the preparation. Simulated result was compared with experimental data of the adsorption for Ni2+. It was showed that this model could be well used to predict the adsorption equilibrium for Ni2+ on the surface imprinted adsorbent. And it was demonstrated that the efficacy of the active sites formalism could be used in describing adsorption behavior for Ni2+ on the surface imprinted adsorbent.  相似文献   

12.
The effect of Ni2+ on the early stages of chlorophyll biosynthesis and pheophytinization in Euglena gracilis cells was studied. Incubation of the cells with 10–4 M Ni2+ for 7 days resulted in a higher chlorophyll content, enhanced production of 5-aminolevulinic acid (ALA), and in increased activity of 5-aminolevuluinic acid dehydratase (EC 4.2.1.24, ALAD), as compared to the control cells incubated without Ni2+. At a higher concentration (10–3 M), Ni2+ markedly inhibited chlorophyll accumulation and ALAD activity, as compared to the control cells. At this concentration, Ni2+ also inhibited heme biosynthesis and strongly stimulated ALA production. It seems likely that, by affecting heme synthesis, Ni2+ increases the activity of the ALA production system. However, the suppression of subsequent stages of ALA conversion to chlorophyll, in particular ALAD inhibition, ultimately resulted in almost complete inhibition of chlorophyll biosynthesis. In addition to cessation of de novo chlorophyll synthesis in the presence of Ni2+ (10–3 M) in Euglena cells, the existing chlorophyll was converted into pheophytin and almost completely degraded. We suppose that the Ni2+-induced pheophytinization is caused by an acidic shift of intracellular pH related to an impairment of cell membrane permeability by Ni2+ cations.  相似文献   

13.
We have investigated the actions of Nickel (Ni2+) on a human cardiac potassium channel (hKv1.5), the main component of human atrial ultra-rapid delayed rectifier current, stably expressed in Chinese hamster ovary cell line using the whole-cell voltage-clamp technique. External Ni2+ reversibly decreased the amplitude of the current in a concentration-dependent manner. The concentration for half-maximum inhibition of the current at +50 mV was 568 μm. The activation, deactivation, reactivation kinetics of the current were not affected by Ni2+. Block was not voltage-dependent but frequency-dependent block was apparent. The extent of channel block during the first pulse increased when the duration of exposure to Ni2+, prior to channel activation, was prolonged indicating that Ni2+ interacted with hKv1.5 in the closed state. The percentage of current remaining in presence of Ni2+ decreased steeply over the range of steady-state channel inactivation, consistent with an enhanced block with increased inactivation. This suggests that Ni2+ preferentially blocks nonconducting hKv1.5 channels, either in the resting or inactivated state in a concentration-dependent manner. The data indicate that the mechanisms of hKv1.5 channel inhibition by Ni2+ are distinct from those of other K+ channels. Received: 12 October 2000/Revised: 14 May 2001  相似文献   

14.
Solid-phase extraction (SPE) method was developed for the preconcentration of Cu2+ and Ni2+ before their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Bacillus subtilis–immobilized Amberlite XAD-16 was used as biosorbent. Effects of critical parameters such as pH, flow rate of samples, amount of Amberlite XAD-16 and biosorbent, sample volume, eluent type, and volume and concentration of eluent on column preconcentration of Cu2+ and Ni2+ were optimized. Applicability of the method was validated through the analysis of the certified reference tea sample (NCS ZC73014). Sensitivity of ICP-OES was improved by 36.4-fold for Cu2+ and 38.0-fold for Ni2+ by SPE-ICP-OES method. Limit of quantitation (LOQ) was found to be 0.7 and 1.1 ng/ml for Cu2+ and Ni2+, respectively. Concentrations of Cu2+ and Ni2+ were determined by ICP-OES after application of developed method. Relative standard deviations (RSDs) were lower than 4.9% for Cu2+ and 7.9% for Ni2+. The Tigris River that irrigates a large agricultural part of Southeast Turkey is polluted by domestic and industrial wastes. Concentrations of Cu2+ and Ni2+ were determined in water, soil, and some edible vegetables as a biomonitor for heavy metal pollution.  相似文献   

15.
The effects of Ni2+ were evaluated on slowly-decaying, high-voltage-activated (HVA) Ca2+ currents expressed by pyramidal neurons acutely dissociated from guinea-pig piriform cortex. Whole-cell, patch-clamp recordings were performed with Ba2+ as the charge carrier. Ni2+ blocked HVA Ba2+ currents (I Bas) with an EC50 of approximately 60 μm. Additionally, after application of nonsaturating Ni2+ concentrations, residual currents activated with substantially slower kinetics than both total and Ni2+-sensitive I Bas. None of the pharmacological components of slowly decaying, HVA currents activated with kinetics significantly different from that of total currents, indicating that the effect of Ni2+ on I Bas kinetics cannot be attributed to the preferential inhibition of a fast-activating component. The effect of Ni2+ on I Ba amplitude was voltage-independent over the potential range normally explored in our experiments (−60 to +20 mV), hence the Ni2+-dependent decrease of I Ba activation rate is not due to a voltage- and time-dependent relief from block. Moreover, Ni2+ significantly reduced I Ba deactivation speed upon repolarization, which also is not compatible with a depolarization-dependent unblocking mechanism. The dependence on Ni2+ concentration of the I Ba activation-rate reduction was remarkably different from that found for I Ba block, with an EC50 of ∼20 μm and a Hill coefficient of ∼1.73 vs.∼1.10. These results demonstrate that Ni2+, besides inhibiting the I Bas under study probably by exerting a blocking action on the pore of the underlying Ca2+ channels, also interferes with Ca2+-channel gating kinetics, and strongly suggest that the two effects depend on Ni2+ occupancy of binding sites at least partly distinct. Received: 13 July 2000/Revised: 9 November 2000  相似文献   

