首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The present investigation examined the relationship between CO2 sensitivity [at rest (S R) and during exercise (S E)] and the ventilatory response to exercise in ten elderly (61–79 years) and ten younger (17–26 years) subjects. The gradient of the relationship between minute ventilation and CO2 production ( E/ CO2) of the elderly subjects was greater than that of the younger subjects [mean (SEM); 32.8 (1.6) vs 27.3 (0.4); P<0.01]. At rest, S R was lower for the elderly than for the younger group [10.77 (1.72) vs 16.95 (2.13) 1 · min–1 · kPa–1; 1.44 (0.23) vs 2.26 (0.28) 1 · min–1 · mmHg–1; P<0.05], but S E was not significantly different between the two groups [17.85 (2.49) vs 19.17 (1.62) l · min–1 · kPa–1; 2.38 (0.33) vs 2.56 (0.21) 1 · min–1 · mmHg–1]. There were significant correlations between both S R and S E, and E/ CO2 (P<0.05; P<0.001) for the younger group, bot none for the elderly. The absence of a correlation for the elderly supports the suggestion that E/ CO2 is not an appropriate index of the ventilatory response to exercise for elderly humans.  相似文献   

2.
The effect of severe acute hypoxia (fractional concentration of inspired oxygen equalled 0.104) was studied in nine male subjects performing an incremental exercise test. For power outputs over 125 W, all the subjects in a state of hypoxia showed a decrease in oxygen consumption ( O2) relative to exercise intensity compared with normoxia (P < 0.05). This would suggest an increased anaerobic metabolism as an energy source during hypoxic exercise. During submaximal exercise, for a given O2, higher blood lactate concentrations were found in hypoxia than in normoxia (P < 0.05). In consequence, the onset of blood lactate accumulation (OBLA) was shifted to a lower O2 ( O2 1.77 l·min–1 in hypoxia vs 3.10 l·min–1 in normoxia). Lactate concentration increases relative to minute ventilation ( E) responses were significantly higher during hypoxia than in normoxia (P < 0.05). At OBLA, E during hypoxia was 25% lower than in the normoxic test. This study would suggest that in hypoxia subjects are able to use an increased anaerobic metabolism to maintain exercise performance.  相似文献   

3.
The purpose of this study was to evaluate the effects on physical performance of three levels of energy intake during a 5-day period of prolonged physical exercise and relative sleep deprivation. A group of 27 male soldiers were randomly assigned to three groups receiving either 1800 kcal · 24 h–1 (7560 kJ, LC), 3200 kcal · 24h–1 (13440 kJ, MC) or 4200 kcal-24h–1 (17640 kJ, HC). They took part in a 5-day combat course (CC) of heavy and continuous physical activities, with less than 4 h sleep per day. Performance capacity was tested just before and at the end of CC. Maximal oxygen uptake ( O2max) was determined during an exhausting incremental exercise test on a cycle ergometer. Anaerobic performance was measured from the time during which exercise could be maintained at supra maximal loads on a cycle ergometer. After CC, the subjects receiving LC exhibited a 14% decrease in power output at exhaustion in the incremental exercise test [from 325 (SEM 8) to 278 (SEM 9) W,P < 0.001] and a significant decrease in O2max of 8% [from 3.74 (SEM 0.06) to 3.45 (SEM 0.05) l · min–1,P<0.05]. The remaining two experimental groups demonstrated the same mechanical and metabolic performances on days 1 and 5. Anaerobic performance was not influenced by energy intake and the field course. Blood samples were obtained at rest on days 1 and 5. At the end of CC, the data demonstrated a significant decrease in blood glucose concentrated ion (P<0.01) for LC diet only. Plasma free fatty acid, blood glycerol and -OH butyrate were significantly increased in all groups, from day 1, but the values observed for LC were higher than those for the MC and HC diets. The concentrations of the anabolic hormones, insulin and testosterone, decreased in the three groups, the lowest values being observed in the LG group (P < 0.05). In conclusion, we found that only a severe energy deficit decreased physical performance during submaximal exercise. A moderate deficit between energy intake and expenditure did not affect performance. Supramaximal exercise did not appear to be influenced by energy intake and CC.  相似文献   

