首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of dehydration/rehydration on two strains of Saccharomyces cerevisiae: S600, a metabolically engineered xylose-utilising strain, and H158, the non-xylose-utilising host strain; and on the naturally xylose-utilising yeast Pachysolen tannophilus CBS 4044, were compared after glucose and xylose utilisation respectively. The yeast strains differed in their ability to excrete and accumulate intracellular xylitol. A high intracellular xylitol content before and after dehydration coincided with a higher viability after a dehydration/rehydration cycle. The intracellular trehalose content increased during dehydration in all three yeast strains, but this did not correspond to enhanced cell viability after dehydration/rehydration. The results are discussed in relation to the ability of xylitol and trehalose to structure water. Received: 9 July 1996 / Received revision: 29 October 1996 / Accepted: 2 November 1996  相似文献   

2.
The viability and thermal stability of a freeze-dried yeast strain were studied in relation to some physical properties of the matrices in which the cells were freeze-dried. Samples of inoculum with solutions of the matrix components [polyvinylpyrrolidone (PVP), maltose, trehalose, maltodextrins, or mixtures of maltodextrin and trehalose] and controls without matrices were freeze-dried and then equilibrated at several relative humidities. Viability was determined before and after freeze-drying and after heat treatment (100 min at 70 °C). Freeze-drying with trehalose, PVP, maltose or 1.8-kDa maltodextrin, and mixtures of maltodextrin/trehalose increased viability in comparison with controls. The 3.6-kDa maltodextrin was ineffective at protecting the cells during freeze-drying. The glass transition temperature (T g), which depends on moisture content, was indicated as a possible factor to determine the stability of labile materials. Protective effects of the excipients during thermal treatment were analysed in relation to the physical changes (collapse or structural shrinkage) which were dependent on the T g of the systems. The presence of a certain amount of amorphous disaccharides during freeze-drying and heating was found to be a critical factor for ensuring cell viability, which was protected even in rubbery (above T g) matrices. Received: 4 December 1998 / Received last revision: 2 March 1999 / Accepted: 14 March 1999  相似文献   

3.
Since some amino acids, polyols and sugars in cells are thought to be osmoprotectants, we expected that several amino acids might also contribute to enhancing freeze tolerance in yeast cells. In fact, proline and charged amino acids such as glutamate, arginine and lysine showed a marked cryoprotective activity nearly equivalent to that of glycerol or trehalose, both known as major cryoprotectants for Saccharomyces cerevisiae. To investigate the cryoprotective effect of proline on the freezing stress of yeast, we isolated proline-analogue-resistant mutants derived from a proline-non-utilizing strain of S. cerevisiae. When cultured in liquid minimal medium, many mutants showed a prominent increase, two- to approximately tenfold, in cell viability compared to the parent after freezing in the medium at −20 °C for 1 week. Some of the freeze-tolerant mutants were found to accumulate a higher amount of proline, as well as of glutamate and arginine which are involved in proline metabolism. It was also observed that proline-non-utilizer and the freeze-tolerant mutants were able to grow against osmotic stress. These results suggest that the increased flux in the meta-bolic pathway of specific amino acids such as proline is effective for breeding novel freeze-tolerant yeasts. Received: 6 November 1996 / Accepted: 7 December 1996  相似文献   

4.
Using genetic hybridization analysis, pulsed-field gel electrophoresis of chromosomal DNA and PCR/RFLP analysis of the MET2 gene, we reidentified 11 Champagne yeast strains. Two of them, SCPP and SC4, were found to belong to Saccharomyces bayanus var. uvarum and the remaining strains to S. cerevisiae. Strain SCPP (CLIB 2025) of S. bayanus var. uvarum is known as a producer of three pectinolytic enzymes. Received: 28 April 2000 / Received revision: 20 July 2000 / Accepted: 25 July 2000  相似文献   

5.
The magnesium content of Saccharomyces cerevisiae was found to vary by up to fivefold at differing␣ stages of batch growth and during growth in the presence of differing magnesium concentrations. Excess Mg was primarily sequestered in vacuoles. Mn2+-uptake experiments revealed that Mg-enriched cells had a markedly reduced capacity for Mn2+ accumulation. For example, after 6 h incubation in the presence of 50 μM Mn2+, Mn levels were approximately twofold higher in cells previously grown in unsupplemented medium than in those from Mg-supplemented medium. These differences were further accentuated at higher Mn2+ concentrations and were not attributable to altered cell-surface charge or altered cell-surface Mn2+ binding. Cellular Mg status also influenced Mn toxicity towards S. cerevisiae. During exposure to 5 mM Mn2+, 50% reductions in the viability of cells with initial Mg contents of approximately 1400 and 2700 nmol (109 cells)−1 occurred after approximately 1.6 h and 3.6 h respectively. In cells containing 3300 nmol Mg (109 cells)−1, more than 75% viability was still maintained after 7 h incubation with 5 mM Mn2+. It is concluded that Mn2+ uptake and toxicity in S. cerevisiae are strongly influenced by intracellular Mg, possibly through Mg-dependent regulation of divalent-cation transport activity. Received: 15 May 1996 / Received revision: 13 September 1996 / Accepted: 22 September 1996  相似文献   