16.
Despite the importance of Ni-polluted soils throughout the world, comparatively little is known about the activity of Ni2+ required to reduce plant growth and the effects that Ni2+ toxicity has on the plant. Cowpea (Vigna unguiculata (L.) Walp. cv Caloona) was grown in dilute nutrient solutions to investigate the effect of Ni2+ activity on shoot and root growth. A Ni2+ activity of 1.4 μM was found to cause a 10% reduction in the relative fresh mass of the root and shoots. The primary site of Ni2+ toxicity was the shoots, with the younger leaves displaying an interveinal chlorosis (possibly a Ni-induced Fe deficiency) at Ni2+ activities ≥1.7 μM. Lateral root formation was inhibited in the two highest Ni2+ treatments (3.3 and 5.1 μM), and the roots growing at the highest Ni2+ activity were short and stubby and brown in color. However, no other symptoms of toxicity were observed on the roots at lower Ni2+ activities.  相似文献   

17.
In cultured A6 monolayers from distal Xenopus kidney, external Ni2+ stimulated active Na+ uptake via the epithelial Na+ channel, ENaC. Transepithelial capacitance measurements ruled out exocytosis of ENaC-containing vesicles underlying the Ni2+ effect. Na+ current noise analysis was performed using the neutral Na+-channel blocker 6-chloro-3,5-diamino-pyrazine-2-carboxamide (CDPC) and amiloride. The analysis of CDPC-induced noise in terms of a three-state channel model revealed that Ni2+ elicits an increase in the number of open channels as well as in the spontaneous open probability. While Ni2+ had no influence on CDPC-blocker kinetics, the macroscopic and microscopic blocking kinetics of amiloride were affected. Ni2+ turned out to compete with amiloride for a putative binding site but not with CDPC. Moreover, external Na+—known to compete with amiloride and so producing the self-inhibition phenomenon—and Ni2+ exerted mutually exclusive analogous effects on amiloride kinetics. Na+ current kinetics revealed that Ni2+ prevents ENaC to be downregulated by self-inhibition. Co2+ behaved similarly to Ni2+, whereas Zn2+ did not. Attempts to disclose the chemical nature of the site reacting with Ni2+ suggested cysteine but not histidine as reaction partner.  相似文献   

18.
Uptake of Co2+ by three nickel-resistant strains (NiR1, NiR2, and NiR3) ofNeurospora crassa that differed in resistance to Co2+ has been studied. Uptake was linear with Co2+ concentration (up to 1 mM), with time (up to 6 h), and with pH between 3 and 6. Uptake rates were in the order NiR2>NiR1>NiR3. In all strains, there was gradual increase in Co2+ uptake between 10° and 28°C, with a much sharper increase between 28° and 40°C. Metabolic inhibitors decreased Co2+ uptake partially in all strains, except for KF in NiR3. About 50–80 g Co2+/100 mg dry weight was surface bound. Ni2+, Zn2+, and Mn2+ competed with Co2+, the effects being strain specific. Mg2+ inhibited Co2+ uptake in all strains with preformed mycelia. In NiR1 and NiR2 only with young mycelia (40 h old) was Mg2+ inhibitory to Co2+ uptake,during growth in the presence of Co2+. The results suggested the presence of two transport systems for Co2+ in NiR1 and NiR2, only one of which was sensitive to Mg2+; in contrast, NiR3 had a single system, which was sensitive to Mg2+.  相似文献   

19.
The toxic effect of Ni2+ on photosynthetic electron transport was studied in a photosystem II submembrane fraction. It was shown that Ni2+ strongly inhibits oxygen evolution in the millimolar range of concentration. The inhibition was insensitive to NaCl but significantly decreased in the presence of CaCl2. Maximal chlorophyll fluorescence, together with variable fluorescence, maximal quantum yield of photosystem II, and flash-induced fluorescence decays were all significantly declined by Ni2+. Further, the extrinsic polypeptides of 16 and 24 kDa associated with the oxygen-evolving complex of photosystem II were depleted following Ni2+ treatment. It was deduced that interaction of Ni2+ with these polypeptides caused a conformational change that induced their release together with Ca2+ from the oxygen-evolving complex of photosystem II with consequent inhibition of the electron transport activity.  相似文献   

20.
Calcineurin, a Ca2+- and calmodulin-dependent phosphoprotein phosphatase, was dramatically activated by Ni2+ ions. Activation by Ni2+ was independent of calmodulin and was not reversed by high concentrations of chelators. With histone H1 as substrate, the Km's obtained with Ca2+ and Ni2+ were 2.2 and 4.2 μM, and the kcat's were 0.5 and 24.3 min?1, respectively. Similar to the Ca2+- and Mn2+- supported reactions, the presence of calmodulin caused a 20-fold activation of the Ni2+-activated calcineurin over the basal rate. Incubation of calcineurin with Ni2+ resulted in 30% quenching of its Trp-fluorescence. This effect also was independent of calmodulin and not reversed by chelators. The results suggest that the Ni2+ ions are tightly bound to calcineurin and the effects may be physiologically relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号