4.
To investigate the hypothesis that facial cooling (FC) exerts a greater influence on the cardiovascular system at lower versus higher levels of exercise, this study examined the effect of facial cooling [mean (SE): 0 (2)°C at 0.8 m·s–1 wind velocity] during 30 min low [35% maximum oxygen consumption ( O2max)] and moderate (70% O2max) levels of cycle ergometry in the supine position. Five male subjects were assigned in random order to four exercise conditions: (1) FC at 35% O2max(FC35), (2) no cooling (NFC35), (3) FC at 70% O2max(FC70), and (4) no cooling (NFC70). Heart rate (f c), stroke volume (V s), and cardiac output ( c) were measured at rest and every 10 min of exercise using impedance cardiography. During FC35, the change in f c [mean (SE)] was significantly lower (P < 0.05) than NFC35 at 10 [22 (5) vs 31 (3) beats· min–1], 20 [29 (6) vs 35 (3) beats·min–1], and 30 [29 (5) vs 38 (4) beats·min–1] min. No differences in f c were observed between FC70 and NFC70. Furthermore, FC had no effect on V s or cat either exercise intensity. However, when comparing the FC70 and NFC70 conditions, there was a significant main effect (P<0.05) in mean arterial pressure (P a) response with cooling despite the fact that neither V s or cwere different from the NFC70 control. The increase (P < 0.05) in the estimated change in systemic vascular resistance ( a· c –1) could partly explain the relative rise in aat FC70. No pressor effect of cooling was observed at 35% O2max. The results suggest that the FC condition promotes exercise bradycardia at low levels of exercise and exerts a greater pressor response during moderate exercise.  相似文献   

5.
A double-blind paired protocol was used to evaluate, in eight male volunteers, the effects of the endogenous opiate antagonist naloxone (NAL; 0.05 mg· kg–1) on cardiovascular responses to 50° head-up tilt-induced central hypovolaemia. Progressive central hypovolaemia was characterized by a phase of normotensive-tachycardia followed by an episode of hypotensive-bradycardia. The NAL shortened the former from 20 (8–40) to 5 (3–10) min (median and range; (P < 0.02). Control head-up tilt increased the means of thoracic electrical impedance [from 35.8 (SEM 2.1) to 40.0 (SEM 1.8) ; P < 0.01 of heart rate [HR; from 67 (SEM 5) to 96 (SEM 8) beats · min–1, P < 0.02], of total peripheral resistance [TPR; from 25.5 (SEM 3.2) to 50.4 (SEM 10.5)mmHg min 1–1,P < 0.05] and of mean arterial pressure [MAP; from 96 (SEM 2) to 101 (SEM 2)mmHg, P < 0.02]. Decreases were observed in stroke volume [from 65 (SEM 12) to 38 (SEM 9) ml, P < 0.01], in cardiac output [from 3.7 (SEM 0.7) to 2.5 (SEM 0.5) 1 · mint, P < 0.01], in pulse pressure [from 55 (SEM 4) to 37 (SEM 3)mmHg, P < 0.01] and in central venous oxygen saturation [from 73 (SEM 2) to 59 (SEM 4)%, P < 0.01]. During NAL, mean HR increased from 70 (SEM 3); n.s. compared to control) to only 86 (SEM 9) beats · min–1 (P < 0.02 compared to control) and MAP remained stable. The episode of hypotensive-bradycardia appeared as mean control HR decreased to 77 (SEM 7)beats · min–1, TPR to 31.4(SEM 7.7)mmHg · min · 1–1 and MAP to 60 (SEM 5)mmHg (P < 0.01), and the volunteers were tilted supine. Cardiovascular effects of naloxone on central hypovolaemia included a reduced elevation of HR and blood pressures and provocation of the episode of hypotensive-bradycardia.  相似文献   

6.
The purpose of this study was to determine the effect of low, moderate and high wet bulb globe temperatures (T wbg) on cardiovascular variables and ratings of perceived exertion (RPE) during moderately prolonged, high-intensity exercise. Six subjects [four men and two women; mean (SD) age, 22.0 (1.2) years; maximum oxygen consumption ({ie519-1}), 51.0 (8.4) ml · kg–1 · min–1] completed 30 min of exercise (80% {ie519-2}) on a cycle ergometer at low [14.7 (2.1)°C], moderate [21.0 (1.5)° C], and high [27.4 (2.3)° C]T wbg. Two additional subjects completed 20 min of exercise in the high temperature condition, but completed 30 min in the moderate and lowT wbg. Heart rate (f c), blood pressure, blood lactate (La), mean skin temperature ( sk), , and RPE were measured at 10, 20 and 30 min. Results showed thatf c, rate pressure product, RPE, pulmonary ventilation and ventilatory equivalent for oxygen increased (P < 0.05) across time for all conditions, while decreased across time. sk andf c were significantly greater across time in the high condition [35.9 (0.65)° C; 176 (12.6) beats · min–1] compared to the moderate [34.6 (1.5)° C; 170 (17.2) beats · min–1] and the low condition [31.7 (1.5)° C; 164 (17.1) beats-min–1]. However, there were no differences throughout exercise in RPE [high,.16.2 (2.0); moderate, 16.4 (2.2); low, 16.3 (1.9)] and across the conditions. These data suggest that RPE is closely related to metabolic intensity but is not a valid indicator of cardiovascular strain during exercise in highT wbg conditions.  相似文献   