6.
The enzyme 3-hydroxy-3-methylglutaryl-coenzyme-A (HMG-CoA) reductase is known as the rate-limiting enzyme in early sterol biosynthesis in eukaryotic cells. To eliminate this regulation in the yeast Saccharomyces cerevisiae, a truncated HMG1 gene, producing a form of the enzyme that lacks the membrane-binding region (i.e. amino acids 1–552), was constructed and overexpressed in this yeast. The transformed strains accumulated large amounts of the sterol precursor squalene, while the levels of ergosterol and a number of other sterol compounds were only slightly elevated. These findings suggest that HMG-CoA reductase is not the only rate-limiting step in sterol synthesis and its overexpression cannot significantly influence this pathway beyond the sterol precursor squalene. Received: 9 June 1997 / Received revision: 1 September 1997 / Accepted: 19 September 1997  相似文献   

7.
 First-strand cDNA was prepared from mRNA of Aspergillus niger MRC11624 induced on oat spelts xylan. Using the cDNA as a template, the α-L-arabinofuranosidase gene (abf B) was amplified with the polymerase chain reaction technique. The abf B DNA fragment was inserted between the yeast phosphoglycerate kinase I gene promoter (PGK1 P ) and terminator (PGK1 T ) sequences on a multicopy episomal plasmid. The resulting construct PGK1 P -abf B-PGK1 T was designated ABF2. The ABF2 gene was expressed successfully in Saccharomyces cerevisiae and functional α-L-arabinofuranosidase was secreted from the yeast cells. The ABF2 nucleotide sequence was determined and verified to encode a 449-amino-acid protein (Abf 2) that is 94% identical to the α-L-arabinofuranosidase B of A. niger N400. Maximum α-L-arabinofuranosidase activities of 0.020 U/ml and 1.40 U/ml were obtained with autoselective recombinant S. cerevisiae strains when grown for 48 h in synthetic and complex medium respectively. Received: 29 January 1996/Received revision: 3 May 1996/Accepted: 9 May 1996  相似文献   

8.
To attain long-term bioreaction in organic solvents with living microorganisms, we tried to protect the microorganisms from the toxicity of the solvent by immobilization. In this study, baker's yeast, which is not tolerant to organic solvents such as isooctane, was selected as a model microorganism and the immobilized living yeast cells were examined for activity in the steroselective reduction of ethyl 3-oxobutanoate to ethyl (S)-3-hydroxybutanoate in isooctane; an activity that correlated well with the viability of the yeast cells. It was found that double entrapment, that is, further entrapment of calcium-alginate-gel-entrapped cells with a urethane prepolymer, made it possible for the yeast to remain viable in isooctane, although other conventional immobilization methods, such as single entrapment using polysaccharide or synthetic resin prepolymers, were insufficient for its protection. Furthermore, doubly entrapped living yeast cells could carry out the stereoselective reduction in isooctane repeatedly for a long period (more than 1200 h) with occasional cultivation. Thus, double entrapment enabled a microorganism sensitive to organic solvents to survive over long-term bioreaction in an organic solvent. Received: 29 August 1997 / Received last revision: 24 December 1997 / Accepted: 13 January 1998  相似文献   

9.
The present work was devoted to the study of the biosorption capacities of various microbial species (Bacillus subtilis, Pseudomonas aeruginosa, Ralstonia metallidurans CH34 previously Alcaligenes eutrophus CH34, Mycobacterium smegmatis, Saccharomyces cerevisiae) for ions of the lanthanide gadolinium (Gd3+). The uptake by sand of this element was also measured. Saturation curves and Scatchard models were established for all biosorbants used in this work. The results enabled us to determine the binding affinities and the maximum capacities for biosorption of Gd3+, which ranged from 350 μmol g−1 for B. subtilis to 5.1 μmol g−1 for S. cerevisiae. This study demonstrated the usefulness of optimisation of experimental conditions in biosorption investigations. Experimental results showed that biosorption could be influenced by the growth stage and by the composition of the growth medium of microbial cells. Finally, particular attention was given to the transfer of gadolinium ions from a loaded sand to a bacterial suspension. Received: 8 November 1999 / Received revision: 3 February 2000 / Accepted: 4 February 2000  相似文献   

10.
We report here a counter-selectable marker system for genetic transformation of the yeast Schwanniomyces alluvius, based on the complementation of uracil auxotrophs defective in either orotidine-5′-phosphate decarboxylase (URA3) or orotidine-5′-pyrophosphatase (URA5). Uracil auxotrophs of S. alluvius were obtained by ethyl methanesulphonate mutagenesis and complemented using the ura3 gene from S. cerevisiae. A␣transformation frequency of approximately 104/μg DNA was obtained, which is tenfold higher than results described in earlier reports. Transformants were analysed by Southern blot hybridisation and were found to be mitotically stable. The extrachromosomal nature of the transforming DNA was confirmed by Southern hybridisation and plasmid rescue. The rescued plasmid DNA had a restriction pattern identical to that of the parent plasmid. Received: 19 August 1996 / Received last revision: 30 April 1997 / Accepted: 4 May 1997  相似文献   

11.
We tried genetically to immobilize cellulase protein on the cell surface of the yeast Saccharomyces cerevisiae in its active form. A cDNA encoding FI-carboxymethylcellulase (CMCase) of the fungus Aspergillus aculeatus, with its secretion signal peptide, was fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin, a protein involved in mating and covalently anchored to the cell wall. The plasmid constructed containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The CMCase activity was detected in the cell pellet fraction. The CMCase protein was solubilized from the cell wall fraction by glucanase treatment but not by sodium dodecyl sulphate treatment, indicating the covalent binding of the fusion protein to the cell wall. The appearance of the fused protein on the cell surface was further confirmed by immunofluorescence microscopy and immunoelectron microscopy. These results proved that the CMCase was anchored on the cell wall in its active form. Received: 19 March 1997 / Received revision: 19 May 1997 / Accepted: 1 June 1997  相似文献   

12.
The IAH1 gene of Saccharomyces cerevisiae encodes an esterase that preferentially acts on isoamyl acetate; however, the enzyme has not yet been completely purified from the yeast S. cerevisiae. We constructed the IAH1 gene expression system in Escherichia coli, and purified the IAH1 gene product (Iah1p). The amount of Iah1p produced by recombinant E. coli was more than 40% of total cellular proteins. The molecular size of Iah1p was 28 kDa by SDS-polyacrylamide gel electrophoresis. Judging from the molecular weight estimation by gel filtration of purified Iah1p, the enzyme was thought to be a homodimer. The K m values for isoamyl acetate and isobutyl acetate were 40.3 mM and 15.3 mM, respectively. The enzyme activity was inhibited by Hg2+, p-chloromercuribenzoate, and diisopropylfluorophosphate. Received: 23 May 1999 / Received revision: 27 October 1999 / Accepted: 5 November 1999  相似文献   

13.
The construction of a whole-cell biocatalyst with its sequential reaction has been performed by the genetic immobilization of two amylolytic enzymes on the yeast cell surface. A recombinant strain of Saccharomyces cerevisiae that displays glucoamylase and α-amylase on its cell surface was constructed and its starch-utilizing ability was evaluated. The gene encoding Rhizopus oryzae glucoamylase, with its own secretion signal peptide, and a truncated fragment of the α-amylase gene from Bacillus stearothermophilus with the prepro secretion signal sequence of the yeast α factor, respectively, were fused with the gene encoding the C-terminal half of the yeast α-agglutinin. The constructed fusion genes were introduced into the different loci of chromosomes of S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The glucoamylase and α-amylase activities were not detected in the culture medium, but in the cell pellet fraction. The transformant strain co-displaying glucoamylase and α-amylase could grow faster on starch as the sole carbon source than the transformant strain displaying only glucoamylase. Received: 16 June 1998 / Received last revision: 21 August 1998 / Accepted: 3 September 1998  相似文献   

14.
We selected three yeast strains that efficiently remove heavy metal ions from aqueous solution. We first screened yeasts that grew in the presence of 2 mM NiCl2 among our stock of wild yeasts, and then selected those that removed Ni most efficiently from aqueous solution. These strains also removed Cu and Zn from aqueous solution and were identified as Candida species. Ni uptake was efficient at pH between 4.0 and 7.0, but less efficient at pH below 3.0. The amount of Ni taken up by the yeast cells was proportional to the initial concentration of NiCl2 below about 4 mM Ni. The cells retained the abilities to remove Ni after treatment with 10 mM EDTA or 1 M HCl for repeated usage, or after heat treatment. Received: 16 December 1996 / Received last revision: 15 April 1997 / Accepted: 20 May 1997  相似文献   