7.
This investigation evaluated the influence of metabolic alkalosis on plasma ammonia (NH3) accumulation during incremental exercise. On two occasions separated by at least 6 days, six healthy men cycled at 70, 80, and 90%g of maximum oxygen consumption ( ) for 5 min; each exercise period was followed by 5 min of seated recovery. Exercise was then performed at 100% until exhaustion. Beginning 3 h prior to exercise, subjects ingested 3.6 mmol · kg body mass NaHCO3 (test, T) or 3.0 mmol · kg body mass–1 CaCO3 (placebo, P) (both equivalent to 0.3 g · kg–1) over a 2-h period. Trials were performed after an overnight fast and the order of treatments was randomized. Arterialized venous blood samples for the determination of acid-base status, blood lactate and plasma NH3 concentrations were obtained at rest before treatment, 15 s prior to each exercise bout (Pre 70%, Pre 80%, Pre 90%, and Pre 100%), and at 0, 5 (5Post), and 10 (10'Post) min after exhaustion. Additional samples for blood lactate and plasma NH3 determination were obtained immediately after each exercise bout (Post 70%, Post 80%, Post 90%) and at 15 min after exercise (15Post). Time to exhaustion at 100% of was not significantly different between treatments [mean (SE): 173 (42) s and 184 (44) s for T and P respectively]. A significant treatment effect was observed for plasma pH with values being significantly higher on T than on P Pre 70% [7.461 (0.007) vs 7.398 (0.008)], Pre 90% [7.410 (0.010) vs 7.340 (0.016)], and 10'Post [7.317 (0.032) vs 7.242 (0.036)]. The change in plasma pH was significantly greater following the 90%g bout (Pre 100% Pre 90%) for T [–0.09 (0.02)] than for P [–0.06 (0.01)]. Blood base excess and plasma bicarbonate concentrations were significantly higher for T than P before each exercise bout but not at the point of exhaustion. During recovery, base excess was higher for T than P at 5Post and 10Post while the bicarbonate concentration was higher for T than P at 10Post. A significant treatment effect was observed for the blood lactate concentration with T on the average being higher than P [7.0 (1.0) and 6.3 (1.1) mmol · l–1 for T and P averaged across the 12 sampling times]. Plasma NH3 accumulation was not different between treatments at any point in time. In addition, no differences were observed between treatments in blood alanine accumulation. The results suggest that under the conditions of the present investigation metabolic alkalosis does not influence plasma NH3 accumulation or endurance capacity during intense incremental exercise.  相似文献   

8.
We investigated whether the spontaneous transition between walking and running during moving with increasing speed corresponds to the speed at which walking becomes less economical than running. Seven active male subjects [mean age, 23.7 (SEM 0.7) years, mean maximal oxygen uptake ( ), 57.5 (SEM 3.3) ml·kg –1·min –1, mean ventilatory threshold (VTh), 37.5 (SEM 3) ml·kg –1 ·min –1] participated in this study. Each subject performed four exercise tests separated by 1-week intervals: test 1, and VTh were determined; test 2, the speed at which the transition between walking and running spontaneously occurs (ST) during increasing speed (increases of 0.5 km·h –1 every 4 min from 5 km·h –1) was determined; test 3, the subjects were constrained to walk for 4 min at ST, at ST ± 0.5 km·h –1 and at ST ± 1 km·h –1; and test 4, the subjects were constrained to run for 4 min at ST, at ST±0.5 km·-h –1 and at ST±1 km·h –1. During exercise, oxygen uptake ( ), heart rate (HR), ventilation ( ), ventilatory equivalents for oxygen and carbon dioxide (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaca% WaaSbaaSqaaiaabweaaeqaaOGaai4laiqadAfagaGaamaaBaaaleaa% caqGYaaabeaakiaacYcacaqGGaGaaeiiaiqadAfagaGaamaaBaaale% aacaqGfbaabeaakiaac+caceWGwbGbaiaacaqGdbGaae4tamaaBaaa% leaacaaIYaaabeaaaaa!4240!\[\dot V_{\text{E}} /\dot V_{\text{2}} ,{\text{ }}\dot V_{\text{E}} /\dot V{\text{CO}}_2 \]), respiratory exchange ratio (R), stride length (SL), and stride frequency (SF) were measured. The results showed that: ST occurred at 2.16 (SEM 0.04) m·s –1; , HR and speed at ST were significantly lower than the values measured at VTh (P< 0.001, P< 0.001 and P< 0.05, respectively); changed significantly with speed (P< 0.001) but was greater during running than walking below ST (ST minus 1 km·h –1, P< 0.001; ST minus 0.5 km·h –1, P< 0.05) with the converse above ST (ST.plus 1 km·h –1, P<0.05), whereas at ST the values of were very close [23.9 (SEM 1.1) vs 23.7 (SEM 0.8) ml·kg –1 · min –1 not significant, respectively, for walking and running]; SL was significantly greater during walking than running (P<0.001) and SF lower (P<0.001); and HR and were significantly greater during running than walking below ST (ST minus 1 km·h –1, P<0.01; ST minus 0.5 km·h –1, P{<0.05) with the converse above ST (ST plus 1 km·h –1, P·< 0.05), whereas no difference appeared for and R between the two types of locomotion. We concluded from this study that ST corresponded to the speed at which the energy expenditure of running became lower than the energy expenditure of walking but that the mechanism of the link needed further investigation.  相似文献   

9.
We employed a glycogen-depleting session of exercise followed by a low-carbohydrate (CHO) diet to investigate modifications that occur in muscle sarcoplasmic reticulum (SR) Ca2+-cycling properties compared with low-CHO diet alone. SR properties were assessed in nine untrained males [peak aerobic power (O2 peak) = 43.6 ± 2.6 (SE) ml·kg–1·min–1] during prolonged cycle exercise to fatigue performed at 58% O2 peak after 4 days of low-CHO diet (Lo CHO) and after glycogen-depleting exercise plus 4 days of low-CHO (Ex+Lo CHO). Compared with Lo CHO, Ex+Lo CHO resulted in 12% lower (P < 0.05) resting maximal Ca2+-ATPase activity (Vmax = 174 ± 12 vs. 153 ± 10 µmol·g protein–1·min–1) and smaller reduction in Vmax induced during exercise. A similar effect was observed for Ca2+ uptake. The Hill coefficient, defined as slope of the relationship between cytosolic free Ca2+ concentration and Ca2+-ATPase activity, was higher (P < 0.05) at rest (2.07 ± 0.15 vs. 1.90 ± 0.10) with Ex+Lo CHO, an effect that persisted throughout the exercise. The coupling ratio, defined as the ratio of Ca2+ uptake to Vmax, was 23–30% elevated (P < 0.05) at rest and during the first 60 min of exercise with Ex+Lo CHO. The 27 and 34% reductions (P < 0.05) in phase 1 and phase 2 Ca2+ release, respectively, observed during exercise with Lo CHO were not altered by Ex+Lo CHO. These results indicate that when prolonged exercise precedes a short-term Lo CHO diet, Ca2+ sequestration properties and efficiency are improved compared with those during Lo CHO alone. calcium cycling; vastus lateralis; contractile activity; glycogen; phosphorylation potential  相似文献   

10.
We investigated the aerobic and anaerobic contributions to performance during the Wingate test in sprint and middle-distance runners and whether they were related to the peak aerobic and anaerobic performances determined by two commonly used tests: the force-velocity test and an incremental aerobic exercise test. A group of 14 male competitive runners participated: 7 sprinters, aged 20.7 (SEM 1.3) years, competing in 50, 100 and 200-m events and 7 middle-distance runners, aged 20.0 (SEM 1.0) years, competing in 800, 1,000 and 1,500 m-events. The oxygen uptake ( ) was recorded breath-by-breath during the test (30 s) and during the first 20 s of recovery. Blood samples for venous plasma lactate concentrations were drawn at rest before the start of the test and during the 20-min recovery period. During the Wingate test mean power ( ) was determined and three values of mechanical efficiency, one individual and two arbitrary, 16% and 25%, were used to calculate the contributions of work by aerobic ( aer,ind,16%,25%) and anaerobic ( an,ind,16%,25%) processes. Peak anaerobic power ( an,peak) was estimated by the force-velocity test and maximal aerobic energy expenditure ( aer,peak) was determined during an incremental aerobic exercise test. During the Wingate test, the middle-distance runners had a significantly greater than the sprinters (P < 0.001), who had significantly greater venous plasma lactate concentrations (P < 0.001). Moreover, aer,ind,16%,25% were also significantly higher (P < 0.05) in the middle-distance runners [ aer,ind 45 (SEM 4) % vs 28 (SEM 2) %; aer,16% 30 (SEM 3) % vs 19 (SEM 2) %; aer,25% 46 (SEM 3) % vs 29 (SEM 2)%]; an,ind,16%,25% in the sprint runners (P < 0.05) [ an,ind 72 (SEM 3) % vs 55 (SEM 4) %; an,16% 81 (SEM 2) % vs 70 (SEM 3) %; an,25% 71 (SEM 2) % vs 54 (SEM 3) %]. The aer,ind/ aer,peak and × an,ind/ an,peak ratios, however, were not significantly different between the two groups of athletes. These results would indicate that the sprinters and middle-distance runners used preferentially a metabolic system according to their speciality. Nevertheless, under the conditions of its experiment, they seemed to rely on the same percentage of both peak anaerobic and peak aerobic performance for a given exercise task.  相似文献   