15.
Cryopreservation of Doritaenopsis suspension culture by vitrification   总被引:2,自引:0,他引:2  
 Cells of a suspension culture of Doritaenopsis cv. New Toyohashi were placed in a mixture of 2 M glycerol and 0.4 M sucrose for 15 min at room temperature and then dehydrated with a vitrification solution (PVS2) for 1–3 h on ice and plunged into liquid nitrogen. The highest viability (64% by 2,3,5-triphenyltetrazolium chloride stainability) was obtained when the cells were precultured in liquid New Dogashima medium with 0.1 M sucrose and 1.0 mg/l abscisic acid for 1 week at 25  °C in the light. Dehydration by PVS2 was important for the cryopreservation of Doritaenopsis cells. Protocorm-like bodies were induced from cryopreserved cells without morphological variations. Received: 18 January 2000 / Revision received: 16 June 2000 / Accepted: 22 June 2000  相似文献   

16.
The immobilisation of the iron-oxidising bacteria Thiobacillus ferrooxidans on nickel alloy fibre as support is described. This matrix showed promise for application in iron oxidation under strongly acidic conditions. The influence on the colonisation process of T. ferrooxidans exerted by the initial pH of the medium and by temperature has also been studied. Results showed that immobilisation of T. ferrooxidans cells was affected by changes of temperature between 30 °C and 40 °C and in pH from 1.4 to 2.0. Received: 25 January 2000 / Received version: 20 April 2000 / Accepted: 1 May 2000  相似文献   

17.
Oenococcus oeni exhibited extracellular β (1→3) glucanase activity. This activity increased when cells were cultivated with glycosidic cell-wall macromolecules. In addition, the culture supernatant of the organism effectively lysed viable or dead cells of Saccharomyces cerevisiae. This lytic activity appeared in the early stationary phase of bacterial growth. Yeast cells at the end of the log phase of growth were the most sensitive. The optimum temperature for lysis of viable yeast cells was 40°C, which is very different from the temperatures observed in enological conditions (15–20°C). Moreover, the rate of the lytic activity was significantly lower in comparison with yeast cell wall-degrading activities previously measured in various other microorganisms. Therefore, yeast cell death that is sometimes observed during the alcoholic fermentation could hardly be attributed to the lytic activity of O. oeni. Journal of Industrial Microbiology & Biotechnology (2000) 25, 193–197. Received 27 December 1999/ Accepted in revised form 14 July 2000  相似文献   

18.
A Saccharomyces-cerevisiae-based simultaneous saccharification and fermentation (SSF) of lignocellulosic biomass is limited to an operating temperature of about 37 °C, and even a small increase in temperature can have a deleterious effect. This points to a need for a more thermotolerant yeast. To this end, S. cerevisiae D5A and a thermotolerant yeast, Candida acidothermophilum, were tested at 37 °C, 40 °C, and 42 °C using dilute-acid-pretreated poplar as substrate. At 40 °C, C. acidothermophilum produced 80% of the theoretical ethanol yield, which was higher than the yield from S.cerevisiae D5A at either 37 °C or 40 °C. At 42 °C, C. acidothermophilum showed a slight drop in performance. On the basis of preliminary estimates, SSF with C. acidothermophilum at 40 °C can reduce cellulase costs by about 16%. Proportionately greater savings can be realized at higher temperatures if such a high-temperature SSF is feasible. This demonstrates the advantage of using thermophilic or thermotolerant yeasts. Received: 20 February 1997 / Received revision: 24 June 1997 / Accepted: 4 July 1997  相似文献   

19.
A cDNA fragment encoding the A catalytic domain of the Neocallimastix frontalis endoxylanase XYN3 was amplified and cloned by the polymerase chain reaction technique. The xyn3A DNA fragment was inserted between the Saccharomyces cerevisiae phosphoglycerate kinase gene promoter and terminator sequences on a multicopy episomal plasmid for Kluyveromyces lactis. The XYN3A domain was successfully expressed in K. lactis and functional endoxylanase was secreted by the yeast cells with the K. lactis killer toxin secretion signal. The XYN3A domain was also expressed in a strain of Penicillium roqueforti as a fusion protein (ShBLE::XYN3A) of the phleomycin-resistance gene product and the endoxylanase. Active endoxylanase was efficiently secreted from the fungal cells with the Trichoderma viride cellobiohydrolase (CBH1) secretion signal and processed by a related KEX2 endoprotease of the secretion pathway. Several differently glycosylated forms of the recombinant enzymes were secreted by the yeast and the filamentous fungus. Received: 10 November 1998 / Received revision: 8 March 1999 / Accepted: 14 March 1999  相似文献   

20.
Spent Saccharomyces cerevisiae cells from a beer fermentation process were evaluated for lead cation sorption. The crude biomass was washed with water and acetone prior to any other treatment. Although the washed biomass showed substantial lead ion sorption it was susceptible to microbial spoilage. Different aldehydes were tested as chemical fixation agents; however, most of them caused drastic lowering of the metal uptake capacity. However, benzaldehyde was not only an excellent fixation agent, but the biomass treated with it also retained its original lead sorption capacity. A mechanism for the fixation process is suggested. Received: 11 January 1999 / Received revision: 26 April 1999 / Accepted: 1 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号