11.
The purpose of this investigation was to examine the influence of daytime exercise on heart rate during sleep. Nine, untrained male college students volunteered to participate. They cycled at 75% maximum oxygen uptake, ( O2max) 30 min·day–1 for 12 weeks. The exercise duration was increased by 5 min every 4 weeks from 30 to 40 min per session. Post-training O2max[mean (SE): 48.9 (1.7) ml · kg–1 · min–1] values were significantly (P<0.01) higher than pre-training [45.5 (1.8) ml-kg–1·min–1] values. Before and after training, sleeping heart rate was assessed on two separate nights. Data were obtained during a night following 30 min of daytime cycling at 75 (6) % O2maxand on a night in which no daytime exercise was performed. A three-way repeated measures ANOVA [training status (pre-/post-training) × activity (exercise day/nonexercise day) × sleep time (18 epochs of 20 min each)] revealed a significant main effect for sleep time (P < 0.001) as well as a sleep time × training status interaction (P<0.02). No significant difference in sleeping heart rate was noted when exercise and non-exercise days were compared both before and after training. It is concluded that endurance training in these young adult men: (1) hastens the achievement of baseline heart rate during sleep, and (2) does not moderate the relationship between an acute bout of daytime exercise and sleeping heart rate.  相似文献   

12.
Four top-class runners who regularly performed marathon and long-distance races participated in this study. They performed a graded field test on an artificial running track within a few weeks of a competitive marathon. The test consisted of five separate bouts of running. Each period lasted 6 min with an intervening 2-min rest bout during which arterialized capillary blood samples were taken. Blood was analysed for pH, partial pressure of oxygen and carbon dioxide (P02 and PCO2) and lactate concentration ([la]b). The values of base excess (BE) and bicarbonate concentration ([HCO3 ]) were calculated. The exercise intensity during the test was regulated by the runners themselves. The subjects were asked to perform the first bout of running at a constant heart rate f c which was 50 beats · min–1 below their own maximal f c. Every subsequent bout, each of which lasted 6 min, was performed with an increment of 10 beats · min–1 as the target f c. Thus the last, the fifth run, was planned to be performed with fc amounting to 10 beats · min–1 less than their maximal f c. The results from these runners showed that the blood pH changed very little in the bouts performed at a running speed below 100% of mean marathon velocity ( m). However, once mwas exceeded, there were marked changes in acid-base status. In the bouts performed at a velocity above the mthere was a marked increase in [la]b and a significant decrease in pH, [HCO3 ], BE and PCO2. The average marathon velocity ( m) was 18.46 (SD 0.32) km·h–1. The [la]b at a mean running velocity of 97.1 (SD 0.8) % of mwas 2.33 (SD 1.33) mmol ·l–1 which, compared with a value at rest of 1.50 (SD 0.60) mmol·l–1, was not significantly higher. However, when running velocity exceeded the vm by only 3.6 (SD 1.9) %, the [la]b increased to 6.94 (SD 2.48) mmol·l-1 (P<0.05 vs rest). We concluded from our study that the highest running velocity at which the blood pH still remained constant in relation to the value at rest and the speed of the run at which [la]b began to increase significantly above the value at rest is a sensitive indicator of capacity for marathon running.  相似文献   

13.
We investigated the effects of a stimulation of pyruvate dehydrogenase (PDH) activity induced by 2-chloropropionate (2-CP) on venous plasma lactate concentration and peak anaerobic power (W an, peak) during periods (6 s) of incremental intense exercise, i.e. a force-velocity (F-) test known to induce a marked accumulation of lactate in the blood. TheF- test was performed twice by six subjects according to a double-blind randomized crossover protocol: once with placebo and once with 2-CP (43 mg · kg–1 body mass). Blood samples were taken at ingestion of the drug, at 10, 20, and 40 Min into the pretest period, at the end of each period of intense exercise, at the end of each 5-min recovery period, and after completion of theF- test at 5, 10, 15, and 30 min. During theF- test, venous plasma lactate concentrations with both placebo and 2-CP increased significantly when measured at the end of each period of intense exercise (F = 33.5,P < 0.001), and each 5-min recovery period (F = 24.6,P < 0.001). Venous plasma lactate concentrations were significantly lower with 2-CP at the end of each recovery period (P < 0.01), especially for high braking forces, i.e. 8 kg (P < 0.05), 9 kg (P < 0.02), and maximal braking force (P < 0.05). After completion of theF- test, venous plasma lactate concentrations were also significantly lower with 2-CP (P < 0.001). The percentage of lactate decrease between 5- and 30-min recovery was significantly higher with 2-CP than with the placebo [59 (SEM 4)% vs 44.6 (SEM 5.5)%,P < 0.05]. Furthermore,W an, peak was significantly higher with 2-CP than with the placebo [1016 (SEM 60) W vs 957 (SEM 55) W,P < 0.05]. In conclusion, PDH activation by 2-CP attenuated the increase in venous plasma lactate concentration during theF- test. Ingestion of 2-CP led to an increasedW an, peak.  相似文献   

14.
When the loss of body heat is accelerated by exposure to low environmental temperatures, additional substrates must be oxidized to provide energy to sustain temperature homeostasis. Therefore, the present investigation examined the relation between feeding regime [pre-experimental carbohydrate feeding (FED) vs a fast (FAST)], during 120 min of exposure to 8, 20, and 27° C in well-nourished men. The following were examined: tissue insulation (I; °C · m2 · W–1), rectal temperature (T re; °C), and oxygen consumption ( O2; ml · kg–1 · min–1). O2, T re, and I revealed no significant differences between treatments (FED vs FAST) at any temperature. At 27° C, I was less (P < 0.05) than at 20 and 8° C, and decreased (P < 0.05) as exposure time increased. At 8° C, O2was higher (P < 0.5) than at 20 or 27°C, and O2increased as time increased (P < 0.05). T re decreased (P < 0.05) as time increased for all conditions. Respiratory exchange ratio (R) differed (P < 0.05) between treatments (FED vs FAST), temperature (8 vs 20° C), and across time. Values for R suggests that carbohydrate accounted for 56% and 33% of caloric utilization during the FED vs FAST conditions, respectively. At 8 vs 20° C, R represented 54% vs 30% of cabohydrate utilization. Across time, R demonstrated that in both conditions (FED vs FAST) there was a decreased reliance on carbohydrate utilization for energy provision. From these data it appears that while substrate utilization differed between dietary treatment and across time this did not differentially affect O2or T re during protracted exposure to 8, 20, and 27° C. The higher R in the 8° C condition for both dietary treatments demonstrates that carbohydrate utilization is increased in shivering cold-exposed humans. However, the reduction in R across time suggests that fat oxidation is also involved in metabolic heat production and core temperature maintenance during shivering in the cold.  相似文献   

15.
To determine the effect of endogenous opioids on catecholamine response during intense exercise [80% maximal oxygen uptake ( O2max)], nine fit men [mean (SE) ( O2max, 63.9 (1.7) ml · kg–1 · min–1; age 27.6 (1.6) years] were studied during two treadmill exercise trials. A double-blind experimental design was used with subjects undertaking the two exercise trials in counterbalanced order. Exercise trials were 20 min in duration and were conducted 7 days apart. One exercise trial was undertaken following administration of naloxone (N; 1.2 mmol · l–1; 3 ml) and the other after receiving a placebo (P; 0.9% saline; 3 ml). Prior to each experimental trial a flexible catheter was placed into an antecubital vein and baseline blood samples were collected. Immediately afterwards, each subject received bolus injection of either N or P. Blood samples were also collected after 20 min of continuous exercise while running. Epinephrine and norepinephrine were higher (P < 0.05) in the N than P exercise trial with mean (SE) values of 1679 (196) versus 1196 (155) pmol · l–1 and 24 (2.2) versus 20 (1.7) nmol · · l–1 respectively. Glucose and lactate were higher (P < 0.05) in the N than P exercise trial with values of 7 (0.37) versus 5.9 (0.31) mmol · l–1 and 6.9 (1.1) versus 5.3 (0.9) mmol · l–1 respectively. These data suggest an opioid inhibition in the release of catecholamines during intense exercise.  相似文献   

16.
The liver is central to the metabolic response to exercise but measurements of effects of reduced liver function on the physiological adaptation to exercise are scarce. We investigated metabolic, endocrine, pulmonary and haemodynamic responses to exercise in 15 healthy untrained controls (Co) and in 30 subjects with reduced liver function (i.e. liver cirrhosis, Ci). The following protocols were used: protocol 1 maximal oxygen uptake and anaerobic threshold (AT), protocol 2 stepwise increases in exercise intensity from 0 to 40% giving steady-stage conditions, protocol 3 1 h exercise at 20% . Muscle glycogen content was determined in 15 Ci. Spirometry was essentially normal in Ci. Result: protocol 1 Ci had impaired and reduced AT (P < 0.05). Basal plasma concentrations of insulin, glucagon, growth hormone and adrenaline were increased in Ci (P < 0.05); cortisol was normal. During exercise, only glucagon remained different between groups. In protocol 2 Ci had decreased resting respiratory exchange ratio (RQ: p < 0.05) associated with increased plasma concentrations of free fatty acids and glycerol. They had disproportionately enhanced lipolysis and RQ. heart rate (+ 24%), ventilation (+ 28%), thermal effects of exercise (+ 31%) and intrapulmonary shunt volume (+ 76%), which accounted for 11.7 (SD 3.0) or 7.4 (SD 0.9%) of cardiac output during exercise in Ci and Co, respectively (P < 0.05 for all the differences reported). The metabolic effects of Ci were independent of the clinical and nutritional state of the patients. In protocol 3 muscle glycogen content was highly variable in Ci, but mean values were normal [16.9 (SD 8.9) mol·g–1 wet mass]. Glycogen content positively correlated with resting and exercise-induced RQ, but negatively correlated with the exercise-induced alterations in plasma glucose concentration. From these results we concluded that with reduced liver function , and AT are reduced, but metabolic, pulmonary and haemodynamic reponses per unit power output are enhanced. Muscle glycogen content would seem to contribute to the metabolic response, but its mobilization to be limited in individuals with reduced liver function.Dedicated to Professor D.F.W. Schmidt on the occasion of his 70th birthday  相似文献   

17.
Power-oxygen uptake ( ) frequency responses can be used to predict responses to arbitrary exercise intensity patterns. It is still an open question for which range of exercise intensities such computed response patterns yield valid predictions. In the present study, we determined the power- frequency response of nine sports students by means of pseudo-randomised switching between 20 W and 80 W during upright and supine cycle exercise. Starting from a baseline of 20 W each subject also performed sustained step increases to 40 W, 80 W, 120 W, and 160 W in both positions. The individual step responses were then compared with the expected time-courses predicted on the basis of the individual frequency responses. The comparison showed a close agreement for the 20 W–40 W and 20 W–80 W steps in both positions. With larger step amplitudes the kinetics became increasingly slower than the predicted time course in both positions. During additional ramp tests (10 W · 30 s–1) whole blood lactic acid concentration [1a]b tended to be higher in the supine position at exercise intensities higher than 160 W. The mean power at 4 mmol · 1–1 [la]b amounted to 234 (SD 32) W and 253 (SD 44) W (P<5%) in the supine and the upright position, respectively. The maximal oxygen uptake relative to body mass was not found to be significantly different [upright, mean 57 (SD 10) ml · (min · kg)–1;supine, mean 54 (SD 10) ml · (min · kg)]. These findings would suggest that for a range of mild exercise intensities kinetics are not appreciably influenced by the step amplitude or by cardiovascular changes associated with the upright and the supine position.  相似文献   

18.
The purpose ofthis experiment was to study endurance performance and substratestorage and utilization in fat- or carbohydrate-fed rats. Ninety-ninerats were randomly divided into three groups and over 4 wk were fedeither a carbohydrate-rich [CHO; 10% total energy content in the diet(E%) fat, 20 E% protein, 70 E% carbohydrate] diet or one of twofat-rich diets (65 E% fat, 20 E% protein, 15 E% carbohydrate)containing either saturated (Sat) or monounsaturated fatty acids(Mono). Each dietary group was randomly assigned to a trained (6 days/wk, progressive to 60 min, 28 m/min at a 10% incline) or asedentary group. Rats were killed either before or after a treadmillendurance run to exhaustion. Training increased endurance (206%), butdiet composition did not affect endurance in either trained orsedentary rats. -Hydroxyacyl-CoA dehydrogenase activity wasincreased in fat-fed but not carbohydrate-fed rats (P < 0.05). Respiratory exchangeratio during the initial phase of exercise was lower after the Monocompared with the Sat diet (P < 0.05) and higher after the CHO than the Sat diet(P < 0.05). Thus adaptation to ahigh-fat diet containing a moderate amount of carbohydrates did notinduce enhanced endurance in either trained or untrained rats; however,substrate utilization was modulated by both amount and type of dietaryfat during the initial stage of exercise in trained and sedentary rats.

  相似文献   

19.
The aim of this study was to find out whether a low-carbohydrate diet (L-CHO) affects: (1) the capacity for all-out anaerobic exercise, and (2) hormonal and metabolic responses to this type of exercise. To this purpose, eight healthy subjects underwent a 30-s bicycle Wingate test preceded by either 3 days of a controlled mixed diet (130 kJ/kg of body mass daily, 50% carbohydrate, 30% fat, 20% protein) or 3 days of an isoenergetic L-CHO diet (up to 5% carbohydrate, 50% fat, 45% protein) in a randomized order. Before and during 1 h after the exercise venous blood samples were taken for measurement of blood lactate (LA), β-hydroxybutyrate (β-HB), glucose, adrenaline (A), noradrenaline (NA) and insulin levels. Oxygen consumption (O2) was also determined. It was found that the L-CHO diet diminished the mean power output during the 30-s exercise bout [533 (7) W vs 581 (7) W, P < 0.05] without changing the maximal power attained during the first or second 5-s interval of the exercise. In comparison with the data obtained after the consumption of a mixed diet, after the consumption of a L-CHO diet resting plasma concentrations of β-HB [2.38 (0.18) vs 0.23 (0.01) mmol · l−1, P < 0.001] and NA [4.81 (0.68) vs 2.2 (0.31) nmol · l−1, P < 0.05] were higher, while glucose [4.6 (0.1) vs 5.7 (0.2) mmol · l−1, P < 0.05] and insulin concentrations [11.9 (0.9) vs 21.8 (1.8) mU · l−1] were lower. The 1-h post-exercise excess of O2 [9.1 (0.25) vs 10.6 (0.25) l, P < 0.05], and blood LA measured 3 min after the exercise [9.5 (0.4) vs 10.6 (0.5) mmol · l−1, P < 0.05] were lower following the L-CHO treatment, whilst plasma NA and A concentrations reached higher values [2.24 (0.40) vs 1.21 (0.13) nmol · l−1 and 14.30 (1.41) vs 8.20 (1.31) nmol · l−1, P < 0.01, respectively]. In subjects on the L-CHO diet, the plasma β-HB concentration decreased quickly after exercise, attaining ≈30% of the pre-exercise value within 60 min, while insulin and glucose levels were elevated. The main conclusions of this study are: (1) a L-CHO diet is detrimental to anaerobic work capacity, possibly because of a reduced muscle glycogen store and decreased rate of glycolysis; (2) reduced carbohydrate intake for 3 days enhances activity of the sympathoadrenal system at rest and after exercise. Accepted: 31 January 1997  相似文献   

20.
The purpose of this study was to test a theoretical model (Stein et al. 1986) which suggested that minimizing the rate of metabolic energy consumption ( O2) is related to minimizing jerk (third derivative of position) during human movement. At a given speed of walking, O2 has been shown to increase curvilinearly as stride length (SL) is varied from freely chosen stride length (FCSL). It was hypothesized that the jerk-cost, or JC (area under squared jerk curve), would exhibit similar behavior. Subjects (n=24) walked (1.75 m ·. s–1) on a treadmill at FCSL, and at SL derivations at ± 10 and ±20% of leg length from FCSL until steady-state O2 was attained. Videotaping (60 Hz) in the sagittal plane and subsequent digitizing of relevant markers produced position coordinates which were smoothed and normalized in both distance and time before calculating the third time derivative to obtain two-dimensional JC values. The expected response of O2 to deviations in SL was found (minimum at FCSL), but JC increased with SL except at the two longest SL conditions. A weak but statistically significant negative correlation was found between O2 and JC, suggesting that smoothness and economy are not complementary performance criteria during walking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号